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 As the size of the cloud-based applications and its tasks are increasing exponentially, it is 

necessary to estimate the load balancing metrics in the real-time cloud computing 

environments. Hybrid load balancing framework play a vital role in the cloud-based 

applications and tasks monitoring and resource allocation. Most of the conventional load 

balancing metrics are dependent on limited number of cloud metrics and type of virtual 

machines. Also, these models require high computational memory and time on large 

number of tasks. In this paper, an advanced multi-level statistical load balancer-based 

parameters estimation model is designed and implemented on the real-time cloud 

computing environment. In this model, a novel statistical load balancing data collector is 

used to find the best metrics for the load balance computation. In this model, different types 

of tasks are simulated under different virtual machine types such as small, medium and large 

instances. Experimental results show that the proposed multi-level based statistical load 

balancing collector has better efficiency than the conventional models in terms of memory 

utilization, CPU utilization, runtime and reliability are concerned. 
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1. INTRODUCTION 

 

With a wide range of services and an increasingly 

increasing services, cloud computing needs to find methods 

for resource utilization management and higher performance 

ensure. It is necessary to optimize the Service Level 

Agreements (SLAs) during the cloud service allocation and 

resource optimization process. It requires better load handling 

mechanisms to achieve SLAs and to ensure customer 

satisfaction. Load balancing algorithms are improved to 

balance the load and maximize resource efficiency and 

resource management optimizations. It is very important to 

distribute the resources optimally. If more resources are 

allocated, resource shortages will occur and when less 

resources are allocated, the workers will struggle to achieve 

SLAs. Cloud Computing is an up to-the-minute IT 

environment-affiliated technology with huge resource demand 

such as efficient use of storage devices, networking devices, 

computer devices, services and applications, etc. Now a few 

days, mobile software and utilities have migrated entirely to 

portable PCs and connected via the Internet to data centers. 

This is not operated by personal computers or local data 

servers, which are shared [1].  

For cloud computing the infrastructure's buying and 

operating costs are eliminated [2]. In short, 'Cloud Computing' 

offers a simple, open, demand-based, and pay-per-use 

approach to computing resources [3]. Cloud computing is an 

essential technology that makes efficient use of resources by 

allocating it to users according to their needs. Load balancing 

in the cloud is one of the main challenges for managing the 

workload between the systems and performance. An efficient 

load balancing algorithm is required to allow effective use of 

resources. A thorough analysis on the key aspects of cloud 

computing and by comparing various existing load balancing 

algorithms is carried out. The cloud-based partitioning 

approach which considers the related state of different 

partitions in the cloud [4]. The condition can be 

OVERLOADED, NORMAL, or IDLE. The load balancing 

algorithms, as the states suggest, intuitively understand the 

environment and take balancing decisions. It is capable of 

handling more workers when every partition is idle. The 

standard state shows the VMs are in use but can still handle 

work. The program is able to improve load handling by 

providing a queue and testing it iteratively. If load degree is 

lower for each server, new jobs will be allocated to that server 

upon arrival. Since cloud servers are equipped with a load 

balancer program, the load balancer system is responsible for 

scheduling jobs with load in mind. Nonetheless, the state of 

the partitions needs to be checked periodically. The problem 

here is to decide load balancing technique based on partition 

with an ideal refresh time. Assessment of refresh time to 

provide a refresh threshold is very necessary for optimizing 

load balancing using cloud partitioning approach. When cloud 

space is separated, greater control can be exercised over it. CP 

(Cloud Partition) based model provides for various strategies 

such as IDLE, Regular, and OVERLOADED.  

Those are in reality partition status which is used to make 

informed decisions. When a partition performs no work, it is 

said to be in IDLE state. Similarly, when a partition is used for 

processing but its load is regular, and then it is called Regular. 

On the other hand, it is known as OVERLOADED state, the 

partition that exceeds its maximum processing potential and 

all of its resources are being used. Such states specifically 

assist with load balancing. They explored various recent 
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attempts to build an ACO theory, addressed linkages between 

ACO mechanisms and stochastic gradient ascension and 

cross-entropy techniques in model-based search construction, 

and finally discussed the impact of search bias on the 

functioning of ACO algorithms. They changed the basic ACO 

algorithm to focus more on the strategy for optimization in the 

execution of tasks. To simulate their approach, they used 

CloudSim toolkit. MACO initiates the finest resource 

allocation in the cloud for task groups and reduces the 

makespan but is constrained in finding the Load Balancing 

Element [5].  

A cloud computing is an integral technique that is on-

demand operation, and cloud-based service providers at a 

particular time exchange resources, applications, and 

information according to the user requirement. The cloud 

vendors automatically balance the service loads, and more 

CPUs, memory, and resources are required to manage more 

user demands. The service is focused on customers ' business 

requirements. The load balancing strategy helps satisfy the two 

key criteria, initially supports cloud resource availability and 

also increases server performance. Load balancing is the 

difficult problem in cloud computing system as it requires 

more workloads. The fundamental goal of the philosophy of 

load balancing is to equalize the workload between each and 

every node by reducing the execution time, communication 

delays, resource usage increase, and throughput. Load 

balancing increases network reliability step by step through 

the shared workload transfer process. Cloud load balancing 

reduces costs and greatly improves resource availability. An 

optimal selection of algorithms should ensure that all 

computer nodes present in the network process the same 

number of workloads. The load balancing strategy helps to 

provide the unorganized resources with visualization of tasks 

that are distributed in the cloud architecture. The cloud 

platform, load balancing approach is used to distribute a large 

workload of processing to small workloads of computation to 

boost general system execution. Static load balancing 

approach uses the existing considerable knowledge of the 

system's application behavior and statistical data. Through this 

balancing technique machine resource knowledge and output 

of the processor is calculated at execution begging. So the load 

decision does not depend on the system's current state. Access 

is made to the acquired output result and subsequently work 

load is allocated by substantial processor. The processor tests 

the assigned job at each node and delivers the result to the 

processor in question. But, as often executed on the processor 

itself, the static approach is also called a non-preemptive one. 

