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 Mobile ad hoc networks (MANETs) consist of self-configured mobile wireless nodes 

capable of communicating with each other without any fixed infrastructure or centralized 

administration using the medium radio. Wireless technology is based on standard 

IEEE.802.11. The IEEE 802.11 Distributed Coordination Function (DCF) MAC layer uses 

the Binary Exponential Backoff (BEB) algorithm to deal with wireless network collisions. 

BEB is considered effective in reducing the probability of collisions but at the expense of 

numerous network performance measures, such as throughput and packets delivery ratio, 

mainly in high traffic load. Deep Reinforcement Learning (DRL) is a DL technique in which 

an agent can achieve a goal by interacting with the environment. In this paper, using one of 

the DRL models, we propose Q-learning (QL) to optimize MAC protocols' performance 

based on the contention window (CW) in MANETs. The intelligent proposed MISQ takes 

into account the number of packets to be transmitted and the collisions committed by each 

station to select the appropriate contention window. The performance of the proposed 

mechanism is evaluated by using in-depth simulations. The outputs indicate that the 

intelligent proposal mechanism learns various MANETS environments and optimizes 

performance over standard MAC protocol. The performance of MISQ is evaluated in 

various networks with throughput, channel access delay, and packets delivery rate as 

performance measures. 
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1. INTRODUCTION 

 

The field of communications has experienced remarkable 

success and growth in recent years due to technological 

advances, and particularly the emergence of wireless 

technology. The latter enables the implementation of wireless 

communications in mobile environments, which provide a 

great degree of convenience of use. In fact, mobile ad hoc 

networks (MANETs) are a modern model for mobile networks, 

they are local networks where inter-station communication is 

carried out by radio frequencies, designed by the 

interconnection of various kinds of devices nodes, and does 

not require any fixed infrastructure or centralized control. The 

topology of this kind of networks is often unstable and 

changeable due to the mobility of nodes. In addition, the radio 

channel and the bandwidth available for communication in 

such networks are limited. Admission to the common channel 

should be handled in such a way that all stations receive their 

share of the amount of available bandwidth. The bandwidth 

sharing must be fair between all stations, efficient, and without 

consequences on network resources. This admission, is carried 

out by the protocol MAC (Medium Access Control) and, 

because of all the challenges of MANETs, a huge dilemma is 

the development of an easy, efficient and equitable shared 

medium access control system. 

The IEEE 802.11 MAC protocol is the standard deployed 

for untethering (wireless) LAN communication, although, it 

belongs to the same standard family as Ethernet, it has a very 

different architecture and medium access protocol. The IEEE 

802.11 MAC Protocol supports some wireless multi-hop ad 

hoc networks, even it was not built for wireless mobile ad hoc 

networks where multi-hop connectivity is a primary feature [1]. 

Two key metrics are used to measure the efficiency of the 

MAC protocol: the probability of collision and fairness in 

allocating the channel to contending stations. IEEE 802.11 is 

trying to solve the collision problem by following the Binary 

Exponential Backoff (BEB) algorithm. The BEB scheme is the 

typical kernel Carrier Sense Multiple Access/Collision 

Avoidance (CSMA/CA) framework implemented in IEEE 

802.11 DCF [2]. This backoff framework, used in the most 

contention-based wireless medium access protocols, is 

generally adapted from ethernet networks where there is no 

non-uniform media activity. The BEB method of providing 

equal medium access in wired networks thus becomes the 

source of inequality in wireless networks; it suffers from both 

fairness and efficiency. The inequality of the MAC layer 

affects the actions of higher layer protocols. 

Over and above that, nowadays, deep learning (DL) has 

attracted much attention from the research community and 

industry because to the successful applications in different 

research fields, such as speech recognition, natural language 

processing, and computer vision. This attention has led to the 

development of using deep learning (DL) in wireless 

communications technologies to benefit from artificial 

intelligence's advantages in this field. DL principles have a 

longstanding background in wireless networks and have 

achieved much success, especially in upper communication 

layers, such as in cognitive radio networks (CRNs) and 
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resource management of the MAC layer [3]. Many researchers 

believe that the introduction of DL into wireless networks can 

optimize the performance of these networks. A DL technique 

is deep reinforcement learning (DRL) which is motivated by 

behavioral sensitivity and the ideology of control. An agent 

DRL achieves a goal by communicating with its environment 

[4, 5]. DRL uses specific learning models, including Markov 

Decision Process (MDP), Partially Observed MDP (POMDP), 

and Q-learning (QL) [6]. QL is inspired by behavior, allowing 

discovering an optimal strategy of action for any finite MDP, 

mainly when the environment is unknown [7]. 

