

A Hybrid Multi-level Statistical Load Balancer-Based Parameters Estimation Model in

Realtime Cloud Computing Environment

Gutta Sridevi1, Midhunchakkravarthy2*

1 Dept. of CSE, Lincoln University College, Petaling Jaya 47301, Malaysia
2 Faculty of Computer Science & Multimedia, Lincoln University College, Petaling Jaya 47301, Malaysia

Corresponding Author Email: midhun@lincoln.edu.my

https://doi.org/10.18280/isi.250607

ABSTRACT

Received: 4 September 2020

Accepted: 22 November 2020

 As the size of the cloud-based applications and its tasks are increasing exponentially, it is

necessary to estimate the load balancing metrics in the real-time cloud computing

environments. Hybrid load balancing framework play a vital role in the cloud-based

applications and tasks monitoring and resource allocation. Most of the conventional load

balancing metrics are dependent on limited number of cloud metrics and type of virtual

machines. Also, these models require high computational memory and time on large

number of tasks. In this paper, an advanced multi-level statistical load balancer-based

parameters estimation model is designed and implemented on the real-time cloud

computing environment. In this model, a novel statistical load balancing data collector is

used to find the best metrics for the load balance computation. In this model, different types

of tasks are simulated under different virtual machine types such as small, medium and large

instances. Experimental results show that the proposed multi-level based statistical load

balancing collector has better efficiency than the conventional models in terms of memory

utilization, CPU utilization, runtime and reliability are concerned.

Keywords:

statistical load balancer, cloud computing,

virtual machines

1. INTRODUCTION

With a wide range of services and an increasingly

increasing services, cloud computing needs to find methods

for resource utilization management and higher performance

ensure. It is necessary to optimize the Service Level

Agreements (SLAs) during the cloud service allocation and

resource optimization process. It requires better load handling

mechanisms to achieve SLAs and to ensure customer

satisfaction. Load balancing algorithms are improved to

balance the load and maximize resource efficiency and

resource management optimizations. It is very important to

distribute the resources optimally. If more resources are

allocated, resource shortages will occur and when less

resources are allocated, the workers will struggle to achieve

SLAs. Cloud Computing is an up to-the-minute IT

environment-affiliated technology with huge resource demand

such as efficient use of storage devices, networking devices,

computer devices, services and applications, etc. Now a few

days, mobile software and utilities have migrated entirely to

portable PCs and connected via the Internet to data centers.

This is not operated by personal computers or local data

servers, which are shared [1].

For cloud computing the infrastructure's buying and

operating costs are eliminated [2]. In short, 'Cloud Computing'

offers a simple, open, demand-based, and pay-per-use

approach to computing resources [3]. Cloud computing is an

essential technology that makes efficient use of resources by

allocating it to users according to their needs. Load balancing

in the cloud is one of the main challenges for managing the

workload between the systems and performance. An efficient

load balancing algorithm is required to allow effective use of

resources. A thorough analysis on the key aspects of cloud

computing and by comparing various existing load balancing

algorithms is carried out. The cloud-based partitioning

approach which considers the related state of different

partitions in the cloud [4]. The condition can be

OVERLOADED, NORMAL, or IDLE. The load balancing

algorithms, as the states suggest, intuitively understand the

environment and take balancing decisions. It is capable of

handling more workers when every partition is idle. The

standard state shows the VMs are in use but can still handle

work. The program is able to improve load handling by

providing a queue and testing it iteratively. If load degree is

lower for each server, new jobs will be allocated to that server

upon arrival. Since cloud servers are equipped with a load

balancer program, the load balancer system is responsible for

scheduling jobs with load in mind. Nonetheless, the state of

the partitions needs to be checked periodically. The problem

here is to decide load balancing technique based on partition

with an ideal refresh time. Assessment of refresh time to

provide a refresh threshold is very necessary for optimizing

load balancing using cloud partitioning approach. When cloud

space is separated, greater control can be exercised over it. CP

(Cloud Partition) based model provides for various strategies

such as IDLE, Regular, and OVERLOADED.

Those are in reality partition status which is used to make

informed decisions. When a partition performs no work, it is

said to be in IDLE state. Similarly, when a partition is used for

processing but its load is regular, and then it is called Regular.

On the other hand, it is known as OVERLOADED state, the

partition that exceeds its maximum processing potential and

all of its resources are being used. Such states specifically

assist with load balancing. They explored various recent

Ingénierie des Systèmes d’Information
Vol. 25, No. 6, December, 2020, pp. 771-782

Journal homepage: http://iieta.org/journals/isi

771

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250607&domain=pdf

attempts to build an ACO theory, addressed linkages between

ACO mechanisms and stochastic gradient ascension and

cross-entropy techniques in model-based search construction,

and finally discussed the impact of search bias on the

functioning of ACO algorithms. They changed the basic ACO

algorithm to focus more on the strategy for optimization in the

execution of tasks. To simulate their approach, they used

CloudSim toolkit. MACO initiates the finest resource

allocation in the cloud for task groups and reduces the

makespan but is constrained in finding the Load Balancing

Element [5].

A cloud computing is an integral technique that is on-

demand operation, and cloud-based service providers at a

particular time exchange resources, applications, and

information according to the user requirement. The cloud

vendors automatically balance the service loads, and more

CPUs, memory, and resources are required to manage more

user demands. The service is focused on customers ' business

requirements. The load balancing strategy helps satisfy the two

key criteria, initially supports cloud resource availability and

also increases server performance. Load balancing is the

difficult problem in cloud computing system as it requires

more workloads. The fundamental goal of the philosophy of

load balancing is to equalize the workload between each and

every node by reducing the execution time, communication

delays, resource usage increase, and throughput. Load

balancing increases network reliability step by step through

the shared workload transfer process. Cloud load balancing

reduces costs and greatly improves resource availability. An

optimal selection of algorithms should ensure that all

computer nodes present in the network process the same

number of workloads. The load balancing strategy helps to

provide the unorganized resources with visualization of tasks

that are distributed in the cloud architecture. The cloud

platform, load balancing approach is used to distribute a large

workload of processing to small workloads of computation to

boost general system execution. Static load balancing

approach uses the existing considerable knowledge of the

system's application behavior and statistical data. Through this

balancing technique machine resource knowledge and output

of the processor is calculated at execution begging. So the load

decision does not depend on the system's current state. Access

is made to the acquired output result and subsequently work

load is allocated by substantial processor. The processor tests

the assigned job at each node and delivers the result to the

processor in question. But, as often executed on the processor

itself, the static approach is also called a non-preemptive one.

The key aspect of static techniques is to lower the execution

and its time series along with eliminating delays directed to

communication. A general drawback of static approaches is

the overall host selection which requires process allocation [6].