The key aspect of static techniques is to lower the execution 

and its time series along with eliminating delays directed to 

communication. A general drawback of static approaches is 

the overall host selection which requires process allocation [6]. 

In dynamic form, the load is dynamically supplied to any 

processor present in the network at the time of program 

execution. It is different from static because it works as a 

runtime processor which makes every single node participate 

in information transfer. Instead, the tasks at each node are 

buffered at the master node in a queue format, and distributed 

one by one to the related nodes as a result of remote hosts 

requests. The complex methodology is continuously trying to 

track the tasks from each processor. Once the tasks and weight 

disparity increase to a certain predefined amount, the data 

processing is re-collected. Monitoring the whole cycle 

arranges the CPU rotations and manages the method as the 

algorithm evokes it. Cloud computing provides consumers 

versatile and scalable Internet-based infrastructure. For that a 

lot of data can be arrived at a time in a cloud. It leads to server 

failures causing problems with outages. The load balancing is 

typically a method that distributes the dynamic load across the 

cloud to all VM. A problem often occurs when some nodes are 

heavily loaded when others are idle or doing little work. The 

balancing algorithm for complex loads is implemented either 

as distributed or non-distributed algorithm. Dynamic load 

balancer uses protocols to keep track of the details being 

changed. The suggested technique has implemented a 

successful algorithm to avoid the server fault. It helps attain a 

high user satisfaction and resource usage ratio, thereby 

enhancing the system's overall efficiency and resource usage. 

It also ensures that every computing power is effectively and 

equally distributed. 

The proposed algorithm will prevent machine bottlenecks 

from occurring due to unbalance in load. If one or more 

elements of any operation fail, load balancing assists in the 

service's continuity at the time of failover. Resource 

management can be effectively done using appropriate 

resource allocation algorithms to optimize the number of 

physical machines, VMs and equally balance the loads among 

available resources. Both quantitative and qualitative work 

was carried out to design and improve algorithms for 

optimizing the allocation of resources in cloud computing. 

Dynamic and effective allocation of resources algorithms are 

focused on optimal usage of the datacenter resources. 

Virtualization plays a significant role in maximizing the usage 

of resources. In both software and hardware, it is a technology 

used to build VMs that allow a single physical machine to 

operate as multiple machines resulting in scalable resources on 

demand. The use of resource virtualization techniques 

increases resource efficiency and reduces the waiting time for 

tasks. The service provider is increasing their resource 

utilization to support a wide range of flexible workloads. 

Moving to Intercloud is therefore a good choice for all sizes of 

organizations. With the support of the architecture, several 

open access research problems and resource algorithm 

provisioning were established and the cloud system was 

inspired. The energy-oriented heuristics of allocation 

heuristics from the DC method to client set of applications 

have effectively enhanced efficiency. Through program 

implementation, the agreed Quality of Service (QoS) way is 

accomplished. The findings were obtained by performing an 

early-research survey and comparison. The result is described 

as: (a) design principles for managing energy-intensive clouds; 

(b) efficient policy resource allocation and scheduling 

processes that take into account the QoS needs and electricity 

characteristics of the devices employed; and (c) a range of 

open research and challenges, substantial benefits from the 

application to both power providers and customers. The 

performance assessment and judgment of the algorithm built 

is achieved using the CloudSim toolkit and its operations. 

The resource assignment undertaking is placed through the 

network analysis strategy and the Analytic Hierarchy Method 

giving accessible assets and customer inclinations. In addition, 

an implemented inclination lattice is used to separate the 

conflicting components and to improve the consistency ratio 

when attributing conflicting weights in different tasks. The 

findings indicate that further measuring of inconsistent data 

and increasing the consistency ratio and task weight are useful 

for dynamically allocating computing resources in cloud 

computing environment. Load balancing is a method used to 

spread the workload equally in an eventual way between each 
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node in the cloud organization system. It is defined as the 

distribution of load from resources so as to enhance the 

system's overall performance. Therefore, the load needs to be 

uniformly spread across the cloud-based resource system, and 

at any time series, each resource is performed approximately 

the same amount of work. The key benefit is to provide 

strategies for managing incoming client requests, and to ensure 

that the client always performs better. Cloud vendors offer 

automated load balancing services; allow clients to build up 

the amount of CPUs or resource memory to calculate with 

increased demands. However this service is voluntary, and 

relies on customers ' business needs. Thus load balancing 

serves two important purposes, it promotes cloud resource 

availability and it also promotes cloud environment efficiency. 

This is an important goal in understanding a major objective 

such as cost effectiveness, efficiency, scalability, and timing 

objectives of load organizing algorithms in order to manage 

the loads and resource requests. Load management helps in 

also allocating present resources to make optimal utilization of 

resources and a high degree of customer satisfaction. The 

higher achievement of resources and structured load balancing 

helps increase the scalability and prevent bottlenecks. This 

helps to achieve the maximum and minimum amount of 

response time and throughput. Load balancing often separates 

traffic between servers in a networked environment, so data 

can be sent and received at a higher rate without delay. Many 

algorithms are developed, and it helps with proper traffic 

loading in a cloud environment between the available servers. 

 

 

2. RELATED WORK 

 

Several researchers have sought to forecast cloud 

computing workloads so that they can perform better. No 

predictive algorithm looks true so far. They concentrated on 

the idea of external optimisation (EO) [7]. In cloud computing, 

the EO-based algorithm is used to use a two-step stochastic 

selection process to balance load. It is simply a meta-heuristic 

that cares for the scheduling of cloud jobs. It consists of a 

hybrid approach consisting of the genetic process and the 

principle of fuzziness. To do this, they've improved the 

Standard Genetic Algorithm (SGA). They offered CloudSim 

model simulation solution based on scheduling algorithms for 

load balancing. They considered the duration of work, the 

frequency of VMs and memory consumed by VMs during 

decision making.  