In this paper, we apply Q-learning-based reinforcement 

learning to learn the optimal backoff scheme in contention-

based MAC protocol (without any access point) to improve 

network channel usage and the CSMA/CA performance in the 

MANETs. Unlike the classic Binary Exponential Backoff 

(BEB) (introduced in the next section), which only takes into 

account the information of success or collision transmission to 

initialize or increase the CW respectively, the proposal also 

takes into account the number of packets to be transmitted (for 

example, high or low) and the number of collisions made by 

the station, to select the appropriate CW. The results of the 

various simulations show that the proposed algorithm 

“intelligent mechanism of CW selection based on Q-learning 

(MISQ)” achieves a better throughput, an acceptable MAC 

layer access delay, and a delivered packet rate more significant 

than that of the BEB used in the IEEE802.11 DCF standard. 

The rest of the paper is organized as follows: Section 2 

presents the related work. Section 3 discusses the Markov 

decision process and reinforcement learning. The main part of 

this paper, the introduction of Q-learning, is provided in 

section 4 to optimize the contention window. The different 

simulations and results obtained are presented in section 5. 

Finally, section 6 concludes this work.  

 

 

2. RELATED WORK 
 

Binary Exponential Backoff (BEB), The Distributed 

Coordination Function (DCF) is the basic MAC of the IEEE 

802.11 WLAN protocol. DCF is essentially a CSMA/CA 

(Carrier Sense Multiple Access with Collision Avoidance) 

mechanism with a BEB (Binary Exponential Backoff) 

algorithm [8]. This algorithm is used to push the station to 

delay access to the shared transmission channel for a random 

period of time [9]. The BEB algorithm operates according to 

the two resulting states after data transmission. If the data 

transmitted by a source station is received correctly by a 

destination station, then a transmission success is concluded, 

otherwise, a transmission failure is then detected. BEB resets 

the contention window CW to its initial value CWmin in case of 

success, and doubles the CW in case of failure until maximum 

number CWmax is reached. once the number of retransmissions 

Rmax allowed for a data packet is reached, the data packet will 

be discarded, and an attempt to transmit the next packet is 

initiated from CWmin. Therefore, A station that succeeds in 

transmitting will likely have the channel in the next contention. 

A binary exponential interrupt period called backoff counter is 

randomly selected in [0, CW-1]; it is decreased when the 

channel is detected inactive. The station begins transmitting 

when the backoff timer expires. BEB is less effective when the 

number of stations becomes more significant [10, 11]. A short 

backoff time induces a heavy load on the channel with a low 

probability of successful transmission. However, a very long 

backoff time triggers channel inactivity. An adequate backoff 

mechanism is one that provide high throughput, more fairness, 

less delay, and more reliability. BEB calculates the contention 

window according to the two cases: 

 

𝐶𝑊𝑛𝑒𝑤 = {
𝑀𝑖𝑛((𝐶𝑊𝑐𝑢𝑟 ∗ 2) + 1, 𝐶𝑊𝑚𝑎𝑥))   𝑐𝑜𝑙𝑙𝑖𝑑𝑒

𝐶𝑊𝑚𝑖𝑛                                                  𝑠𝑢𝑐𝑐𝑒𝑒𝑑
 (1) 

 

Cognitive Backoff Mechanism (CB), proposed by Shahin et 

al. [12], a mechanism that adaptively determines the CW to 

effectively avoid collision with high throughput and low 

transmission delay. In CB mechanism, the technique used in 

case of a successful transmission is identical to that used in 

BEB. Differently in case of a collision, CB mechanism updates 

the CW based on a measured conditional collision probability 

pck, backoff stages i, and an optimally defined backoff factor, 

(CWmin+1)(pck + 1). CB mechanism calculates the CW as follows: 

 

𝐶𝑊𝑛𝑒𝑤 = {
min(( 2𝑖(𝐶𝑊𝑚𝑖𝑛 + 1)

(pck+1) − 1), 𝐶𝑊𝑚𝑎𝑥) collide

𝐶𝑊min                                                                 𝑠𝑢𝑐𝑐𝑒𝑒𝑑
  (2) 

 

Based on simulations, CB offers better performance than 

BEB in terms of throughput, delay, and fairness. 

Centralized Contention Window Optimization with DRL 

(CCOD), proposed by Wydmański et al. [13], a method of 

applying DRL in multichannel networks that supports two 

trainable algorithms, having the task of optimizing the 

saturation rate of 802.11ax networks by correctly predicting 

CW values while keeping computational cost low. 