In dynamic form, the load is dynamically supplied to any

processor present in the network at the time of program

execution. It is different from static because it works as a

runtime processor which makes every single node participate

in information transfer. Instead, the tasks at each node are

buffered at the master node in a queue format, and distributed

one by one to the related nodes as a result of remote hosts

requests. The complex methodology is continuously trying to

track the tasks from each processor. Once the tasks and weight

disparity increase to a certain predefined amount, the data

processing is re-collected. Monitoring the whole cycle

arranges the CPU rotations and manages the method as the

algorithm evokes it. Cloud computing provides consumers

versatile and scalable Internet-based infrastructure. For that a

lot of data can be arrived at a time in a cloud. It leads to server

failures causing problems with outages. The load balancing is

typically a method that distributes the dynamic load across the

cloud to all VM. A problem often occurs when some nodes are

heavily loaded when others are idle or doing little work. The

balancing algorithm for complex loads is implemented either

as distributed or non-distributed algorithm. Dynamic load

balancer uses protocols to keep track of the details being

changed. The suggested technique has implemented a

successful algorithm to avoid the server fault. It helps attain a

high user satisfaction and resource usage ratio, thereby

enhancing the system's overall efficiency and resource usage.

It also ensures that every computing power is effectively and

equally distributed.

The proposed algorithm will prevent machine bottlenecks

from occurring due to unbalance in load. If one or more

elements of any operation fail, load balancing assists in the

service's continuity at the time of failover. Resource

management can be effectively done using appropriate

resource allocation algorithms to optimize the number of

physical machines, VMs and equally balance the loads among

available resources. Both quantitative and qualitative work

was carried out to design and improve algorithms for

optimizing the allocation of resources in cloud computing.

Dynamic and effective allocation of resources algorithms are

focused on optimal usage of the datacenter resources.

Virtualization plays a significant role in maximizing the usage

of resources. In both software and hardware, it is a technology

used to build VMs that allow a single physical machine to

operate as multiple machines resulting in scalable resources on

demand. The use of resource virtualization techniques

increases resource efficiency and reduces the waiting time for

tasks. The service provider is increasing their resource

utilization to support a wide range of flexible workloads.

Moving to Intercloud is therefore a good choice for all sizes of

organizations. With the support of the architecture, several

open access research problems and resource algorithm

provisioning were established and the cloud system was

inspired. The energy-oriented heuristics of allocation

heuristics from the DC method to client set of applications

have effectively enhanced efficiency. Through program

implementation, the agreed Quality of Service (QoS) way is

accomplished. The findings were obtained by performing an

early-research survey and comparison. The result is described

as: (a) design principles for managing energy-intensive clouds;

(b) efficient policy resource allocation and scheduling

processes that take into account the QoS needs and electricity

characteristics of the devices employed; and (c) a range of

open research and challenges, substantial benefits from the

application to both power providers and customers. The

performance assessment and judgment of the algorithm built

is achieved using the CloudSim toolkit and its operations.

The resource assignment undertaking is placed through the

network analysis strategy and the Analytic Hierarchy Method

giving accessible assets and customer inclinations. In addition,

an implemented inclination lattice is used to separate the

conflicting components and to improve the consistency ratio

when attributing conflicting weights in different tasks. The

findings indicate that further measuring of inconsistent data

and increasing the consistency ratio and task weight are useful

for dynamically allocating computing resources in cloud

computing environment. Load balancing is a method used to

spread the workload equally in an eventual way between each

772

node in the cloud organization system. It is defined as the

distribution of load from resources so as to enhance the

system's overall performance. Therefore, the load needs to be

uniformly spread across the cloud-based resource system, and

at any time series, each resource is performed approximately

the same amount of work. The key benefit is to provide

strategies for managing incoming client requests, and to ensure

that the client always performs better. Cloud vendors offer

automated load balancing services; allow clients to build up

the amount of CPUs or resource memory to calculate with

increased demands. However this service is voluntary, and

relies on customers ' business needs. Thus load balancing

serves two important purposes, it promotes cloud resource

availability and it also promotes cloud environment efficiency.

This is an important goal in understanding a major objective

such as cost effectiveness, efficiency, scalability, and timing

objectives of load organizing algorithms in order to manage

the loads and resource requests. Load management helps in

also allocating present resources to make optimal utilization of

resources and a high degree of customer satisfaction. The

higher achievement of resources and structured load balancing

helps increase the scalability and prevent bottlenecks. This

helps to achieve the maximum and minimum amount of

response time and throughput. Load balancing often separates

traffic between servers in a networked environment, so data

can be sent and received at a higher rate without delay. Many

algorithms are developed, and it helps with proper traffic

loading in a cloud environment between the available servers.

2. RELATED WORK

Several researchers have sought to forecast cloud

computing workloads so that they can perform better. No

predictive algorithm looks true so far. They concentrated on

the idea of external optimisation (EO) [7]. In cloud computing,

the EO-based algorithm is used to use a two-step stochastic

selection process to balance load. It is simply a meta-heuristic

that cares for the scheduling of cloud jobs. It consists of a

hybrid approach consisting of the genetic process and the

principle of fuzziness. To do this, they've improved the

Standard Genetic Algorithm (SGA). They offered CloudSim

model simulation solution based on scheduling algorithms for

load balancing. They considered the duration of work, the

frequency of VMs and memory consumed by VMs during

decision making.

Gesvindr et al. [8] testified to MapReduce programming for

efficient job handling in cloud computing. They concentrated

on the study of trade-off between cost of success and cost of

optimisation. To order to provide tests of diversified inputs

and outputs various benchmarks are used. Using Amazon

Elastic Cloud Compute (EC2), Elastic Block Storage (EBS),

and Elastic MapReduce (EMR), they tested this. Time for

completion of jobs is measured and the complexity of job size

is discussed.

Gholipour [9] demonstrated a task-level scheduling

algorithm and used Dynamic Programming (DP) to develop a

budget-driven scheduling system. They know their algorithms

as Global Optimal Scheduling (GOS) and Global Greedy

Budget (GGB). GGB designed to optimize scheduling and

balancing of loads under the defined budget constraints. The

budget for stockpiling and sharable resources is given. Global

budget allocation with specified constraints makes an

algorithm greedy and produces optimal scheduling

performance. Scheduling time and remaining budget are two

important metrics used to determine it.

Gill et al. [10] focused on market-oriented resource

management techniques which embrace risk management

strategies and customer-centered service management

approaches to support resource allocation centered on the SLA.

In addition, they developed a method called CloudSim to

simulate performance metrics in a cloud environment. They

clarified the Particle Swarm Optimization (PSO) is an

optimization technique that finds the optimal solution to the

problem by iteratively optimizing it. The candidate solutions

are popularized to solve the problem of optimization. The

particles shift in the search space depending on the velocity

and location of the particles, based on the mathematical

formula. The movement of each particle determines the

optimal location. In solution space the best known locations

are defined and modified. PSO and ABC algorithms are

effective techniques of optimization that have a fairly short

iteration time. On the other hand, they may definitely collapse

into local extremes. This method significantly decreases the

average completion time of the task in the cloud datacenter.

Guo et al. [11] suggested a profiling-based, energy-efficient

cloud computing technique. The offline profiling strategy is

conducted for the development of energy aware references for

the cloud environment infrastructure given. The profile

developed is matched with the data in real time and the

services are therefore given to reduce energy consumption. It

is however difficult to determine the exact number of VMs

required for the cloud system to operate properly and

effectively.