Gesvindr et al. [8] testified to MapReduce programming for 

efficient job handling in cloud computing. They concentrated 

on the study of trade-off between cost of success and cost of 

optimisation. To order to provide tests of diversified inputs 

and outputs various benchmarks are used. Using Amazon 

Elastic Cloud Compute (EC2), Elastic Block Storage (EBS), 

and Elastic MapReduce (EMR), they tested this. Time for 

completion of jobs is measured and the complexity of job size 

is discussed.  

Gholipour [9] demonstrated a task-level scheduling 

algorithm and used Dynamic Programming (DP) to develop a 

budget-driven scheduling system. They know their algorithms 

as Global Optimal Scheduling (GOS) and Global Greedy 

Budget (GGB). GGB designed to optimize scheduling and 

balancing of loads under the defined budget constraints. The 

budget for stockpiling and sharable resources is given. Global 

budget allocation with specified constraints makes an 

algorithm greedy and produces optimal scheduling 

performance. Scheduling time and remaining budget are two 

important metrics used to determine it. 

Gill et al. [10] focused on market-oriented resource 

management techniques which embrace risk management 

strategies and customer-centered service management 

approaches to support resource allocation centered on the SLA. 

In addition, they developed a method called CloudSim to 

simulate performance metrics in a cloud environment.  They 

clarified the Particle Swarm Optimization (PSO) is an 

optimization technique that finds the optimal solution to the 

problem by iteratively optimizing it. The candidate solutions 

are popularized to solve the problem of optimization. The 

particles shift in the search space depending on the velocity 

and location of the particles, based on the mathematical 

formula. The movement of each particle determines the 

optimal location. In solution space the best known locations 

are defined and modified. PSO and ABC algorithms are 

effective techniques of optimization that have a fairly short 

iteration time. On the other hand, they may definitely collapse 

into local extremes. This method significantly decreases the 

average completion time of the task in the cloud datacenter.  

Guo et al. [11] suggested a profiling-based, energy-efficient 

cloud computing technique. The offline profiling strategy is 

conducted for the development of energy aware references for 

the cloud environment infrastructure given. The profile 

developed is matched with the data in real time and the 

services are therefore given to reduce energy consumption. It 

is however difficult to determine the exact number of VMs 

required for the cloud system to operate properly and 

effectively. 

Habibi et al. [12] defined the resource capacity and cloud 

workload scheme which, by applying three flexible time scales 

and scopes, combines different resource restrainers in 

automated resource allocation. Three types of time scales were 

used in the study, such as shortest time scale, shorter time scale 

and longest time scale. The controllers, namely node controller, 

pod controller and pod set controller, were configured to 

handle the allocation of the Virtual Machine resources and the 

migration of the workload. Additionally, they concentrated on 

applying different threshold techniques to complex variations 

in cloud workload [13]. 

Various efforts are being made to scale elastic cloud 

application frameworks that reduce elastic resource 

consumption through cloud-based elastic services. These 

frameworks were developed to manage scalable services based 

on precepts and proficiencies of autonomous computing. 

However, there were no statistical techniques used in elastic 

cloud services for handling resource allocation and managing 

vast volumes of data. Various dynamic scheduling techniques 

have been suggested to improve resource efficiency in cloud 

computing. 

Jodayree et al. [14] used the Ant Colony Optimization 

(ACO) approach to present a strategy for allocating Virtual 

Machines to the least number of cloud servers based on user 

requests and workloads. They addressed the Virtual Machine 

Resource Planning Scheme for Load Balancing based on the 

Genetic Algorithm. This algorithm was used to minimize 

dynamic migration and to achieve better load balancing based 

on current cloud system state and historical data. Liang et al. 

[15] proposed ACO load balancing based algorithm to 

schedule and reduce makepan in cloud setting. In cloud 

computing [16] the emphasis was on allocating virtual 

machines for efficient resource allocation based on cost and 

execution time for real-time tasks in the IaaS environment. 
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The research allowed the user to pick Virtual Machines and 

cut Cloud usage costs. The distribution of resources was 

performed on the basis of a fixed number of processors. So, it 

has contributed to problems of scalability and elasticity.  

Mashhadi et al. [17] proposed a Multi-Objective Genetic 

Algorithm for Cloud Brokering (MOGA-CB) that considered 

two objectives in the optimization process to reduce response 

time and costs.  

Nyasulu [18] implemented modified RR approach for 

resource allocation technique in cloud computing. One of the 

computing paradigm is cloud computing, which allows 

services on demand. Cloud users can access their data or 

software from anywhere, at any time. An enterprise may lease 

Cloud assets for power and other computational purposes with 

the intention of significantly decreasing their network costs. 

Through raising the processing time, the altered RR asset 

allocation approach fulfills the company demands and 

program needs. This built algorithm consists of various parts 

such as load prediction, hot spot mitigation, and green 

computation. The resource allocation is built at two levels 

within the cloud framework. The method's code is initially 

inserted into the cloud, and the load balancer is allocated to the 

computer's requested instances. Finally, the various types of 

multiple incoming orders or requests are reached, and these 

requests are allocated in an instance to each particular function 

or application, and the computational load is balanced.  

Premarathne et al. [19] developed a resource allocation 

model for the scaling of Software-as-a-Service functionality 

over cloud infrastructures based on tenant features. The cloud 

infrastructure offers the necessary access to a collection of 

computing tools along with some of the system's basic 

business models; fetches centralized providers constantly 

calculating service levels. Its internal infrastructures build a 

number of VMs and instances concerning the application's 

demand. SaaS providers have the key benefit of scaling up or 

scale down the application capital capability. The system's 

ability to access or pay is limited, which at a given time is the 

most significant challenge in cloud computing.  

Anton Rafieyan [20] used Genetic Algorithm (GA) to 

exhibit client-conscious scheduling of tasks and resource 

allocation in multi cloud. Mapping the approaching demand 

for occupation to accessible VMs is a non-polynomial finish 

problem, as the concept of movement is very subjective. The 

scalability is considerably high for the simulated multi-cloud 

environment. Data locality costs, latency arbitration, energy 

usage, and multi-cloud network running costs are beyond the 

scope of the simulated scenario.  

