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ABSTRACT
In this paper, we report the results from the analysis of a numerical model used for the design of a magnetic 
linear actuator with applications to fi n-based locomotion. Most of the current robotic fi sh generate bending 
motion using rotary motors that implies at least one mechanical conversion of the motion. We seek a solution 
that directly bends the fi n and, at the same time, is able to exploit the magneto-mechanical properties of the 
fi n material. This strong fi n–actuator coupling blends the actuator and the body of the robot, allowing cross 
optimization of the system’s elements.

We study a simplifi ed model of an elastic element, a spring–mass system representing a fl exible fi n, subjected 
to nonlinear forcing, emulating magnetic interaction. The dynamics of the system is studied under unforced and 
periodic forcing conditions. The analysis is focused on the limit cycles present in the system, which allows the 
periodic bending of the fi n and the generation of thrust. The frequency, maximum amplitude and center of the 
periodic orbits (offset of the bending) depend directly on the stiffness of the fi n and the intensity of the forcing; 
we use this dependency to sketch a simple parameter controller. Although the model is strongly simplifi ed, it 
provides means to estimate fi rst values of the parameters for this kind of actuator and it is useful to evaluate the 
feasibility of minimal actuation control of such systems.
Keywords: Fin-based locomotion, fl exible fi n, Magneto-Mechanical Actuators, Robotic fi sh.

1 INTRODUCTION
In the last two decades, underwater fi n-based propulsion has been a topic of intense research. Theo-
retical models and simulations based on a multiplicity of numerical methods have been developed 
and reported [1–8] as well as experiments performed on artifi cial platforms and with animals [9–12]. 
Theoretical studies such as [1, 2] focus on models of the viscoelastic body, whereas [3–5] treat the 
body-fl uid coupling and the emergence of locomotion. In [6, 7, 13], the main interest is to under-
stand how passive thrust is generated in vortex wakes, a question that remains open. Despite the 
considerable work done, experimental results are not fully understood and several numerical simula-
tions are yet to be validated. Infl uenced by the activity on the fi eld, we address a parallel problem 
related to robotics, actuation.

Fins as a tool for locomotion offer several appealing properties with respect to propellers. From an 
environmental point of view, fi ns reduce sound pollution characteristic of propellers [14]. Additionally, 
a fl exible body offers the possibility of extracting energy from the environment, as shown in the tech-
nological study presented in [15]. This idea is related to the fact that trouts exploit vortex wakes (shed 
by obstacles in the fl ow) to reduce the cost of swimming [16] (see [17] for a review). These aspects are 
of primary relevance in situations where low environmental impact and mimicry are important, as in 
pipes maintenance routine, or for underwater life observation (scientifi c naiveness may make us forget 
about military applications, we provide this short caution). Moreover, in environments where moving 
parts may be clogged up due to fouling, rotatory propellers may be unfeasible for locomotion.

In the fi eld of bio-inspired robotics, actuation for swimming robots using fi n-like propulsion is 
usually implemented by the use of rotatory electric motors to control the fi n swing angle. However, 
the presence of motors hinders miniaturization and integration of actuators into the robot structure, 
a requirement for fl exible machines with deformable body. At the same time, this imposes a 
 mechanical conversion of rotations into oscillatory linear motion, the complexity of which becomes 
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an issue at smaller size. Moreover, minimizing or eliminating the number of moving parts required 
for actuation simplifi es maintenance to a large extent. To tackle the mentioned diffi culties we are 
directing our research towards new ways of actuation. Herein we report a simple mathematical 
model and the numerical analysis of a possible alternative.

We start by considering a robot composed of a hull and a fi n attached to it. The fi n is modeled as an 
elastic beam (see [1] or [2] for more detailed models), which we need to set into oscillatory motion. In 
the setup shown in Fig. 1, we choose to support the beam at two points. The fi rst support is at one edge 
of the beam and stands for the hull of the robot. The second support is placed at some intermediate 
point in the beam. The section of the beam beyond this second support is meant to generate the thrust 
by interacting with the surrounding fl uid. The actuation is done in the section of the beam between the 
two supports by means of a combination of permanent magnets (one of them attached to the beam) and 
solenoids. In the confi guration chosen, the permanent magnets serve to increase the compliance of the 
system and to reduce the force that needs to be actively applied by the solenoid. The distance between 
the supports defi nes the rigidity of the actuated section and could be tuned for optimal energy transfer. 
Similar working principles are described in patents of electric razors, and of active dampers of oscilla-
tions for digital camera lenses (in these contexts, the actuator is often called a motor or an 
electromagnetic spring). Similarly, the control of the resonant modes of a structure is a commonplace 
problem in structural dynamics [18]. It is noteworthy that all these techniques exploit (to be more effi -
cient) or require (to be implemented) knowledge of the resonant modes of the system under study.