Intelligent QL-Based Resource Allocation (iQRA), 

proposed by Ali et al. [14], an intelligent resource allocation 

mechanism based on QL was proposed for access to MAC 

layer channels in dense WLANs. The simulations have shown 

that compared to conventional non-intelligent MAC protocols, 

the performance of the iQRA results in better throughput, 

channel access delay, and fairness. 

 

 

3. MARKOV DECISION PROCESS AND 

REINFORCEMENT LEARNING 
 

An MDP is a mathematic tool that allows modeling RL 

agents. It is defined as a quadruple MDP = (S, A, R, T) [15], 

where S represents all states of the system in which the process 

operates and A is the set of all possible actions that control the 

dynamics of the state. R is the reward function 𝑆 × 𝐴 → 𝑅, 

obtained by performing action a in state s and T is the 

transition probability function 𝑆 × 𝑇 × 𝑆 → [0, 1] , where 

𝑇[𝑠′|𝑠, 𝑎] is the transition probability from the current state 

𝑠 ∈ 𝑆 𝑡𝑜 𝑠′ ∈ 𝑆 after the action 𝑎 ∈ 𝐴 is taking. The decision 

policy 𝜋 maps the set of states 𝑆 on the set of actions A: 𝜋 ∶
𝑆 → 𝐴 . Specifically, suppose that the environment is a 

stochastic system with discrete-time and finite states. Let S = 

(s1, s2, …; sn) be the state space S and A = (a1, a2, …, am) the 

action space A. If at episode i, the RL agent is on a state 𝑠𝑖 ∈
𝑆, it chooses the action 𝑎𝑖 ∈ 𝐴, according to the policy π in 

order to interact with its environment. Then it passes to the 

state 𝑠𝑖+1 ∈ 𝑆  with a probability 𝑃(𝑠′|𝑠, 𝑎)  providing to the 

agent a return reward noted  𝑟𝑖(𝑠, 𝑎) . The process is then 

recycled. The objective of the RL agent is to maximize the 

reward or the expected updated state value in the more or less 

long term, taking less and less account of the future using a 

coefficient γ ∈ [0, 1], which is represented by: 
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𝑉𝜋(𝑠) = 𝑅(𝑠, 𝑎) + 𝛾∑ 𝑃

𝑠′∈𝑆

(s′│s, a) 𝑉𝜋(𝑠′) (3) 

 

where, 𝑅(𝑠, 𝑎) = 𝐸{𝑟(𝑠, 𝑎)} is the average value of the reward 

r(s, a) and γ is the discount factor that allows modulating the 

importance of the expected future rewards. A factor equals to 

0 will cause the agent to consider the last rewards, while a 

factor closes to 1 will cause the agent to consider long-term 

rewards as much as short-term.  

A policy 𝑉∗(𝑠) is considered to be the optimal policy if and 

only if: 𝑉∗(𝑠) ≥ 𝑉𝜋(𝑠) for each𝑠 ∈ 𝑆 (𝑉∗(𝑠) = max 𝑉𝜋(𝑠) . 
The Eq. (3) can be rewritten recursively as the Bellman 

equation: 

 

𝑉∗(𝑠) = 𝑅(𝑠, 𝑎) + 𝛾 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

∑𝑃

𝑠′∈𝑆

(s′│s, a)𝑉∗(𝑠′) (4) 

 

Q-learning [16] is part of the model-free RL methods. It is 

about learning through experience what actions to take based 

on the current state. Q-learning attempts to determine the 

policy 𝜋, in the absence of the probability transition function 

and the reward function. In Q-learning, the policies and the 

value function are represented by a matrix indexed by state-

action pairs. Formally, for each state 𝑠 and action 𝑎, another 

quantity Q (s, a) obtained from V(s) [17], can be used. It will 

provide the "quality" of the action taken in the state.  