Sahil et al. [21] conducted a taxonomy survey of techniques 

that are effective in allocating resources to cloud along with 

minimized capacity. In the cloud computing model, the 

allocation of different virtualized ICT mode of services are the 

dynamic problems created by the presence of heterogeneous 

application types such as networks dependent content delivery 

nodes, web apps, and Map Reduce, etc. Workloads are 

extracted and studied which include more contentious 

allocation requirements with ICT capacity resources such as 

network bandwidth, response time, processing speed, etc. The 

vast number of recent researchers have been addressing 

problems in improving energy efficiency and allocating cloud-

resource applications with a particular point of achievement. 

In any case, there are no centralized processes concerning this 

phenomenon to the best of our understanding, because it 

analyzes the problem of discovery and offers a theoretical 

categorization from current methods. The majority of the 

algorithms can be implemented with perfect modifications in 

cloud generation. Load balancing algorithms can be generally 

categorized as Heuristic Scheduling Algorithms for Batch 

Mode (BMHA) and Heuristic Algorithms for Online Mode 

(OMHA). In BMHA, as it comes into the program, jobs are 

grouped as a batch, and scheduling starts after a default time 

period. Heuristic scheduling calculations in the online mode 

are more suitable for cloud environment. It is important to 

determine valid load, reliability of different systems, frame 

execution, communication between each of the hubs when 

constructing a load balancing procedure. The efficient 

forecasting techniques as well as the host load balance are 

required for the VM migration. While workload lengths are 

shorter, host nodes shift more frequently with higher cloud 

noise. The implementation of the planned plan and the existing 

order approaches are contrasting. The load forecast for the host 

is based on genuine Google cluster information gathered. The 

length of the cloud host load is much shorter than that in grid, 

meaning the cloud host load is adjusted a lot more frequently. 

Time means that the load level is constant over a given time 

period. Virtualization technology is the foundation of 

distributed computing that allows to efficiently use managing 

assets by relegating the amount of VMs to the single physical 

host. In the meantime, workloads for the cloud environment 

are dynamic in nature, and several needless hosts sometimes 

run in the background. 

 

 

3. PROPOSED WORK 

 

In the proposed framework, a novel multi-level cloud-based 

load balancing metrics are estimated using the advanced 

statistical data collector. As shown in the Figure 1, initially 

multiple virtual machines (VMs) are initialized in the AWS 

EC2 environment in order to find its resources. Here, a 

randomized set of tasksare assigned to each virtual machine 

for resource allocation and load balancing. Tk-1,Tk-2….Tk-

m1 represents the set of tasks initialized to virtual machine V1. 

Similarly, Tk-1,Tk-2….Tk-mn represents the set of tasks 

assigned to virtual machine Vm. 

 

3.1 Improved multi-level load balancing feature estimation 

 

1. Initializing of cloud virtual machines VMi for n tasks, m 

resources and k load balancers. 

2. To each virtual machine VMi 

3. do 

 

Assign n tasks to each virtual machine. 

Compute the best r metrics in the given tasks to each virtual 

machine by using the cloud IPSO with QoS selection measure 

as: 

 
icf

i i c1 i i

c2 i i

MV(cf 1,i) .[e .MV(cf ,i). (pBt MV(cf ,i)

(gBt MV(cf ,i)]

+ =   −

+ −
 

 

ω is the multi-level metric selection scaling parameter 

defined as: 
 

c1 2

2
i c1 c2 c1 c2 c1 c2

h*( )

| h*cf ( ) ( ) 4( ) |

 +
 =

−  + −  + −  +

 

 

where, ηc1, ηc2∈cyclic group randomized elements and h<=2. 
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Figure 1. Proposed multi-level load balancing parameter selection 
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Here,   is used to find the local and global best positions 

for the given PSO model.  

Let t min R  and t max R are the minimum and maximum 

response time of the task in each instance VMi. 

 

( ) ( )
ii t min t max cf  F c  R  ?   RMV(cf 1 1 P Wq,i ( . ))*  =  + −+

q t RW  max{ VM(R ,i)}.T /  =   

 

where, 

| VM | Total number of virtual machines.=  

|T|=Total number of tasks.  

( )
iR cf VM( ,i). 1 P =  −  

( )
i

n

cf

n

R RP  /|VM|!|T|.=    

 

Here, the fitness function is used to select the optimal load 

balancing features for the prediction purpose. 

These selected local and global functions are given to 

fitness function computation. The fitness measure of the 

proposed improved PSO is selected based on the minimum and 

maximum response time of the task in each instance. 

Repeat step 3 to each task dynamic response time and the 

cloud metrics. 

In this algorithm, a set of virtual machines, tasks and its 

response time are taken as input to find the relevant best 

metrics for load balancing algorithm. In this algorithm, the 

statistical collector program is implemented in order to extract 

all the cloud metrics in the AWS environment. In this 

algorithm, initially, all the virtual machines and its 

corresponding tasks are initialized in the AWS cloud 

environment for load balancing metric selection. To each 

virtual machine, different tasks are assigned to find the best 

metrics for load balancing property. In this work, an advanced 

IPSO statistical collector is used to find the probability of 

selecting the load balancing metric using the QoS response 

time(R). Steps 5 and 6 are used to find the best load balancing 

metrics based on the QoS and its corresponding cloud metrics. 

 

3.2 Statistical tasks and resource constraints for load 

balancing
 

 

In this statistical tasks and resource constraints phase, each 

virtual machine and its resources are monitored in the real-

time cloud environment using the hybrid multi-objective 

functions. In this phase, each cloud virtual instances, capacity 

and memory bounds are used to define the non-linear objective 

functions for tasks and resource allocation. 