Habibi et al. [12] defined the resource capacity and cloud

workload scheme which, by applying three flexible time scales

and scopes, combines different resource restrainers in

automated resource allocation. Three types of time scales were

used in the study, such as shortest time scale, shorter time scale

and longest time scale. The controllers, namely node controller,

pod controller and pod set controller, were configured to

handle the allocation of the Virtual Machine resources and the

migration of the workload. Additionally, they concentrated on

applying different threshold techniques to complex variations

in cloud workload [13].

Various efforts are being made to scale elastic cloud

application frameworks that reduce elastic resource

consumption through cloud-based elastic services. These

frameworks were developed to manage scalable services based

on precepts and proficiencies of autonomous computing.

However, there were no statistical techniques used in elastic

cloud services for handling resource allocation and managing

vast volumes of data. Various dynamic scheduling techniques

have been suggested to improve resource efficiency in cloud

computing.

Jodayree et al. [14] used the Ant Colony Optimization

(ACO) approach to present a strategy for allocating Virtual

Machines to the least number of cloud servers based on user

requests and workloads. They addressed the Virtual Machine

Resource Planning Scheme for Load Balancing based on the

Genetic Algorithm. This algorithm was used to minimize

dynamic migration and to achieve better load balancing based

on current cloud system state and historical data. Liang et al.

[15] proposed ACO load balancing based algorithm to

schedule and reduce makepan in cloud setting. In cloud

computing [16] the emphasis was on allocating virtual

machines for efficient resource allocation based on cost and

execution time for real-time tasks in the IaaS environment.

773

The research allowed the user to pick Virtual Machines and

cut Cloud usage costs. The distribution of resources was

performed on the basis of a fixed number of processors. So, it

has contributed to problems of scalability and elasticity.

Mashhadi et al. [17] proposed a Multi-Objective Genetic

Algorithm for Cloud Brokering (MOGA-CB) that considered

two objectives in the optimization process to reduce response

time and costs.

Nyasulu [18] implemented modified RR approach for

resource allocation technique in cloud computing. One of the

computing paradigm is cloud computing, which allows

services on demand. Cloud users can access their data or

software from anywhere, at any time. An enterprise may lease

Cloud assets for power and other computational purposes with

the intention of significantly decreasing their network costs.

Through raising the processing time, the altered RR asset

allocation approach fulfills the company demands and

program needs. This built algorithm consists of various parts

such as load prediction, hot spot mitigation, and green

computation. The resource allocation is built at two levels

within the cloud framework. The method's code is initially

inserted into the cloud, and the load balancer is allocated to the

computer's requested instances. Finally, the various types of

multiple incoming orders or requests are reached, and these

requests are allocated in an instance to each particular function

or application, and the computational load is balanced.

Premarathne et al. [19] developed a resource allocation

model for the scaling of Software-as-a-Service functionality

over cloud infrastructures based on tenant features. The cloud

infrastructure offers the necessary access to a collection of

computing tools along with some of the system's basic

business models; fetches centralized providers constantly

calculating service levels. Its internal infrastructures build a

number of VMs and instances concerning the application's

demand. SaaS providers have the key benefit of scaling up or

scale down the application capital capability. The system's

ability to access or pay is limited, which at a given time is the

most significant challenge in cloud computing.

Anton Rafieyan [20] used Genetic Algorithm (GA) to

exhibit client-conscious scheduling of tasks and resource

allocation in multi cloud. Mapping the approaching demand

for occupation to accessible VMs is a non-polynomial finish

problem, as the concept of movement is very subjective. The

scalability is considerably high for the simulated multi-cloud

environment. Data locality costs, latency arbitration, energy

usage, and multi-cloud network running costs are beyond the

scope of the simulated scenario.

Sahil et al. [21] conducted a taxonomy survey of techniques

that are effective in allocating resources to cloud along with

minimized capacity. In the cloud computing model, the

allocation of different virtualized ICT mode of services are the

dynamic problems created by the presence of heterogeneous

application types such as networks dependent content delivery

nodes, web apps, and Map Reduce, etc. Workloads are

extracted and studied which include more contentious

allocation requirements with ICT capacity resources such as

network bandwidth, response time, processing speed, etc. The

vast number of recent researchers have been addressing

problems in improving energy efficiency and allocating cloud-

resource applications with a particular point of achievement.

In any case, there are no centralized processes concerning this

phenomenon to the best of our understanding, because it

analyzes the problem of discovery and offers a theoretical

categorization from current methods. The majority of the

algorithms can be implemented with perfect modifications in

cloud generation. Load balancing algorithms can be generally

categorized as Heuristic Scheduling Algorithms for Batch

Mode (BMHA) and Heuristic Algorithms for Online Mode

(OMHA). In BMHA, as it comes into the program, jobs are

grouped as a batch, and scheduling starts after a default time

period. Heuristic scheduling calculations in the online mode

are more suitable for cloud environment. It is important to

determine valid load, reliability of different systems, frame

execution, communication between each of the hubs when

constructing a load balancing procedure. The efficient

forecasting techniques as well as the host load balance are

required for the VM migration. While workload lengths are

shorter, host nodes shift more frequently with higher cloud

noise. The implementation of the planned plan and the existing

order approaches are contrasting. The load forecast for the host

is based on genuine Google cluster information gathered. The

length of the cloud host load is much shorter than that in grid,

meaning the cloud host load is adjusted a lot more frequently.

Time means that the load level is constant over a given time

period. Virtualization technology is the foundation of

distributed computing that allows to efficiently use managing

assets by relegating the amount of VMs to the single physical

host. In the meantime, workloads for the cloud environment

are dynamic in nature, and several needless hosts sometimes

run in the background.

3. PROPOSED WORK

In the proposed framework, a novel multi-level cloud-based

load balancing metrics are estimated using the advanced

statistical data collector. As shown in the Figure 1, initially

multiple virtual machines (VMs) are initialized in the AWS

EC2 environment in order to find its resources. Here, a

randomized set of tasksare assigned to each virtual machine

for resource allocation and load balancing. Tk-1,Tk-2….Tk-

m1 represents the set of tasks initialized to virtual machine V1.

Similarly, Tk-1,Tk-2….Tk-mn represents the set of tasks

assigned to virtual machine Vm.

3.1 Improved multi-level load balancing feature estimation

1. Initializing of cloud virtual machines VMi for n tasks, m

resources and k load balancers.

2. To each virtual machine VMi

3. do

Assign n tasks to each virtual machine.

Compute the best r metrics in the given tasks to each virtual

machine by using the cloud IPSO with QoS selection measure

as:

icf

i i c1 i i

c2 i i

MV(cf 1,i) .[e .MV(cf ,i). (pBt MV(cf ,i)

(gBt MV(cf ,i)]

+ = −

+ −

ω is the multi-level metric selection scaling parameter

defined as:

c1 2

2
i c1 c2 c1 c2 c1 c2

h*()

| h*cf () () 4() |

 +
 =

− + − + − +

where, ηc1, ηc2∈cyclic group randomized elements and h<=2.