The value Q under the policy π is defined as being: 

 

𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾∑ 𝑃

𝑠′∈𝑆

(s′│s, a)𝑉𝜋(𝑠′) (5) 

 

Let 𝑄∗(𝑠, 𝑎) = 𝑄𝜋
∗
(𝑠, 𝑎) = 𝑚𝑎𝑥

𝜋
𝑄𝜋(𝑠, 𝑎)  being the 

optimal action function under the π policy, the optimal value 

function is rewritten using Q* (Bellman's equation) as: 

 

𝑉∗(𝑠) = 𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

(𝑄∗(𝑠, 𝑎)) (6) 

 

The optimal policy π is expressed: 

 

𝜋∗ = a∗ = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎∈𝐴(𝑠)

(𝑄∗(𝑠, 𝑎)) (7) 

 

The value function of the optimal action Q∗ is the unique 

solution of Bellman's equation: 

 

𝑄∗(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃

𝑠′∈𝑆

(s′│s, a) 𝑚𝑎𝑥
𝑎′∈𝐴(𝑠′)

𝑄∗(𝑠′, 𝑎′) (8) 

 

The Q-learning algorithm looks for an approximation of Q* 

as a fixed point of the previous equation, by writing: 

 

𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = 𝑄𝑡(𝑠𝑡 , 𝑎𝑡) + 𝛼∆𝑄𝑡(𝑠𝑡 , 𝑎𝑡) (9) 

 

where, α∈  [0.1] is the learning rate, which determines the 

extent to which the new information acquired will replace the 

old information. A learning rate of 0 will not learn the agent 

anything, while a learning rate of 1 will only make it consider 

the most recent information.  

Learning occurs rapidly based on an improved learning 

estimate ∆ called the temporal difference, expressed as: 

 

∆𝑄𝑡(𝑠𝑡, 𝑎𝑡) = [𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾 𝑚𝑎𝑥
𝑎′∈𝐴(𝑠 )

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡
′
 
) − 𝑄𝑡(𝑠𝑡 , 𝑎𝑡)] (10) 

In the next section, we discuss the CW optimization 

algorithm concerning channel access delay, delivered packet 

rate, and throughput as an MDP. Our goal is to achieve an 

optimal channel access policy while correctly defining the 

reward function and the RL algorithm. 

 

 

4. CONTENTION WINDOW ESTIMATION  

 

Packet collisions occur when multiple stations access the 

channel simultaneously. So, one of the goals of the contention-

based MAC protocol is to avoid collisions. The station must 

therefore check the state of the channel to avoid collisions. A 

backoff mechanism is required for transmission after a certain 

delay when the channel is occupied. Determining the duration 

of the backoff requires a CW, and the efficiency of access to 

the channel is determined by the correct selection of the size 

of the CW. Although it is challenging to design an optimal 

channel access mechanism, it’s essential to choose an 

appropriate CW method. Thus, we adopted a CW selection 

scheme based on Q-learning, while defining a reward function 

to be maximized when the number of collisions or the number 

of packets generated by the station is important for quick 

channel access. The state-space contains the CW sizes 

according to the random exponential backoff binary scheme 

for each situation S, where S denotes success transmission or 

collision. Actions determine CW size in stage k from stage      

k-1. In this section, we discuss the defined reward function and 

the algorithm used to enable the agent to learn the optimal 

contention window selection policy. Channel access delay and 

throughput are two critical issues for wireless networks. 

Therefore, it would not be desirable to minimize the access 

time at the cost of an unacceptable throughput. 

 

4.1 Reward function 

 

The reward expresses the goal of a QL algorithm. In our 

proposition, depending on the both situations, the Q-learning 

agent selects a CW that maximizes the reward in state si. The 

reward function comprises two components, the first one 

considers the collisions Ck carried out by the station si in an 

episode k (We designate by episode the time since the packet 

is queued until its successful transmission or rejection after the 

number of allowed retransmissions is reached). The second 

component analyses the information Tk of the packet's number 

to be transmitted generated by the station si. The transmission 

queue occupancy rate of station si is defined as:  

 

𝑇𝑘 = (
𝑁𝐵𝑃𝑘

𝑄𝑢𝑒𝑢𝑒𝑆𝑖𝑧𝑒
) ∗ 100 (11) 

 

where, NBPk represents the number of packets in the si station's 

queue, in episode k, QueueSize is the queue size.  

The rate of collisions committed by the station si in an 

episode k is as follows: 

 

𝐶𝑘 =
∑ 𝑐𝑜𝑙𝑖
𝑘
𝑖=0

𝑅𝑚𝑎𝑥
∗ 100 (12) 

 

where, coli is a collision of packet transmission by the station 

si, and 𝑅𝑚𝑎𝑥 is the number of retransmissions allowed for a 

packet. 