2 DYNAMIC MODEL
The displacement of the magnet in the fi n (we will refer to this point as the fi n magnet) can be mod-
eled by a spring–mass system under the effect of an external force fi eld. Considering only 
one-dimensional motion, the system is written as

 

 (1)

where x is the displacement of the fi n magnet, m is an effective moving mass, K represents an effec-
tive elastic constant of the fi n setup and Γ is used to include dissipation. The Fi and Fsi terms are 
forces acting on the fi n due to the external magnets and the solenoids, respectively.

Figure 1: Schematic of the system described by eqn (1). A beam is used to model the fi n and it is 
simply supported at two points. The actuation is done by means of a combination of 
permanent magnets and solenoids. The distance between the supports defi nes the rigidity 
of the actuated section.
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Magnetic forces can be highly complex; to keep our model as simple as possible we approximate 
each magnet as a point magnetic dipole, which is a good approximation when the distances are 
 signifi cantly bigger than the size of the magnet in the direction of the magnetization [19]. In this 
situation, the force can be expressed as follows:

  (2)

where Ci is a constant that depends on the magnetic moments of the magnets and their geometry, 
positive values represent attractive forces and negative values represent repulsive forces. In the case 
of the solenoids, this constant depends also on the current, i.e. Csi(I) = CsiI (t) (the index s refers to 
solenoid). The position of the external magnet (or solenoid) measured from the rest position of fi n 
magnet is xi. Henceforth, we defi ne , , and c .i i si sik K m m c c m C m= γ = Γ = =  Additionally, we 
assume that the defl ected fi n does not reach the external magnets, in mathematical terms this is 
expressed as x ∈ (x1, x2).

Next we study the dynamics of the system without actuation, I(t) ≡ 0. The expression for the fi xed 
points x* is obtained by equating system (1) to 0. The second equation yields

 C2 (x* – x1)
α – c1 (x* – x2)

α – kx* [(x* – x1) (x* – x2)]
α = 0, (3)

where the assumption x ∈ (x1, x2) was used to determine the signs.

2.1 Linear stability analysis

To classify the fi xed points, we calculate the trace and determinant of the 2 × 2 Jacobian matrix J 
of (1). These are given by

 Tr(J) = –γ (4)

  (5)

In general, the fi xed points of the system will be saddle-nodes, centers or spirals, depending on the 
value of the parameters γ, k, ci and xi. However, the position of the fi xed point (i.e. the solutions 
of (3)) is independent of γ.

To proceed with the analysis we introduce further assumptions. The exponent α depends on the 
arrangement of magnets [19]. Here we will consider identical cylindrical magnets placed symmetri-
cally with respect to the rest position of the fi n magnet and with dipoles parallel to it (attracting); 
hence α = 4, c1 = c2 = c > 0 and x2 = –x1 = x0 > 0. By neglecting dissipation, i.e. γ = 0, we set the 
trace of the Jacobian to 0. Consequently, the fi xed points are either saddle-nodes or centers, depend-
ing on the sign of (5). Using these assumptions to simplify equality (3), we obtain

 
 (6)

rendering evident that x* = 0  is one of the fi xed points, in consequence of the symmetry of the 
problem. The determinant (5) at this point is,

  (7)
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which is positive for 5
0 8,c k x<  and the origin is a center. Although any real system will not show 

centers without actuation (due to dissipation), their position will match the pole of the spirals 
observed.

It can be shown that the nonzero solutions of (6) are saddle-nodes. Displacements beyond the 
saddle-nodes will bring the fi n magnet into a region where the attraction is stronger than the elastic 
restitution, causing the fi n to stick to the closest magnet. The saddles establish a natural limit for the 
maximal amplitude of the orbits of the system. To illustrate these ideas, we show in Fig. 2 three plots 
of the polynomial defi ned by (6) for different values of the ratio c k, together with phase portraits of 
the system. The fi gure depicts the trade-off between the rigidity of the fi n and the interaction of the fi n 
magnet and the permanent magnets. Keeping the x0 fi xed, the stronger the magnets (or the more com-
pliant the fi n), the smaller the region where the system can present stable orbits. At the critical ratio 

5
0 8,c k x=  the saddle-nodes collide at the origin and the center is transformed into a saddle-node.