774

Figure 1. Proposed multi-level load balancing parameter selection

2

i R

2
R

(cf)
max{cf}.

ci

R

1
e

2

i 1,2...iterations

−
−

 =

=

Here, is used to find the local and global best positions

for the given PSO model.

Let t min R and t max R are the minimum and maximum

response time of the task in each instance VMi.

() ()
ii t min t max cf F c R ? RMV(cf 1 1 P Wq,i (.))* = + −+

q t RW max{ VM(R ,i)}.T / =

where,

| VM | Total number of virtual machines.=

|T|=Total number of tasks.

()
iR cf VM(,i). 1 P = −

()
i

n

cf

n

R RP /|VM|!|T|.=

Here, the fitness function is used to select the optimal load

balancing features for the prediction purpose.

These selected local and global functions are given to

fitness function computation. The fitness measure of the

proposed improved PSO is selected based on the minimum and

maximum response time of the task in each instance.

Repeat step 3 to each task dynamic response time and the

cloud metrics.

In this algorithm, a set of virtual machines, tasks and its

response time are taken as input to find the relevant best

metrics for load balancing algorithm. In this algorithm, the

statistical collector program is implemented in order to extract

all the cloud metrics in the AWS environment. In this

algorithm, initially, all the virtual machines and its

corresponding tasks are initialized in the AWS cloud

environment for load balancing metric selection. To each

virtual machine, different tasks are assigned to find the best

metrics for load balancing property. In this work, an advanced

IPSO statistical collector is used to find the probability of

selecting the load balancing metric using the QoS response

time(R). Steps 5 and 6 are used to find the best load balancing

metrics based on the QoS and its corresponding cloud metrics.

3.2 Statistical tasks and resource constraints for load

balancing

In this statistical tasks and resource constraints phase, each

virtual machine and its resources are monitored in the real-

time cloud environment using the hybrid multi-objective

functions. In this phase, each cloud virtual instances, capacity

and memory bounds are used to define the non-linear objective

functions for tasks and resource allocation.

M

2

ce
Max{(log (C)) M}

 log (M)
+ +

775

The above non-linear objective function is used to solve the

best computed memory (M) constraints and the task capacity

(C).

k

M

k 0

2 2

M
C

Ce k!
M log (C) M log (C)

 log (M) log (M)

=+ + = + +

0

k
z 0

k 0 k 0

2 2

(M z)M
C Ce

k! k!
M log (C) M log (C)

 log (M) log (M)

= =

−

+ + = + +

1 2 1 2

1 2

k k k kk 2 k k 2

k 1 k 0 k 1 k 1 1 2

k 2 k

k 1

(1) (1 M) M (1) (1 C) (1 M)
M C

k k! k k

(1) (1 M)

k

+

= = = =

=

− − + − − + − +
− −

=
− − +

1 2 1 2

1 2

k 2 k 1 2k

k 2 k
k 1 k 0

k k k k2
|k 1

k 1 k 1 1 2

(1) (1 M) M (2k M)1
M C

k (2k)!(1) (1 M)

k (1) (1 C) (1 M)

k k

− +

= =

+
=

= =

 − − + +
−=

− − +
 − − + − +

1 2 1 2

1 2

k 2 k 1 2k

k 1 k 0

i k 2 k k k k k2

|k 1 k 1 k 1 1 2

(1) (1 M) M (2k M)
M C

k (2k)!1
Let

(1) (1 M) (1) (1 C) (1 M)

k k k

− +

= =

 +

= = =

 − − + +
−

 =
 − − + − − + − +

Here value is used as to take the decision making based

on the task run capacity C and the virtual machine’s memory

M.

Let the
i 1 2 3 rB {B ,B ,BB }= represents the virtual

machine allotted to the task with the required resources.

For each virtual machine VM (i),

i VMj

i

B 1 if >0; T assigns to R.

B 0 otherwise; not assigned

=

=

Let
1 2 3 KVM { , , ... } − is the set of cloud virtual

instances in cloud environment.

Let ri∈Ri be the set of resources of all cloud virtual

instances.

CPU RAM PORT TIME HARDDISK

i i 1 2 3 4 5 mr R {r , r , r , r , r ,...r } →

The statistical multi-objective function for the resource

bound checking of the cloud virtual machines are defined as

below:

N

i VMj i

i 1

M

j VMj i

j 1

Min B .log{ }/ | R | and

 Max B .exp()/ | R |

=

=

Let ri∈Ri be the set of resources of all cloud virtual instances.

CPU RAM PORT TIME HARDDISK

i i 1 2 3 4 5 mr R {r , r , r , r , r ,...r } →

|VM|

CPU CPU

1 1

1

L(r) U(r);
=

|VM|
RAM RAM

2 2

1

L(r) U(r);
=

|VM|
PORT PORT

3 3

1

L(r) U(r);
=

|VM|
TIME TIME

4 4

1

|VM|
HARDDISK HARDDISK

5 5

1

|VM|

m m

1

L(r) U(r);

L(r) U(r);

L(r) U(r);

=

=

=

The above statistical constraints are used to predict the

range bounds of the tasks and it resources for load monitoring

process. Also, these constraints are considered to find the

lower bound and upper bound constraints to each virtual

machine in the real-time cloud computing environment.

4. EXPERIMENTAL RESULTS

Experimental results are simulated using the Amazon AWS

server and the java programming environment. In this work,

AWS JAVA API is used to develop the proposed load

balancing parameters estimation. In this work, a novel

statistical collector-based load balancing metrics are predicted

using the real-time cloud computing environment. In this

experimental results, various performance measures such as

Memory utilization, CPU utilization, Reliability and runtime

computation on the real-time cloud server tasks. In these

results, all the tasks are executed in small, medium and large

virtual machines. Experimental results are compared using the

traditional models such as dynamic load balancing (DLB) [22],

load balancing based on bayes clustering (LB-BC) [23], load

balancing with resource clustering [24] and particle swarm

optimization with firefly approach [25]. In the experimental

analysis, different cases of load balancing metrics are

evaluated on tasks using small, medium and large instances

with 1GB,4GB and 16GB ram capabilities.