A distinction between the two components of the reward is 

made by a fitness function which calculates the collision/ 
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queue occupancy ratio as follows: 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛼  𝑇𝑘 + (1 − 𝛼) 𝐶𝑘 (13) 

 

Thus, the computation of the reward function is performed 

as: 

 

𝑅𝑇 =

{
 
 

 
 

𝐶𝑘
𝑅𝑚𝑎𝑥

   𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 ℎ𝑖𝑔ℎ 𝑇𝑘 𝑐𝑜𝑙𝑙𝑖𝑑𝑒

𝑁𝐵𝑃𝑘
𝑄𝑢𝑒𝑢𝑒𝑆𝑖𝑧𝑒

   𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑎𝑛𝑑 high 𝑇𝑘 𝑠𝑢𝑐𝑐𝑒𝑒𝑑

0                                                                              𝑒𝑙𝑠𝑒

 (14) 

 

where, Threshold is the average value of the Fitness function: 

  

Threshold = 𝑚𝑜𝑦(min(𝐹𝑖𝑡𝑛𝑒𝑠𝑠) ,max (𝐹𝑖𝑡𝑛𝑒𝑠𝑠)) (15) 

 

𝑇𝑖𝑚𝑒𝐵𝑎𝑐𝑘𝑜𝑓𝑓 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,  CW𝑡 − 1) (16) 

 

4.2 MISQ algorithm 

 

The objective of Q-learning is to find an optimal policy, i.e., 

selection of optimal CW sizes for a state s that optimizes the 

reward r. The proposed mechanism includes an online learning 

distributed algorithm for stations to learn their policy in real-

time. More precisely, all the stations determine their backoff 

time for each episode. All parameters used in procedures such 

as si, ai are local, i.e., used only at station level and not shared 

with other stations. 

The agent manages a table of Q [S, A], where S represents 

the set of states, and A the set of actions. In each episode, the 

agent observes the state st ∈ S of the MDP, selects an action at 

∈  A, receives the resulting reward rt, and observes the 

following resulting state st+1 ∈ S. This information quadruplet 

(st, at, rt, st+1) updates the function Q at the observed state-

action pair level and thus provides the update Q (st, at) (Eq. 9). 

The agent's goal is to maximize its cumulative reward.  

In the proposed MISQ, the finite set of possible 

environment states S = {s0, s1, s2, s3, s4, s5, s6} (where: 

s0=15, s1=31, s2=63, s3=127, s4=255, s5=511, s6=1023) 

includes the different sizes of the contention window 

corresponding to the 802.11 standard ranging from CWmin= 15 

to CWmax= 1023 for each of the two situations (success or 

collision). The set S of states is represented in the diagram of 

Figure 1 by the vertices. 

 

 
 

Figure 1. Proposition state-transition diagram 

 

Actions are the different decisions based on an action 

selection method in which, after each transmission attempt 

regardless of collision or success, a station can either explore 

environment by choosing an action randomly or following a 

greedy strategy. The algorithm can transit to a different (s, a) 

pair and get experience (reward) from it in the random 

approach. Otherwise, the greedy strategy exploits its so-far 

gained experience and chooses the action that gives the max 

Q-value for its current state, presented by Eq. (7). 

The set of possible actions in MISQ is A= {stay, increase, 

decrease, initialize}, presented in Figure 1 by edges a0, a1, a2, 

a3 respectively, where stay determines the action of staying on 

the same state in the event of a collision and high queue 

occupancy rate. The transition increase determines the action 

to move to the next state in the event of a collision and lower 

queue occupancy rate. However, decrease defines the action 

to return to the previous state in the event of successful 

transmission and lower queue occupancy rate, and initialize 

means the action to reset to s0 state in the event of a successful 

transmission and high queue occupancy rate. 

Note that a station's generated packets are considered high 

if Tk, the occupancy queue rate, is greater than 50% and less 

otherwise, and that each transition in the diagram of Figure 1 

is rewarded by a reward Ri (Eq. (14)). 

To represent the graph in Figure 1, we use a transition table 

𝑇(𝑆𝑖 , 𝐴𝑗) , where 𝑆𝑖 , 𝑖 ∈ [0, 6] and 𝐴𝑗 , 𝑗 ∈ [0, 3]  represent 

states and actions respectively. The table is given as follows: 

 

𝑇(𝑆𝑖 , 𝐴𝑗) =

𝑠0
𝑠1
𝑠2
𝑠3
𝑠4
𝑠5
𝑠6

  

|

|

|

𝑎0 𝑎1 𝑎2 𝑎3

𝑠0 𝑠1   
𝑠1 𝑠2 𝑠0 𝑠0
𝑠2 𝑠3 𝑠1 𝑠0
𝑠3 𝑠4 𝑠2 𝑠0
𝑠4 𝑠5 𝑠3 𝑠0
𝑠5 𝑠6 𝑠4 𝑠0
𝑠6 𝑠6 𝑠5 𝑠0
    

|

|

|

 

 

4.3 Proposal algorithm 

 

The MISQ algorithm operates essentially as follows: a 

station transmits a packet and then receives the result S 

(success or collision) of this transmission, determined by the 

reception or not of an ACK packet within an acceptable time. 