3 ACTUATION AND CONTROL
As mentioned before, dissipation will reduce the amplitude of the oscillations. Therefore, to keep the 
system close to the desired trajectory we need to pump energy into it. To do this, we have placed a 
solenoid surrounding both magnets such that they can increase or decrease the interaction with the 
fi n magnet. Both the solenoids are constructed similarly but arranged anti-parallel to each other 
(cs2 = –cs1 = cs > 0). We place them as close as possible to the fi n magnet, for example, near the 
saddle-nodes of the system. In order to determine the parameters of the solenoid needed to drive and 
control the system, we use a simple PID controller, which can regulate the applied force. To this end, 
we rearrange the terms of (1) and write them as,

 

 (8)

where xd (t) is the desired displacement. The effort required to drive the system into steady oscilla-
tions depends on the appropriate choice of kp, kd, and ki.

Figure 2: Plot of the polynomial defi ned in (6) for different values of c k. The star symbols mark the 
position of the fi xed points. The phase portraits to the right show that the saddle-nodes 
defi ne a limit for the amplitude of the orbits. The fi gure illustrates the trade-off between the 
rigidity of the fi n and the intensity of the magnetic interaction.



250 J.P. Carbajal & N. Kuppuswamy, Int. J. of Design & Nature and Ecodynamics. Vol. 8, No. 3 (2013)

4 PARAMETER VALUES
In the following sections, we defi ne the values of the parameters used for the numerical simulation 
of the platform. We give a brief description on the assumptions and criteria used to select them. In 
Table 1 we summarize the information.

4.1 Magnets

The constant for the force (2) in the case of cylindrical magnets magnetized along their length l is

  (9)

where µ0 is the permeability of vacuum, R is the radius of the magnet, and Br is the remanence of the 
magnet (a value available from manufacturers). The factors in parentheses represent the magnetiza-
tion and the volume of the magnet; they are squared because we assume that both interacting magnets 
are equal. Using values from commercially available Neodymium magnets, we have calculated 
C = 2.460 × 10–10⋅N⋅m4.

4.2 Elastic constant

As can be seen in Fig. 1, we model the fi n using a beam simply supported in two points. The supports 
are separated by a distance L. The fi n magnet is placed at the point y and the elastic stiffness there 
can be written as

  (10)

where E is the Young modulus of the material and J is the second moment of area of the beam. As 
discussed before, the behavior of the system depends on the relation between the elastic constant 
of the fi n and the strength of the magnets. The current setup allows tuning the elasticity of the fi n 
by setting different materials and profi les of the fi n, or by moving the fi n magnet, or by changing 
the distance between the supports. If needed, the setup could be transformed into a cantilever by 
removing the second support. To provide good ranges of elasticity, we use low-density polyethyl-
ene plastic with E ≈ 0.2 × 109 Pa and L = 30 mm. The fi n has width and thickness of 10 mm × 0.5 
mm, respectively. The fi n magnet is placed in the middle of the two supports. This value yields 
K = 37.03 N⋅m–1.

4.3 Damping and mass

When a body moves in a liquid, it transfers kinetic energy into the surrounding fl uid reducing the 
acceleration, which corresponds to the one observed on a body with higher mass. This phenomenon, 
known as added mass, can be estimated using models as the one presented in [20]. However, we 
postpone a detailed description for future work and simply consider a total mass 300 times bigger 
than the mass of the fi n and the magnet together, m = 84.3 g. Estimation of the damping Γ without 
an experimental setup is not straightforward; therefore, we use damping ratios in the range Q ∈ [0, 
0.5], where Q = 0 means no damping and a value Q = 1 corresponds to critical damping.

Table 1 summarizes the value of the parameters. Though the values are reasonable, we do not 
expect them to correspond to any real device and corrected ones will come from a future validation 
process.
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5 RESULTS

5.1 Phase space and time series

Numerical results for the undamped system are presented in Fig. 3. We take three initial conditions 
on the region of the phase space to study. All the initial conditions start with zero velocity, i.e. they 
lay on the horizontal axis. It is important to note that the time series of the fi n displacement clearly 
show different frequencies. This is due to the attraction of the magnets; the higher the initial dis-
placement, the lower the frequency of the orbit. These results are shown in detail in Fig. 4. For each 
initial condition, we plot the power spectrum of the signal and it is visible how the main component 
decreases at higher amplitudes.

The offset of the oscillations corresponds to the position of the center. By breaking the symmetry of the 
system, either by setting c1 = c2 or by feeding constant current to the solenoids, we can move the center 
off the origin. This could be required for turning maneuvers or useful for initiating oscillations. In Fig. 5, 
we show how the center and the saddles move for different values of c1 and c2 (or increasing current).

Table 1: The values of the parameters used for the numerical results reported in the text.