776

Table 1. Sample real-time cloud instances and its metrics for load balance analysis

Instance

no

backet

name
region

load

balancer ID

data

req

data

res

load

time

req

time

job

idle

time

CPU

utilization
memreq

job

runtime

Inst-1
Buckt-

112.0

Asia Pacific

(Mumbai)

LoadBal_ID1

47.0
39 329 39 1431 11 6 29 439

Inst-2
Buckt-

113.0
US East (Ohio)

LoadBal_ID1

98.0
30 277 23 2922 12 6 5 784

Inst-3
Buckt-

198.0
US East (Ohio)

LoadBal_ID2

01.0
27 298 35 2639 20 4 34 540

Inst-4
Buckt-

126.0
East (Virginia)

LoadBal_ID1

26.0
46 285 28 3884 6 6 22 667

Inst-5
Buckt-

147.0

Asia Pacific

(Mumbai)

LoadBal_ID1

47.0
40 350 37 2994 18 6 53 416

Inst-6
Buckt-

136.0

Asia Pacific

(Mumbai)

LoadBal_ID1

18.0
47 283 20 2985 19 3 31 499

Inst-7
Buckt-

133.0
US East (Ohio)

LoadBal_ID1

92.0
24 262 35 2388 19 5 35 669

Inst-8
Buckt-

149.0
East (Virginia)

LoadBal_ID2

14.0
44 251 35 4301 16 6 45 553

Inst-9
Buckt-

105.0

Asia Pacific

(Mumbai)

LoadBal_ID1

63.0
29 252 35 1608 21 4 26 283

Inst-10
Buckt-

143.0
East (Virginia)

LoadBal_ID1

36.0
44 313 35 3343 17 4 44 762

Inst-11
Buckt-

141.0
US East (Ohio)

LoadBal_ID1

24.0
27 341 42 3398 13 6 28 711

Inst-12
Buckt-

168.0

Asia Pacific

(Mumbai)

LoadBal_ID1

61.0
27 258 23 1207 17 6 27 755

Inst-13
Buckt-

120.0

Asia Pacific

(Mumbai)

LoadBal_ID1

73.0
25 329 30 4279 20 4 35 656

Inst-14
Buckt-

199.0
East (Virginia)

LoadBal_ID1

94.0
33 276 28 2884 14 4 28 738

Inst-15
Buckt-

135.0
US East (Ohio)

LoadBal_ID2

07.0
34 242 29 1828 12 6 15 509

Inst-16
Buckt-

177.0

Asia Pacific

(Mumbai)

LoadBal_ID1

14.0
49 249 34 2925 18 5 42 715

Inst-17
Buckt-

184.0
US East (Ohio)

LoadBal_ID2

36.0
36 252 30 2778 14 2 11 357

Inst-18
Buckt-

142.0
US East (Ohio)

LoadBal_ID1

92.0
41 254 38 3014 9 4 46 537

Inst-19
Buckt-

130.0
South America

LoadBal_ID2

35.0
47 270 40 4621 21 5 20 558

Inst-20
Buckt-

181.0

Asia Pacific

(Mumbai)

LoadBal_ID1

86.0
41 286 32 1246 17 3 12 483

Inst-21
Buckt-

192.0

Asia Pacific

(Mumbai)

LoadBal_ID1

99.0
26 327 31 3842 19 6 25 740

Inst-22
Buckt-

118.0
US East (Ohio)

LoadBal_ID2

01.0
27 267 43 1510 6 2 46 538

Inst-23
Buckt-

127.0

Asia Pacific

(Mumbai)

LoadBal_ID1

27.0
29 335 25 2051 23 2 21 527

Inst-24
Buckt-

148.0

Asia Pacific

(Mumbai)

LoadBal_ID2

31.0
32 297 20 1601 8 4 28 342

Inst-25
Buckt-

162.0

Asia Pacific

(Mumbai)

LoadBal_ID2

21.0
36 306 40 1602 21 5 39 440

Inst-26
Buckt-

112.0
US East (Ohio)

LoadBal_ID1

84.0
26 247 38 1084 16 3 12 746

Inst-27
Buckt-

139.0
US East (Ohio)

LoadBal_ID1

87.0
41 337 37 2176 13 2 43 464

Inst-28
Buckt-

123.0
US East (Ohio)

LoadBal_ID1

89.0
46 343 39 1694 7 3 26 741

Inst-29
Buckt-

127.0

Asia Pacific

(Mumbai)

LoadBal_ID1

89.0
47 342 42 4437 16 5 18 755

Inst-30
Buckt-

163.0
US East (Ohio)

LoadBal_ID1

51.0
27 244 34 2225 18 4 32 348

Inst-31
Buckt-

190.0
US East (Ohio)

LoadBal_ID2

08.0
22 239 40 3086 19 3 7 561

Inst-32
Buckt-

119.0
US East (Ohio)

LoadBal_ID1

45.0
27 341 29 1586 16 3 38 460

Inst-33
Buckt-

105.0

Asia Pacific

(Mumbai)

LoadBal_ID1

76.0
42 295 42 3274 24 5 14 755

777

Inst-34
Buckt-

153.0
East (Virginia)

LoadBal_ID2

37.0
26 350 33 2828 12 5 25 365

Inst-35
Buckt-

108.0

Asia Pacific

(Mumbai)

LoadBal_ID1

80.0
25 342 32 1998 15 6 17 689

Inst-36
Buckt-

157.0

Asia Pacific

(Mumbai)

LoadBal_ID1

51.0
30 268 38 3568 8 3 36 765

Inst-37
Buckt-

153.0
US East (Ohio)

LoadBal_ID1

89.0
27 264 38 3809 18 5 46 440

Inst-38
Buckt-

149.0
South America

LoadBal_ID1

05.0
42 338 37 3794 14 3 11 696

Inst-39
Buckt-

168.0
US East (Ohio)

LoadBal_ID1

99.0
41 289 40 2617 19 4 35 483

Inst-40
Buckt-

111.0
East (Virginia)

LoadBal_ID1

40.0
38 314 36 2850 24 4 31 425

Inst-41
Buckt-

189.0
US East (Ohio)

LoadBal_ID1

56.0
49 251 41 2572 22 3 49 344

Inst-42
Buckt-

136.0
US East (Ohio)

LoadBal_ID1

22.0
37 349 27 3027 11 3 29 290

Inst-43
Buckt-

112.0
US East (Ohio)

LoadBal_ID2

28.0
47 260 21 3821 14 3 12 358

Inst-44
Buckt-

160.0

Asia Pacific

(Mumbai)

LoadBal_ID1

02.0
24 238 31 3193 14 6 6 485

Inst-45
Buckt-

188.0

Asia Pacific

(Mumbai)

LoadBal_ID1

89.0
33 262 36 1212 17 4 16 439

Inst-46
Buckt-

143.0
US East (Ohio)

LoadBal_ID2

09.0
38 311 30 4369 17 3 21 528

Inst-47
Buckt-

166.0
South America

LoadBal_ID2

30.0
41 266 26 3555 10 6 20 331

Inst-48
Buckt-

172.0
East (Virginia)

LoadBal_ID2

27.0
22 266 35 3149 14 6 50 370

Inst-49
Buckt-

185.0
South America

LoadBal_ID2

09.0
30 285 34 1783 7 4 40 505

Inst-50
Buckt-

108.0

Asia Pacific

(Mumbai)

LoadBal_ID1

43.0
25 353 41 3192 13 4 42 595

Inst-51
Buckt-

136.0
East (Virginia)

LoadBal_ID1

53.0
34 335 21 1877 10 2 47 638

Inst-52
Buckt-

182.0
South America

LoadBal_ID2

37.0
49 332 34 2793 23 2 7 720

Inst-53
Buckt-

148.0

Asia Pacific

(Mumbai)