 
M

2

ce
Max{(  log (C)) M}

 log (M )
+ +  
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The above non-linear objective function is used to solve the 

best computed memory (M) constraints and the task capacity 

(C). 
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Here   value is used as to take the decision making based 

on the task run capacity C and the virtual machine’s memory 

M. 

Let the 
i 1 2 3 rB {B ,B ,B .....B }=  represents the virtual 

machine allotted to the task with the required resources. 

For each virtual machine VM ( i ),  

 

i VMj

i

B 1 if >0; T assigns to R.

B 0 otherwise; not assigned

=

=



 
 

Let 
1 2 3 KVM { , , ... } −       is the set of cloud virtual 

instances in cloud environment. 

Let ri∈Ri be the set of resources of all cloud virtual 

instances. 
 

CPU RAM PORT TIME HARDDISK

i i 1 2 3 4 5 mr R {r , r , r , r , r ,...r } →  

 

The statistical multi-objective function for the resource 

bound checking of the cloud virtual machines are defined as 

below: 
 

N

i VMj i

i 1

M

j VMj i

j 1

Min B .log{ }/ | R | and

 Max B .exp( )/ | R |

=

=








 

 

Let ri∈Ri be the set of resources of all cloud virtual instances. 
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The above statistical constraints are used to predict the 

range bounds of the tasks and it resources for load monitoring 

process. Also, these constraints are considered to find the 

lower bound and upper bound constraints to each virtual 

machine in the real-time cloud computing environment. 

 

 

4. EXPERIMENTAL RESULTS 

 

Experimental results are simulated using the Amazon AWS 

server and the java programming environment. In this work, 

AWS JAVA API is used to develop the proposed load 

balancing parameters estimation. In this work, a novel 

statistical collector-based load balancing metrics are predicted 

using the real-time cloud computing environment. In this 

experimental results, various performance measures such as 

Memory utilization, CPU utilization, Reliability and runtime 

computation on the real-time cloud server tasks. In these 

results, all the tasks are executed in small, medium and large 

virtual machines. Experimental results are compared using the 

traditional models such as dynamic load balancing (DLB) [22], 

load balancing based on bayes clustering (LB-BC) [23], load 

balancing with resource clustering [24] and particle swarm 

optimization with firefly approach [25]. In the experimental 

analysis, different cases of load balancing metrics are 

evaluated on tasks using small, medium and large instances 

with 1GB,4GB and 16GB ram capabilities. 
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Table 1. Sample real-time cloud instances and its metrics for load balance analysis 

 