Parameter Value Units

2.919 × 10–9 N · m4 kg–1

439.3 N · m–1 kg–1

[0, 20.96] N · s · m–1 kg–1

x0 1 × 10–2 m

Values for d correspond to the range of damping ratio Q ∈ [0, 0.5].

Figure 3: Trajectories in phase space and time series for the undamped system starting from three 
different initial conditions. The frequency of the signal decreases with the amplitude due 
to the interaction of the magnets.
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5.2 Actuated system

The controller is provided with reference signal of the form A cos(wt + ø). The amplitude A is taken 
inside the bounds defi ned by the saddle-nodes. Given a value for the amplitude, we use the curve 
shown in the inset of Fig. 4 as a frequency lookup table. The initial phase ø is calculated from the 
initial conditions. We took the same initial conditions as in the previous section, namely x(0) = A, 
0.5 ⋅ A, 1.25 ⋅ A. However simple, the control technique shows a remarkable performance as can be 
appreciated in Fig. 6. In the fi gure, the reference trajectory is the dashed line; for the case without 
damping, the actual trajectories of the system overlap. On the left panels, the time series of the dis-
placement are shown and compared with the reference amplitude.

Figure 4: Variation of the natural frequency with the amplitude of the oscillations. The power 
spectrum of the orbits is plotted; the behavior of the main component is shown in detail in 
the inset.

Figure 5: Control of the position of the center and saddles. The center moves symmetrically around 
the origin for differences Δc between the magnetic constants. The maximum amplitude is 
also compromised, because the saddle on the side of the stronger magnet comes closer to 
the center.
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81 

Figure 6: Trajectory in phase space of the actuated system for three different initial conditions close 
to the desired amplitude. On top, the results without damping and below them, with 
damping ratio of Q = 0.5, which gives an unfeasible solenoid. In the second case, the 
reference trajectory in phase space is shown in dashed line. On the left, we show the time 
series of the displacement of the fi n.

5.3 Solenoid

If we take the maximum of the output from the controller, Fc(t), and limit the maximum current fed 
to the solenoids to I < 20 mA, we can fi nd a suitable expression for calculating the ideal number of 
turns N of a coil. The net force generated on the fi n magnet is given by the sum of forces due to the 
two coils, the wiring of which ensures that the force generated by each on the fi n magnet is additive. 
This force can be expressed as

  (11)

where Br, R and l are as in 9, and xm is the displacement corresponding to the maximum force Fm. 
Solving for N and replacing with the corresponding values, we obtain N ∈ [600, 1000], for Q ∈ 
[0, 0.2]. Higher values of damping impose too many turns on the solenoid. Although the model is not 
yet validated, this result is encouraging.

6 DISCUSSION AND CONCLUSION
In this short report, we have presented the fi rst step towards the design and construction of a novel 
actuator for small swimming machines. Though we have used rough models, the results show that 
we are pointing in the right direction. The design shown here is not necessarily the best in reducing 
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the actuation needed. For example, one could think of using the instability of the center to initiate 
motion, by forcing the system through its bifurcation. This could be achieved by on-line modifi ca-
tion of the distance between the supports or by bringing the permanent magnets closer. Additionally, 
placing a permanent magnet perpendicular to the plane at the origin could be used to further reduce 
the frequency of the orbits or to control the offset in a more sensitive way than the one shown here.

Our model includes dissipation proportional to the velocity and, therefore, the role of dissipation 
is marginal. More detailed models of the fl uid dynamics and the bending of the fi n will surely bring 
dissipation into a more primary role in the behavior of the system. In addition, thrust, heat dissipa-
tion and energy consumption could be estimated in such multi-physics models.

We have shown how a simple PID controller could perform reasonably when information about 
the phase portrait of the system, like the dependence of frequency with amplitude, is included. The 
use of adaptable frequency oscillators [21] or standard model-based controllers (like feedback line-
arization) could improve performance and reduce these requirements. Additionally, a system that is 
too fl exible does not possess orbits without a controller. Such a controller would require large amount 
of actuation, since it is forcing the system to behave unnaturally. Therefore, the existence of orbits 
can be exploited to reduce energy consumption. This stresses the fact that passive dynamics are a key 
to improve the way we control and design our robots. Controlling the force between solenoids and 
moving magnets brings several challenges on the design of the electrical circuits due to the changes 
in impedance; another interesting aspect of the problem that will be addressed in further studies. We 
understand that the results obtained solely from simulations are as ‘words without actions’; however, 
the use of simple models can help us evaluate the feasibility of certain designs. In our particular case, 
a device with low friction could be driven with a tuned PID, a frequency lookup table and a solenoid 
with 800 turns, consuming about 20 mA.
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