The Q-learning agent then adapts the CW value of the station 

taking into consideration the two parameters Tk and Ck before 

sending the next packet, and the process is repeated. The 

operation of the MISQ algorithm is shown in Figure 2. 

 

Algorithm1: CW optimization using MISQ 

 

Global: Q_matrix //to retrieve the previously learned values. 

 

Function Q-learning actions set 

if action = stay  

            CWt+1 = Cwt       //No change to CW 
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else if action = increase and CWt ≠ S6          // S6= CWmax 

             CWt+1 = Cwt + 1 

        else if action = decrease and CWt ≠ S0 // S0 = CWmin   

         CWt+1 =CWt – 1 

                else 

           CWt+1 = CWmin 

   endif 

         endif 

endif  

return CWt+1 

 

Function ε –greedy Get-action 

    Generate p = random_value ∈ [0, 1] 
if  p < ε 

      Select randomly an action ai ∈ A 

  

else  

       select ai* according to the Eq. (7) 

  endif 

return ai  

 
Function CW Q-learning selection 

Input: nbpk, nbcolk, Situation // (success or collision) 

Output: CW     //Optimized Contention windows 

Initialize R_matrix, α, γ, ε. 

- Evaluate Tk, Ck, the Fitness function and the threshold, 

Eqns (11), (12), (13) and (15) respectively.  

- Calculate the reward function according to equation (14) 

according to the situation S success or collision. 

- Update R_matrix for the couple (s, a) with the reward 

calculating in the previous point. 

- Choose a random action a to explore/exploit (function ε –

greedy Get-action)  

- Calculate ∆Q(s, a) according to Eq. (10). 

- Update the Q_matrix according to Eq. (9) for Q(s, a) 

- find the optimal action a* according to Eq. (7). 

- Scale CW according to optimal action a* (Function Q-

learning actions set). 

Return CW. 

- Choose a random value of backoff time according to Eq. (16). 

 

Algorithm 1 shows the QL-based contention window 

selection mechanism (MISQ) that selects the adequate CW 

value according to acquired experience from its interaction 

with the environment.  

The station s periodically checks the channel if its queue 

occupancy rate Tk is greater than 0. Once the station has 

packets to transmit, the backoff time is carried out by selecting 

the CWt, considering the situation success or collision. The 

fitness function and the threshold are evaluated, and the 

reward function is calculated. An action a is chosen by 

function ε –greedy Get-action and executed to obtain the new 

state s’ and the reward r. Thus, the Q-matrix function Q(s, a) 

is updated. Based on the a* value, the maximum Q-Value 

across all actions in the corresponding learned Q-matrix, the 

CW is scaled by calling Function Q-learning actions set. 

Finally, a random value is chosen for the backoff time using 

the Eq. (16). 

 

 
 

Figure 2. Q-learning based MAC protocol 

 

 

5. PERFORMANCES EVALUATION 

 

5.1 Simulation setup 

 

In our simulation, we used the network parameters given in 

Table 1, mostly taken from the 802.11 standard [18]. The 

simulations are performed using Python [19]. The topology for 

the simulation is random, and the number of stations varies 

from 5 to 50, and the stations transmit without RTS / CTS 

mechanism.  

To evaluate the performance of MISQ, we have mainly: 

1. Implement the principle of the algorithm proposed in 

[14], that we named “QL_BEB” in our figures, and which 

consists of using two actions in the state space A={0, 1}; 

where action 0 indicates a decrement of the CW on successful 

transmission, and action 1 designates an increment of the CW 
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on collision transmission. 

2. Compare the results of the simulations with the classic 

BEB, as well as the algorithm simulated in 1.   

3. Vary the queue size for each station to 10, 20, or 40 

packets, assuming that each station has at least one packet and 

at most the packet queue size to be transmitted. 

4. Perform many simulations to determine the Q-learning 

algorithm's parameters to provide good performance to our 

proposal.  