Instance 

no 

backet 

name 
region 

load 

balancer ID 

data 

req 

data 

res 

load 

time 

req 

time 

job 

idle 

time 

CPU 

utilization 
memreq 

job 

runtime 

Inst-1 
Buckt-

112.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

47.0 
39 329 39 1431 11 6 29 439 

Inst-2 
Buckt-

113.0 
US East (Ohio) 

LoadBal_ID1

98.0 
30 277 23 2922 12 6 5 784 

Inst-3 
Buckt-

198.0 
US East (Ohio) 

LoadBal_ID2

01.0 
27 298 35 2639 20 4 34 540 

Inst-4 
Buckt-

126.0 
East (Virginia) 

LoadBal_ID1

26.0 
46 285 28 3884 6 6 22 667 

Inst-5 
Buckt-

147.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

47.0 
40 350 37 2994 18 6 53 416 

Inst-6 
Buckt-

136.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

18.0 
47 283 20 2985 19 3 31 499 

Inst-7 
Buckt-

133.0 
US East (Ohio) 

LoadBal_ID1

92.0 
24 262 35 2388 19 5 35 669 

Inst-8 
Buckt-

149.0 
East (Virginia) 

LoadBal_ID2

14.0 
44 251 35 4301 16 6 45 553 

Inst-9 
Buckt-

105.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

63.0 
29 252 35 1608 21 4 26 283 

Inst-10 
Buckt-

143.0 
East (Virginia) 

LoadBal_ID1

36.0 
44 313 35 3343 17 4 44 762 

Inst-11 
Buckt-

141.0 
US East (Ohio) 

LoadBal_ID1

24.0 
27 341 42 3398 13 6 28 711 

Inst-12 
Buckt-

168.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

61.0 
27 258 23 1207 17 6 27 755 

Inst-13 
Buckt-

120.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

73.0 
25 329 30 4279 20 4 35 656 

Inst-14 
Buckt-

199.0 
East (Virginia) 

LoadBal_ID1

94.0 
33 276 28 2884 14 4 28 738 

Inst-15 
Buckt-

135.0 
US East (Ohio) 

LoadBal_ID2

07.0 
34 242 29 1828 12 6 15 509 

Inst-16 
Buckt-

177.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

14.0 
49 249 34 2925 18 5 42 715 

Inst-17 
Buckt-

184.0 
US East (Ohio) 

LoadBal_ID2

36.0 
36 252 30 2778 14 2 11 357 

Inst-18 
Buckt-

142.0 
US East (Ohio) 

LoadBal_ID1

92.0 
41 254 38 3014 9 4 46 537 

Inst-19 
Buckt-

130.0 
South America 

LoadBal_ID2

35.0 
47 270 40 4621 21 5 20 558 

Inst-20 
Buckt-

181.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

86.0 
41 286 32 1246 17 3 12 483 

Inst-21 
Buckt-

192.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

99.0 
26 327 31 3842 19 6 25 740 

Inst-22 
Buckt-

118.0 
US East (Ohio) 

LoadBal_ID2

01.0 
27 267 43 1510 6 2 46 538 

Inst-23 
Buckt-

127.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

27.0 
29 335 25 2051 23 2 21 527 

Inst-24 
Buckt-

148.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID2

31.0 
32 297 20 1601 8 4 28 342 

Inst-25 
Buckt-

162.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID2

21.0 
36 306 40 1602 21 5 39 440 

Inst-26 
Buckt-

112.0 
US East (Ohio) 

LoadBal_ID1

84.0 
26 247 38 1084 16 3 12 746 

Inst-27 
Buckt-

139.0 
US East (Ohio) 

LoadBal_ID1

87.0 
41 337 37 2176 13 2 43 464 

Inst-28 
Buckt-

123.0 
US East (Ohio) 

LoadBal_ID1

89.0 
46 343 39 1694 7 3 26 741 

Inst-29 
Buckt-

127.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

89.0 
47 342 42 4437 16 5 18 755 

Inst-30 
Buckt-

163.0 
US East (Ohio) 

LoadBal_ID1

51.0 
27 244 34 2225 18 4 32 348 

Inst-31 
Buckt-

190.0 
US East (Ohio) 

LoadBal_ID2

08.0 
22 239 40 3086 19 3 7 561 

Inst-32 
Buckt-

119.0 
US East (Ohio) 

LoadBal_ID1

45.0 
27 341 29 1586 16 3 38 460 

Inst-33 
Buckt-

105.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

76.0 
42 295 42 3274 24 5 14 755 
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Inst-34 
Buckt-

153.0 
East (Virginia) 

LoadBal_ID2

37.0 
26 350 33 2828 12 5 25 365 

Inst-35 
Buckt-

108.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

80.0 
25 342 32 1998 15 6 17 689 

Inst-36 
Buckt-

157.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

51.0 
30 268 38 3568 8 3 36 765 

Inst-37 
Buckt-

153.0 
US East (Ohio) 

LoadBal_ID1

89.0 
27 264 38 3809 18 5 46 440 

Inst-38 
Buckt-

149.0 
South America 

LoadBal_ID1

05.0 
42 338 37 3794 14 3 11 696 

Inst-39 
Buckt-

168.0 
US East (Ohio) 

LoadBal_ID1

99.0 
41 289 40 2617 19 4 35 483 

Inst-40 
Buckt-

111.0 
East (Virginia) 

LoadBal_ID1

40.0 
38 314 36 2850 24 4 31 425 

Inst-41 
Buckt-

189.0 
US East (Ohio) 

LoadBal_ID1

56.0 
49 251 41 2572 22 3 49 344 

Inst-42 
Buckt-

136.0 
US East (Ohio) 

LoadBal_ID1

22.0 
37 349 27 3027 11 3 29 290 

Inst-43 
Buckt-

112.0 
US East (Ohio) 

LoadBal_ID2

28.0 
47 260 21 3821 14 3 12 358 

Inst-44 
Buckt-

160.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

02.0 
24 238 31 3193 14 6 6 485 

Inst-45 
Buckt-

188.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

89.0 
33 262 36 1212 17 4 16 439 

Inst-46 
Buckt-

143.0 
US East (Ohio) 

LoadBal_ID2

09.0 
38 311 30 4369 17 3 21 528 

Inst-47 
Buckt-

166.0 
South America 

LoadBal_ID2

30.0 
41 266 26 3555 10 6 20 331 

Inst-48 
Buckt-

172.0 
East (Virginia) 

LoadBal_ID2

27.0 
22 266 35 3149 14 6 50 370 

Inst-49 
Buckt-

185.0 
South America 

LoadBal_ID2

09.0 
30 285 34 1783 7 4 40 505 

Inst-50 
Buckt-

108.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

43.0 
25 353 41 3192 13 4 42 595 

Inst-51 
Buckt-

136.0 
East (Virginia) 

LoadBal_ID1

53.0 
34 335 21 1877 10 2 47 638 

Inst-52 
Buckt-

182.0 
South America 

LoadBal_ID2

37.0 
49 332 34 2793 23 2 7 720 

Inst-53 
Buckt-

148.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

15.0 
30 253 40 3752 22 3 40 632 

Inst-54 
Buckt-

126.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

88.0 
44 322 29 3925 21 3 34 316 

Inst-55 
Buckt-

195.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

12.0 
46 257 40 2542 14 4 51 495 

Inst-56 
Buckt-

200.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

62.0 
26 270 23 2076 15 3 29 405 

Inst-57 
Buckt-

191.0 
US East (Ohio) 

LoadBal_ID1

72.0 
35 313 24 2462 15 3 48 537 

Inst-58 
Buckt-

165.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID2

01.0 
33 267 21 1062 10 3 48 654 

Inst-59 
Buckt-

145.0 

Asia Pacific 

(Mumbai) 

LoadBal_ID1

21.0 
45 346 33 2933 21 4 32 686 

Inst-60 
Buckt-

112.0 
East (Virginia) 

LoadBal_ID1

86.0 
44 270 32 3605 15 6 49 387 

 
Table 1 describes the sample virtual machines and its 

metrics in the real-time cloud servers. In this table, different 

types of cloud servers and its virtual machine properties are 

captured from the real-time cloud servers. 

 

4.1 CPU utilization 

 

It is the sum of work processed by the cloud server for task 

completion. 

Table 2 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

small type virtual machines and tasks. In this table, different 

tasks are experimental tested on the small virtual machines for 

CPU utilization in cloud computing environment. Also, from 

the table, it is noted that the proposed statistical multi-level 

load balancing based parameter estimation is better than the 

conventional models in small cloud VMs and its tasks are 

considered. Various figures can be accepted. Here, in this 

study multiple virtual cloud instances of each size 1GB RAM 

are used to evaluate the load balancing property in the Table 2. 

Figure 2 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

medium type virtual machines and tasks. In this figure, 

different tasks are experimental tested on the medium virtual 

machines for CPU utilization in cloud computing environment. 

Also, from the figure, it is noted that the proposed statistical 

multi-level load balancing based parameter estimation is better 

than the conventional models in medium cloud VMs and its 
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tasks are considered. In the Figure 2, different statistical 

parameters are estimated using the cloud instances and its CPU 

utilization are shown in the figure. From the Figure 2, it is 

noted that the different tasks are assigned to the statistical load 

data collector and balancer for CPU utilization in percentage. 

In the proposed scenario, CPU utilization is optimal due to 

efficient data collection and statistical parameter estimation on 

the given variables. Here, in this study multiple virtual cloud 

instances of each size 4GB RAM are used to evaluate the load 

balancing property in the Table 2. 