LoadBal_ID1

15.0
30 253 40 3752 22 3 40 632

Inst-54
Buckt-

126.0

Asia Pacific

(Mumbai)

LoadBal_ID1

88.0
44 322 29 3925 21 3 34 316

Inst-55
Buckt-

195.0

Asia Pacific

(Mumbai)

LoadBal_ID1

12.0
46 257 40 2542 14 4 51 495

Inst-56
Buckt-

200.0

Asia Pacific

(Mumbai)

LoadBal_ID1

62.0
26 270 23 2076 15 3 29 405

Inst-57
Buckt-

191.0
US East (Ohio)

LoadBal_ID1

72.0
35 313 24 2462 15 3 48 537

Inst-58
Buckt-

165.0

Asia Pacific

(Mumbai)

LoadBal_ID2

01.0
33 267 21 1062 10 3 48 654

Inst-59
Buckt-

145.0

Asia Pacific

(Mumbai)

LoadBal_ID1

21.0
45 346 33 2933 21 4 32 686

Inst-60
Buckt-

112.0
East (Virginia)

LoadBal_ID1

86.0
44 270 32 3605 15 6 49 387

Table 1 describes the sample virtual machines and its

metrics in the real-time cloud servers. In this table, different

types of cloud servers and its virtual machine properties are

captured from the real-time cloud servers.

4.1 CPU utilization

It is the sum of work processed by the cloud server for task

completion.

Table 2 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

small type virtual machines and tasks. In this table, different

tasks are experimental tested on the small virtual machines for

CPU utilization in cloud computing environment. Also, from

the table, it is noted that the proposed statistical multi-level

load balancing based parameter estimation is better than the

conventional models in small cloud VMs and its tasks are

considered. Various figures can be accepted. Here, in this

study multiple virtual cloud instances of each size 1GB RAM

are used to evaluate the load balancing property in the Table 2.

Figure 2 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

medium type virtual machines and tasks. In this figure,

different tasks are experimental tested on the medium virtual

machines for CPU utilization in cloud computing environment.

Also, from the figure, it is noted that the proposed statistical

multi-level load balancing based parameter estimation is better

than the conventional models in medium cloud VMs and its

778

tasks are considered. In the Figure 2, different statistical

parameters are estimated using the cloud instances and its CPU

utilization are shown in the figure. From the Figure 2, it is

noted that the different tasks are assigned to the statistical load

data collector and balancer for CPU utilization in percentage.

In the proposed scenario, CPU utilization is optimal due to

efficient data collection and statistical parameter estimation on

the given variables. Here, in this study multiple virtual cloud

instances of each size 4GB RAM are used to evaluate the load

balancing property in the Table 2.

Table 2. Performance analysis of the multi-level load

balancing based parameter estimation by using small type of

VMs for CPU Utilization (%)

Small DLB LB-

BC

LBRC PSO –

Firefly

Proposed

Task-2 63 58 64 48 79

Task-4 58 60 57 60 77

Task-6 54 58 50 61 86

Task-8 55 66 66 59 87

Task-10 65 60 51 64 79

Task-12 62 56 46 51 75

Task-14 62 57 56 53 88

Task-16 58 47 57 58 73

Task-18 67 49 56 52 87

Task-20 51 50 58 45 74

Figure 2. Performance analysis of the multi-level load

balancing based parameter estimation by using medium type

of VMs for CPU utilization

Figure 3 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

large type virtual machines and tasks. In this figure, different

tasks are experimental tested on the large virtual machines for

CPU utilization in cloud computing environment. Also, from

the figure, it is noted that the proposed statistical multi-level

load balancing based parameter estimation is better than the

conventional models in large cloud VMs and its tasks are

considered. Here, in this study multiple virtual cloud instances

of each size 16GB RAM are used to evaluate the load

balancing property in the Table 2.

The main relationship between the Table 1, Figure 2 and

Figure 3 are:

1. Each task takes different instance RAM size for data

collection and parametric estimation.

2. Each task run dynamically in order to predict the CPU

utilization for data storage and task execution.

Figure 3. Performance analysis of the multi-level load

balancing based parameter estimation by using large type of

VMs for CPU utilization

4.2 Memory utilization

It is the amount of memory required to process the task in

the cloud server.

Table 3 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

small type virtual machines and tasks. In this table, different

tasks are experimental tested on the small virtual machines for

memory utilization in cloud computing environment. Also,

from the table, it is noted that the proposed statistical multi-

level load balancing based parameter estimation is better than

the conventional models in small cloud VMs and its tasks are

considered. Here, in this study multiple virtual cloud instances

of each size 1GB RAM are used to evaluate the load balancing

property in the Table 3.

Table 3. Performance analysis of the multi-level load

balancing based parameter estimation by using small type of

VMs for Memory Utilization (%)

Small DLB
LB-

BC
LBRC

PSO –

Firefly
Proposed

Task-2 60 57 67 56 86

Task-4 65 62 45 56 82

Task-6 45 61 48 62 81

Task-8 48 49 60 58 83

Task-10 63 64 66 48 80

Task-12 48 48 50 47 81

Task-14 63 57 63 66 84

Task-16 48 46 48 53 81

Task-18 63 58 55 52 80

Task-20 59 47 48 63 85

Figure 4 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

medium type virtual machines and tasks. In this figure,

different tasks are experimental tested on the medium virtual

machines for memory utilization in cloud computing

environment. Also, from the table, it is noted that the proposed

statistical multi-level load balancing based parameter

estimation is better than the conventional models in medium

cloud VMs and its tasks are considered. Here, in this study

multiple virtual cloud instances of each size 4GB RAM are

used to evaluate the load balancing property in the Figure 4.

0

20

40

60

80

100

C
P

U
 U

ti
liz

at
io

n
(

%
)

Large VMs tasks

DLB

LB-BC

LBRC

PSO-Firefly

Proposed

779

Figure 4. Performance analysis of the multi-level load

balancing based parameter estimation by using medium type

of VMs for memory utilization (%)

Table 4. Performance analysis of the multi-level load

balancing based parameter estimation by using large type of

VMs for memory utilization

Large

VMs
DLB

LB-

BC
LBRC

PSO –

Firefly
Proposed

Task-2 52 49 62 67 75

Task-4 62 53 64 56 90

Task-6 67 65 61 46 89

Task-8 49 55 65 51 91

Task-10 59 60 61 53 86

Task-12 67 60 58 46 75

Task-14 49 53 46 60 77

Task-16 47 62 46 55 75

Task-18 60 57 61 46 84

Task-20 52 54 63 58 74

Table 4 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

large type virtual machines and tasks. In this table, different

tasks are experimental tested on the large virtual machines for

memory utilization in cloud computing environment. Also,

from the table, it is noted that the proposed statistical multi-

level load balancing based parameter estimation is better than

the conventional models in large cloud VMs and its tasks are

considered. Here, in this study multiple virtual cloud instances

of each size 16GB RAM are used to evaluate the load

balancing property in the Table 4.