 

Table 1. Simulation parameters  

 
Parameter Value 

Packet payload 8,184 bits 

MAC Header 272 bits 

PHY Header 128 bits 

Queue Size 10, 20, 40 

Iteration 1,500 

Slot time (σ) 50 µs 

DIFS 128 µs 

Max backoff stage (k) 7 

Retry limit (Rmax) 4 

CWmin 15 

CWmax 1,023 

 

 

5.2 Q-learning parameters 

 

To properly select and evaluate the Q-learning parameters 

(learning rate α, reduction factor γ, and 

exploration/exploitation probability epsilon ε), while varying 

the packet queue size (queue size =10 and, queue size =40), 

we simulated a network of 25 contended stations while varying 

the three parameters α, γ and ε: small, medium, and large, to 

determine the fit values used for the rest of the simulations. 

We studied the effect of these three parameters on the key 

performance measure in MANETs which is throughput. 

Figure 3 shows the effect of the parameters α, γ and ε on the 

throughput for a network of 25 stations with a queue size equal 

to 10, as shown in Figure 3(a), where ε is set to 0.3, α = 0.8, 

and γ = 0.5 gives the best throughput (611.48Mbps), while a 

value α = 0.2 degrades the throughput (581.99Mbps) and a 

value α = 0.5 shows a small change in throughput 

(608.07Mbps). We also see that a value of γ = 02 gives an 

almost stable throughput (610.55, 608.07, 608.07 Mbps) 

whatever the value of α. Figure 3(b) shows that with an 

average value of α (α = 0.5) and ε (ε = 0.3), it suffices to set γ 

to its maximum value (γ = 0.9) to have the best throughput 

(610.78Mbps). However, for α = 0.2 and ε = 0.8, it suffices to 

set γ to its small value (γ = 0.2) to enhance the throughput 

(613.31Mbps) as shown in Figure 3(c). 
 

 

 

 
 

 

 

(a)                                                        (b)                                                                 (c) 

 

Figure 3. Throughput comparison in network of 25 stations and queue size =10 with (a) ε =0.3 (b) ε = 0.6 and (c) ε =0.8 

 

(a)                                                                (b)                                                                      (c) 
 

Figure 4. Throughput comparison in network of 25 stations and queue size =40 with (a) ε =0.3 (b) ε = 0.6 and (c) ε =0.8 

 

Figure 4(a) shows that an average value of α = 0.5, a large 

value of γ = 0.9, and a small value of ε = 0.3 are effective to 

give the best throughput (1820.94Mbps). Figure 4(c) shows 

that where the queue size is equal to 40, with a large value of 

ε = 0.8, small of γ = 0.2 and small or large values of α (α = 0.2 

or α = 0.8) are effective to have a better throughput 

(1868.74Mbps).  

According to the different and multiple simulations 

performed, we concluded that a combination of a large value 

of γ, a medium value of α, and a small value of ε cans be 

significant for different networks with different queue sizes. 

 

5.3 Simulation results 

 

The following parameters are used to measure the 

performance of the proposal. 

 

5.3.1 Average throughput 

The throughput is the ratio of the total amount of data that 

reaches the receiver from the source and the time taken by the 
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receiver to receive the last packet [20]. It is represented in 

packets per second or bits per second. 

Figure 5 gives the throughput of the MISQ algorithm, in (a) 

the case where the queue size is equal to 10, (b) the case where 

the queue size is equal to 20 and (c) the case where the queue 

size is equal to 40. Compared with the other two algorithms, 

our proposal gives the best throughput especially from 25 

stations regardless of the queue size; this optimization is due 

to the cumulative rewards learned by the ad hoc network, 

which is not the case where the number of stations is 5 or 10. 

The MISQ algorithm achieves better throughput with 20 

stations regardless of the queue size.  

Indeed, the throughput increases proportionally to the traffic 

in the network. Beyond 20 stations, the throughput decreases 

as the number of requests (contended nodes) for access to the 

channel increases. In terms of throughput, MISQ exceeds BEB 

and QL_BEB on average by 4.5% and 25.4% respectively. 

QL_BEB is sensitive to high traffic compared to BEB and 

MISQ which remains the best. 

 
5.3.2 Average MAC delay access 

The average channel access delay for a packet includes the 

time from the packet being placed at the queue head, until its 

successful transmission or rejection after the retransmission 

limit is reached. This time includes the time elapsed in 

collisions as well as the time spent in the backoff process [6]. 