 
Table 2. Performance analysis of the multi-level load 

balancing based parameter estimation by using small type of 

VMs for CPU Utilization (%) 

 
Small DLB LB-

BC 

LBRC PSO –

Firefly 

Proposed 

Task-2 63 58 64 48 79 

Task-4 58 60 57 60 77 

Task-6 54 58 50 61 86 

Task-8 55 66 66 59 87 

Task-10 65 60 51 64 79 

Task-12 62 56 46 51 75 

Task-14 62 57 56 53 88 

Task-16 58 47 57 58 73 

Task-18 67 49 56 52 87 

Task-20 51 50 58 45 74 

 

 
 

Figure 2. Performance analysis of the multi-level load 

balancing based parameter estimation by using medium type 

of VMs for CPU utilization 

 

Figure 3 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

large type virtual machines and tasks. In this figure, different 

tasks are experimental tested on the large virtual machines for 

CPU utilization in cloud computing environment. Also, from 

the figure, it is noted that the proposed statistical multi-level 

load balancing based parameter estimation is better than the 

conventional models in large cloud VMs and its tasks are 

considered. Here, in this study multiple virtual cloud instances 

of each size 16GB RAM are used to evaluate the load 

balancing property in the Table 2. 

The main relationship between the Table 1, Figure 2 and 

Figure 3 are: 

1. Each task takes different instance RAM size for data 

collection and parametric estimation. 

2. Each task run dynamically in order to predict the CPU 

utilization for data storage and task execution. 
 

 
 

Figure 3. Performance analysis of the multi-level load 

balancing based parameter estimation by using large type of 

VMs for CPU utilization 

 

4.2 Memory utilization 

 

It is the amount of memory required to process the task in 

the cloud server. 

Table 3 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

small type virtual machines and tasks. In this table, different 

tasks are experimental tested on the small virtual machines for 

memory utilization in cloud computing environment. Also, 

from the table, it is noted that the proposed statistical multi-

level load balancing based parameter estimation is better than 

the conventional models in small cloud VMs and its tasks are 

considered. Here, in this study multiple virtual cloud instances 

of each size 1GB RAM are used to evaluate the load balancing 

property in the Table 3. 
 

Table 3. Performance analysis of the multi-level load 

balancing based parameter estimation by using small type of 

VMs for Memory Utilization (%) 

 

Small DLB 
LB-

BC 
LBRC 

PSO –

Firefly 
Proposed 

Task-2 60 57 67 56 86 

Task-4 65 62 45 56 82 

Task-6 45 61 48 62 81 

Task-8 48 49 60 58 83 

Task-10 63 64 66 48 80 

Task-12 48 48 50 47 81 

Task-14 63 57 63 66 84 

Task-16 48 46 48 53 81 

Task-18 63 58 55 52 80 

Task-20 59 47 48 63 85 

 

Figure 4 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

medium type virtual machines and tasks. In this figure, 

different tasks are experimental tested on the medium virtual 

machines for memory utilization in cloud computing 

environment. Also, from the table, it is noted that the proposed 

statistical multi-level load balancing based parameter 

estimation is better than the conventional models in medium 

cloud VMs and its tasks are considered. Here, in this study 

multiple virtual cloud instances of each size 4GB RAM are 

used to evaluate the load balancing property in the Figure 4. 
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Figure 4. Performance analysis of the multi-level load 

balancing based parameter estimation by using medium type 

of VMs for memory utilization (%) 

 

Table 4. Performance analysis of the multi-level load 

balancing based parameter estimation by using large type of 

VMs for memory utilization 

 
Large 

VMs 
DLB 

LB-

BC 
LBRC 

PSO –

Firefly 
Proposed 

Task-2 52 49 62 67 75 

Task-4 62 53 64 56 90 

Task-6 67 65 61 46 89 

Task-8 49 55 65 51 91 

Task-10 59 60 61 53 86 

Task-12 67 60 58 46 75 

Task-14 49 53 46 60 77 

Task-16 47 62 46 55 75 

Task-18 60 57 61 46 84 

Task-20 52 54 63 58 74 

 

Table 4 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

large type virtual machines and tasks. In this table, different 

tasks are experimental tested on the large virtual machines for 

memory utilization in cloud computing environment. Also, 

from the table, it is noted that the proposed statistical multi-

level load balancing based parameter estimation is better than 

the conventional models in large cloud VMs and its tasks are 

considered. Here, in this study multiple virtual cloud instances 

of each size 16GB RAM are used to evaluate the load 

balancing property in the Table 4. 

 

4.3 Runtime analysis 

 

It is the amount of time required to process the multiple 

requested jobs in the Queue. In the runtime analysis(ms), 

different cases of load balancing on tasks are performed based 

on the small, medium and large instances with 1GB,4GB and 

16GB ram capabilities.  

Table 5 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

small type virtual machines and tasks. In this table, different 

tasks are experimental tested on the small virtual machines for 

runtime analysis in cloud computing environment. Also, from 

the table, it is noted that the proposed statistical multi-level 

load balancing based parameter estimation is better than the 

conventional models in small cloud VMs and its tasks are 

considered. Here, in this study multiple virtual cloud instances 

of each size 1GB RAM are used to evaluate the load balancing 

property in the table. 