4.3 Runtime analysis

It is the amount of time required to process the multiple

requested jobs in the Queue. In the runtime analysis(ms),

different cases of load balancing on tasks are performed based

on the small, medium and large instances with 1GB,4GB and

16GB ram capabilities.

Table 5 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

small type virtual machines and tasks. In this table, different

tasks are experimental tested on the small virtual machines for

runtime analysis in cloud computing environment. Also, from

the table, it is noted that the proposed statistical multi-level

load balancing based parameter estimation is better than the

conventional models in small cloud VMs and its tasks are

considered. Here, in this study multiple virtual cloud instances

of each size 1GB RAM are used to evaluate the load balancing

property in the table.

Table 5. Performance analysis of the multi-level load

balancing based parameter estimation by using small type of

VMs for runtime analysis (RAM:1GB each)

Small

VMs
DLB

LB-

BC
LBRC

PSO –

Firefly
Proposed

Task-2 5471 4903 4684 4791 4002

Task-4 5181 5806 4846 4945 4141

Task-6 5699 5432 4870 5228 4257

Task-8 4828 5833 5450 5576 4008

Task-10 5742 5417 5659 5275 4359

Task-12 5160 4668 5710 5806 4075

Task-14 5007 5684 5388 5510 4119

Task-16 5816 5396 5511 4989 4291

Task-18 5032 5223 5020 5037 4210

Task-20 4924 4871 5267 4822 4015

Table 6. Performance analysis of the multi-level load

balancing based parameter estimation by using medium type

of VMs for runtime analysis (4GB RAM)

Medium

VMs
DLB

LB-

BC
LBRC

PSO –

Firefly
Proposed

Task-2 5696 4843 5719 4834 3806

Task-4 5268 5072 5052 4766 4177

Task-6 5550 5669 5744 5780 4188

Task-8 4786 5292 5282 5400 3881

Task-10 4998 4829 5158 5375 4110

Task-12 5607 4956 5647 5471 3688

Task-14 4844 5570 5001 5344 4169

Task-16 5642 5648 5670 5168 4014

Task-18 4979 4976 5214 5039 3870

Task-20 5001 5057 5267 4652 3785

Table 6 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

large type virtual machines and tasks. In this table, different

tasks are experimental tested on the medium virtual machines

for runtime analysis in cloud computing environment. Also,

from the table, it is noted that the proposed statistical multi-

level load balancing based parameter estimation is better than

the conventional models in medium cloud VMs and its tasks

are considered. Here, in this study multiple virtual cloud

instances of each size 4GB RAM are used to evaluate the load

balancing property in the table.

Table 7. Performance analysis of the multi-level load

balancing based parameter estimation by using large type of

VMs for runtime analysis (16GB RAM)

Large

VMs
DLB

LB-

BC
LBRC

PSO –

Firefly
Proposed

Task-2 5231 5323 5706 4718 3746

Task-4 5176 4946 5020 5569 3489

Task-6 4786 4702 5359 5277 3794

Task-8 4734 5238 5285 5485 3432

Task-10 5491 5506 5271 4863 3526

Task-12 5250 4791 5388 5170 3821

Task-14 5089 4839 5184 5017 3890

Task-16 5605 5398 4820 4865 3922

Task-18 5603 4927 4875 4886 3703

Task-20 5129 5722 4821 5199 3452

Table 7 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

large type virtual machines and tasks. In this table, different

tasks are experimental tested on the large virtual machines for

780

runtime analysis in cloud computing environment. Also, from

the table, it is noted that the proposed statistical multi-level

load balancing based parameter estimation is better than the

conventional models in large cloud VMs and its tasks are

considered. Here, in this study multiple virtual cloud instances

of each size 16GB RAM are used to evaluate the load

balancing property in the table.

4.4 Reliability analysis

In the reliability analysis, load balancer scheduling and

optimization models can increase the reliability by monitoring

incoming and outgoing network I/O among the tasks. In the

reliability analysis, different cases of load balancing on tasks

are performed based on the small, medium and large instances

with 1GB,4GB and 16GB RAM capabilities.

Table 8. Performance analysis of the multi-level load

balancing based parameter estimation by using large type of

VMs for reliability analysis (1GB RAM)

Large

VMs
DLB

LB-

BC
LBRC

PSO –

Firefly
Proposed

Task-2 65 69 70 77 90

Task-4 65 66 78 68 93

Task-6 69 74 77 68 96

Task-8 68 73 70 69 90

Task-10 75 69 72 74 94

Task-12 73 72 70 71 94

Task-14 74 66 67 68 95

Task-16 72 75 78 72 95

Task-18 75 77 75 66 90

Task-20 74 70 68 76 95

Table 8 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

large type virtual machines and tasks. In this figure, different

tasks are experimental tested on the large virtual machines for

reliability in cloud computing environment. Also, from the

figure, it is noted that the proposed statistical multi-level load

balancing based parameter estimation is better than the

conventional models in large cloud VMs and its tasks are

considered. Here, in this study multiple virtual cloud instances

of each size 1GB RAM are used to evaluate the load balancing

property in the table.

Figure 5. Performance analysis of the multi-level load

balancing based parameter estimation by using small type of

VMs for reliability analysis (4GB RAM)

Figure 5 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

large type virtual machines and tasks. In this figure, different

tasks are experimental tested on the small virtual machines for

reliability in cloud computing environment. Also, from the

figure, it is noted that the proposed statistical multi-level load

balancing based parameter estimation is better than the

conventional models in small cloud VMs and its tasks are

considered. Here, in this study multiple virtual cloud instances

of each size 4GB RAM are used to evaluate the load balancing

property in the figure.

Figure 6. Performance analysis of the multi-level load

balancing based parameter estimation by using medium type

of VMs for reliability analysis (16 GB RAM)

Figure 6 illustrates the performance of the proposed multi-

level load balancing based parameters estimation on different

medium type virtual machines and tasks. In this figure,

different tasks are experimental tested on the medium virtual

machines for reliability in cloud computing environment. Also,

from the figure, it is noted that the proposed statistical multi-

level load balancing based parameter estimation is better than

the conventional models in medium cloud VMs and its tasks

are considered. Here, in this study multiple virtual cloud

instances of each size 16GB RAM are used to evaluate the load

balancing property in the figure.

5. CONCLUSION

In this paper, a novel statistical load balancing metrics are

estimated in the real-time cloud computing environment on

large number of instances and tasks. Since, most of the

conventional models are based on limited number of tasks and

VMs in the cloud environment; it is difficult to monitor the

different cloud-based applications due to high computational

time and memory. In this work, proposed framework is

implemented in the real-time amazon AWS instances with a

large number of tasks. Experimental results proved that the

multi-level statistical load balancing parameters estimation

model has nearly 2% optimization in terms of reliability,

runtime, memory utilization and CPU utilization.

REFERENCES

[1] Abutayeh, M., Padilla, R.V., Lake, M., Lim, Y.Y., Garcia,

J., Sedighi, M., Too, Y.C.S., Jeong, K. (2019). Effect of

781

short cloud shading on the performance of parabolic

trough solar power plants: motorized vs manual valves.