Figure 6 shows that the proposed MISQ algorithm gives the 

least delay or equal to the delay given by BEB, in the case 

where the queue size equal to 10 (Figure 6(a)) or equal to 20 

(Figure 6(b)), on the other hand in Figure 6(c), our algorithm 

gives the least delay from 45 stations. The channel access 

delay increases with the density of the network, the more the 

number of transmissions increases the more collisions there 

will be, which delays the access to the channel, due to 

increasing CW. MISQ algorithm gives, on average, the least 

delay compared to BEB and QL_BEB of 2.64% and 11.17% 

respectively. For example, with a queue size equal to 20 MISQ 

algorithm exceeds BEB by 8% and QL_BEB by 22%. It is 

essential to note that our algorithm MISQ and the simulated 

one QL_BEB have channel access delays due to the additional 

learning operations about the environment. 

 

5.3.3 Packet Delivery Ration (PDR) 

The PDR represents the number of data packets received by 

the destination stations per the total number of data packets 

transmitted by the source station [7]. The PDR is calculated as 

follows: 

 

𝑃𝐷𝑅 =  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑖𝑒𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 (17) 

 

Figure 7 shows the rate of successfully delivered packets. 

Figure 7(a), where the queue size is equal to 10, shows that 

MISQ algorithm gives the best PDR that does not drop below 

91%, compared to the BEB and QL_BEB having the lowest 

rate of 66% and 90% respectively. In addition, in the case of a 

queue size of 20, as shown in Figure 7(b), an obvious visual 

optimization of the proposed MISQ algorithm, for example, in 

the case of 50 stations, the rate given by MISQ exceeds by 

10% and 20% those given by the BEB and QL_BEB 

algorithms respectively. In the case where the queue is equal 

to 50 (Figure 7(c)), the proposal gives the best rate from 30 

stations. On average, the proposal provides the best successful 

transmission rate equal to 90.39%, regardless of the queue 

size, thus exceeding BEB and QL_BEB by 5.42% and 12.65% 

respectively, as shown in Figure 7(d). 

 
       (a)           (b)                    (c) 

 

Figure 5. Network Average throughput for (a): size queue =10, (b) size queue =20, (c) size queue =40

   
      (a)                    (b)                    (c) 

 

Figure 6. Mac Access Delay for (a): size queue =10, (b) size queue =20, (c) size queue =40 
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(a)                                            (b)                                                          (c) 

 
(d) 

 

Figure 7. PDR for (a) size queue =10, (b) size queue =20, (c) size queue =40, (d) average successful transmission 

 

 
(a)                                                                (b) 

 

Figure 8. Jain fairness index, (a) size queue=10, (b) size queue= 40 

 

5.3.4 Fairness index 

The fairness index between contended stations in Ad Hoc 

networks is an essential measure of the system. Several 

measures of equity indices have been proposed in the technical 

literature, the well-known equation is that of the Jain index 

[21]. An equity index is a real number that measures the degree 

to which the resource is fairly or unfairly shared between 

contended stations. 

The fairness index is calculated as follows: 

 

𝐹𝐼 =  
(∑ 𝑥𝑖

𝑁
𝑖=1 )2

𝑁 × ∑ 𝑥𝑖
2𝑁

𝑖=1

 (18) 

 

where, xi is the access portion of station i among N contended 

stations. 

The fairness index of the three algorithms is almost identical 

in the case where the queue size is equal to 10 (Figure 8(a)), 

with an almost stable index varying between 70% to 78% for 

MISQ, the index of BEB algorithm varies between 69% to 

78%, while it varies between 66% and 78% for the QL_BEB 

algorithm. On the other hand, in the case where the size queue 

is equal to 40 (Figure 8(b)), BEB algorithm gives the best 

average index equal to 70% compared to those of MISQ and 

QL_BEB algorithms which are 63% and 52% respectively. 

This dropping in the index of MISQ is due to the favor given 

to the stations which have a high occupancy rate regardless of 

the situation (success or collision). 

 

 

6. CONCLUSION 

 

In this paper, we present an algorithm that exploits the deep 

reinforcement learning principles to learn the correct CW 

parameters for the 802.11 standard to optimize the contention 

window. Motivated by the characteristics of deep 

reinforcement learning (DRL) in wireless networks, we use 

one of its techniques: Q-learning, as a channel resource 

allocation paradigm in the MAC layer. The proposal, named 

MISQ, focuses on optimizing the contention window CW by 

considering the occupancy rate of the packets queue to be 

transmitted and the collisions made by each station after each 

successful or collision transmission. These are ensured by 

preserving other network parameters such as throughput and 

channel access time. The results of the simulations show that 

the proposed algorithm based on Q-learning optimizes BEB 
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performance in terms of PDR, throughput, and channel access 

time, especially when the queue size is less than or equal to 20 

regardless the number of stations (10 to 50).  

The formulation of a mathematical model for the proposed 

MISQ mechanism will be the objective of future work. 
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