 

Table 5. Performance analysis of the multi-level load 

balancing based parameter estimation by using small type of 

VMs for runtime analysis (RAM:1GB each) 

 
Small 

VMs 
DLB 

LB-

BC 
LBRC 

PSO –

Firefly 
Proposed 

Task-2 5471 4903 4684 4791 4002 

Task-4 5181 5806 4846 4945 4141 

Task-6 5699 5432 4870 5228 4257 

Task-8 4828 5833 5450 5576 4008 

Task-10 5742 5417 5659 5275 4359 

Task-12 5160 4668 5710 5806 4075 

Task-14 5007 5684 5388 5510 4119 

Task-16 5816 5396 5511 4989 4291 

Task-18 5032 5223 5020 5037 4210 

Task-20 4924 4871 5267 4822 4015 

 

Table 6. Performance analysis of the multi-level load 

balancing based parameter estimation by using medium type 

of VMs for runtime analysis (4GB RAM) 

 
Medium 

VMs 
DLB 

LB-

BC 
LBRC 

PSO –

Firefly 
Proposed 

Task-2 5696 4843 5719 4834 3806 

Task-4 5268 5072 5052 4766 4177 

Task-6 5550 5669 5744 5780 4188 

Task-8 4786 5292 5282 5400 3881 

Task-10 4998 4829 5158 5375 4110 

Task-12 5607 4956 5647 5471 3688 

Task-14 4844 5570 5001 5344 4169 

Task-16 5642 5648 5670 5168 4014 

Task-18 4979 4976 5214 5039 3870 

Task-20 5001 5057 5267 4652 3785 

 

Table 6 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

large type virtual machines and tasks. In this table, different 

tasks are experimental tested on the medium virtual machines 

for runtime analysis in cloud computing environment. Also, 

from the table, it is noted that the proposed statistical multi-

level load balancing based parameter estimation is better than 

the conventional models in medium cloud VMs and its tasks 

are considered. Here, in this study multiple virtual cloud 

instances of each size 4GB RAM are used to evaluate the load 

balancing property in the table. 

 

Table 7. Performance analysis of the multi-level load 

balancing based parameter estimation by using large type of 

VMs for runtime analysis (16GB RAM) 

 
Large 

VMs 
DLB 

LB-

BC 
LBRC 

PSO –

Firefly 
Proposed 

Task-2 5231 5323 5706 4718 3746 

Task-4 5176 4946 5020 5569 3489 

Task-6 4786 4702 5359 5277 3794 

Task-8 4734 5238 5285 5485 3432 

Task-10 5491 5506 5271 4863 3526 

Task-12 5250 4791 5388 5170 3821 

Task-14 5089 4839 5184 5017 3890 

Task-16 5605 5398 4820 4865 3922 

Task-18 5603 4927 4875 4886 3703 

Task-20 5129 5722 4821 5199 3452 

 

Table 7 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

large type virtual machines and tasks. In this table, different 

tasks are experimental tested on the large virtual machines for 
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runtime analysis in cloud computing environment. Also, from 

the table, it is noted that the proposed statistical multi-level 

load balancing based parameter estimation is better than the 

conventional models in large cloud VMs and its tasks are 

considered. Here, in this study multiple virtual cloud instances 

of each size 16GB RAM are used to evaluate the load 

balancing property in the table. 

 

4.4 Reliability analysis 

 

In the reliability analysis, load balancer scheduling and 

optimization models can increase the reliability by monitoring 

incoming and outgoing network I/O among the tasks. In the 

reliability analysis, different cases of load balancing on tasks 

are performed based on the small, medium and large instances 

with 1GB,4GB and 16GB RAM capabilities. 

 

Table 8. Performance analysis of the multi-level load 

balancing based parameter estimation by using large type of 

VMs for reliability analysis (1GB RAM) 

 
Large 

VMs 
DLB 

LB-

BC 
LBRC 

PSO –

Firefly 
Proposed 

Task-2 65 69 70 77 90 

Task-4 65 66 78 68 93 

Task-6 69 74 77 68 96 

Task-8 68 73 70 69 90 

Task-10 75 69 72 74 94 

Task-12 73 72 70 71 94 

Task-14 74 66 67 68 95 

Task-16 72 75 78 72 95 

Task-18 75 77 75 66 90 

Task-20 74 70 68 76 95 

 

Table 8 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

large type virtual machines and tasks. In this figure, different 

tasks are experimental tested on the large virtual machines for 

reliability in cloud computing environment. Also, from the 

figure, it is noted that the proposed statistical multi-level load 

balancing based parameter estimation is better than the 

conventional models in large cloud VMs and its tasks are 

considered. Here, in this study multiple virtual cloud instances 

of each size 1GB RAM are used to evaluate the load balancing 

property in the table. 

 

 
 

Figure 5. Performance analysis of the multi-level load 

balancing based parameter estimation by using small type of 

VMs for reliability analysis (4GB RAM) 

 

Figure 5 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

large type virtual machines and tasks. In this figure, different 

tasks are experimental tested on the small virtual machines for 

reliability in cloud computing environment. Also, from the 

figure, it is noted that the proposed statistical multi-level load 

balancing based parameter estimation is better than the 

conventional models in small cloud VMs and its tasks are 

considered. Here, in this study multiple virtual cloud instances 

of each size 4GB RAM are used to evaluate the load balancing 

property in the figure. 

 

 
 

Figure 6. Performance analysis of the multi-level load 

balancing based parameter estimation by using medium type 

of VMs for reliability analysis (16 GB RAM) 

 

Figure 6 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different 

medium type virtual machines and tasks. In this figure, 

different tasks are experimental tested on the medium virtual 

machines for reliability in cloud computing environment. Also, 

from the figure, it is noted that the proposed statistical multi-

level load balancing based parameter estimation is better than 

the conventional models in medium cloud VMs and its tasks 

are considered. Here, in this study multiple virtual cloud 

instances of each size 16GB RAM are used to evaluate the load 

balancing property in the figure. 

 

 

5. CONCLUSION 

 

In this paper, a novel statistical load balancing metrics are 

estimated in the real-time cloud computing environment on 

large number of instances and tasks. Since, most of the 

conventional models are based on limited number of tasks and 

VMs in the cloud environment; it is difficult to monitor the 

different cloud-based applications due to high computational 

time and memory. In this work, proposed framework is 

implemented in the real-time amazon AWS instances with a 

large number of tasks. Experimental results proved that the 

multi-level statistical load balancing parameters estimation 

model has nearly 2% optimization in terms of reliability, 

runtime, memory utilization and CPU utilization. 
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