Renewable Energy, 142: 330-344.

https://doi.org/10.1016/j.renene.2019.04.094

[2] Adhikari, M., Amgoth, T., Srirama, S.N. (2020). Multi-

objective scheduling strategy for scientific workflows in

cloud environment: A Firefly-based approach. Applied

Soft Computing, 93: 106411.

https://doi.org/10.1016/j.asoc.2020.106411

[3] Adhikari, M., Nandy, S., Amgoth, T. (2019). Meta

heuristic-based task deployment mechanism for load

balancing in IaaS cloud. Journal of Network and

Computer Applications, 128: 64-77.

https://doi.org/10.1016/j.jnca.2018.12.010

[4] Alonso-Monsalve, S., García-Carballeira, F., Calderón,

A. (2018). A heterogeneous mobile cloud computing

model for hybrid clouds. Future Generation Computer

Systems, 87: 651-666.

https://doi.org/10.1016/j.future.2018.04.005

[5] Chaudhary, D., Kumar, B. (2018). Cloudy GSA for load

scheduling in cloud computing. Applied Soft Computing,

71: 861-871. https://doi.org/10.1016/j.asoc.2018.07.046

[6] Chaudhary, D., Kumar, B. (2019). Cost optimized hybrid

genetic-gravitational search algorithm for load

scheduling in cloud computing. Applied Soft Computing,

83: 105627. https://doi.org/10.1016/j.asoc.2019.105627

[7] Elrotub, M., Gherbi, A. (2018). Virtual machine

classification-based approach to enhanced workload

balancing for cloud computing applications. Procedia

Computer Science, 130: 683-688.

https://doi.org/10.1016/j.procs.2018.04.120

[8] Gesvindr, D., Gasior, O., Buhnova, B. (2020).

Architecture design evaluation of PaaS cloud

applications using generated prototypes: PaaSArch

Cloud Prototyper tool. Journal of Systems and Software,

169: 110701. https://doi.org/10.1016/j.jss.2020.110701

[9] Gholipour, N., Arianyan, E., Buyya, R. (2020). A novel

energy-aware resource management technique using

joint VM and container consolidation approach for green

computing in cloud data centers. Simulation Modelling

Practice and Theory, 104: 102127.

https://doi.org/10.1016/j.simpat.2020.102127

[10] Gill, S.S., Tuli, S., Xu, M.X., Singh, I., Singh, K.V.,

Lindsay, D., Tuli, S., Smirnova, D., Singh, M., Jain, U.,

Pervaiz, H., Sehgal, B., Kaila, S.S., Misra, S., Aslanpour,

M.S., Mehta, H., Stankovski, V., Garraghan, P. (2019).

Transformative effects of IoT, blockchain and artificial

intelligence on cloud computing: Evolution, vision,

trends and open challenges. Internet of Things, 8: 100118.

https://doi.org/10.1016/j.iot.2019.100118

[11] Guo, J., Li, C., Chen, Y., Luo, Y. (2020). On-demand

resource provision based on load estimation and service

expenditure in edge cloud environment. Journal of

Network and Computer Applications, 151: 102506.

https://doi.org/10.1016/j.jnca.2019.102506

[12] Habibi, M., Fazli, M., Movaghar, A. (2019). Efficient

distribution of requests in federated cloud computing

environments utilizing statistical multiplexing. Future

Generation Computer Systems, 90: 451-460.

https://doi.org/10.1016/j.future.2018.08.032

[13] Hamid-Lakzaeian, F. (2020). Point cloud segmentation

and classification of structural elements in multi-planar

masonry building facades. Automation in Construction,

118: 103232.

https://doi.org/10.1016/j.autcon.2020.103232

[14] Jodayree, M., Abaza, M., Tan, Q. (2019). A predictive

workload balancing algorithm in cloud services.

Procedia Computer Science, 159: 902-912.

https://doi.org/10.1016/j.procs.2019.09.250

[15] Liang, Y., Qi, G., Zhang, X., Li, G. (2019). The effects

of e-Government cloud assimilation on public value

creation: An empirical study of China. Government

Information Quarterly, 36(4): 101397.

https://doi.org/10.1016/j.giq.2019.101397

[16] Mansouri, N., Ghafari, R., Zade, B.M.H. (2020). Cloud

computing simulators: A comprehensive review.

Simulation Modelling Practice and Theory, 104: 102144.

https://doi.org/10.1016/j.simpat.2020.102144

[17] Mashhadi Moghaddam, S., O’Sullivan, M., Walker, C.,

Fotuhi Piraghaj, S., Unsworth, C.P. (2020). Embedding

individualized machine learning prediction models for

energy efficient VM consolidation within Cloud data

centers. Future Generation Computer Systems, 106: 221-

233. https://doi.org/10.1016/j.future.2020.01.008

[18] Nyasulu, M., Haque, M.M., Boiyo, R., Kumar, K.R.,

Zhang, Y.L. (2020). Seasonal climatology and

relationship between AOD and cloud properties inferred

from the MODIS over Malawi, Southeast Africa.

Atmospheric Pollution Research, 11(11): 1933-1952.

https://doi.org/10.1016/j.apr.2020.07.023

[19] Premarathne, U.S., Rajasingham, S. (2020). Trust based

multi-agent cooperative load balancing system (TCLBS).

Future Generation Computer Systems, 112: 185-192.

https://doi.org/10.1016/j.future.2020.01.037

[20] Rafieyan, E., Khorsand, R., Ramezanpour, M. (2020).

An adaptive scheduling approach based on integrated

best-worst and VIKOR for cloud computing. Computers

& Industrial Engineering, 140: 106272.

https://doi.org/10.1016/j.cie.2020.106272

[21] Sahil, Sood, S.K. (2019). Smart vehicular traffic

management: An edge cloud centric IoT based

framework. Internet of Things, 100140.

https://doi.org/10.1016/j.iot.2019.100140

[22] Marin, A., Balsamo, S., Fourneau, J.M. (2017). LB-

networks: A model for dynamic load balancing in

queueing networks. Performance Evaluation, 115: 38-53.

https://doi.org/10.1016/ j.peva.2017.06.004

[23] Zhao, J., Yang, K., Wei, X., Ding, Y., Hu, L., Xu, G.

(2016). A heuristic clustering-based task deployment

approach for load balancing using bayes theorem in

cloud environment. IEEE Transactions on Parallel and

Distributed Systems, 27(2): 305-316.

https://doi.org/10.1109/TPDS.2015.2402655

[24] Priya, V., Sathiya Kumar, C., Kannan, R. (2019).

Resource scheduling algorithm with load balancing for

cloud service provisioning. Applied Soft Computing, 76:

416-424. https://doi.org/10.1016/j.asoc.2018.12.021

[25] Golchi, M.M., Saraeian, S., Heydari, M. (2019). A hybrid

of firefly and improved particle swarm optimization

algorithms for load balancing in cloud environments:

Performance evaluation. Computer Networks, 162:

106860. https://doi.org/10.1016/j.comnet.2019.106860

782

