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ABSTRACT. This paper aims to improve the speed and complexity of Smith-Waterman (SW) 

algorithm. For this purpose, the SW algorithm was improved by reducing the complexity and 

task load of the computation of the scoring matrix without sacrificing the alignment accuracy. 

Then, the optimized algorithm, denoted as the Opti-SW, was verified through experiment. The 

results show that the Opti-SW boasts low time complexity, fast computing speed and light 

computing load. The research findings shed new light on the database search for gene 

sequences. 

RÉSUMÉ. Cet article vise à améliorer la vitesse et la complexité de l'algorithme Smith-

Waterman (SW). À cet effet, l'algorithme SW a été amélioré en réduisant la complexité et la 

charge de travail du calcul de la matrice de scoring sans sacrifier la précision de l'alignement. 

Ensuite, l'algorithme optimisé, noté Opti-SW, a été vérifié par des expérimentations. Les 

résultats montrent que l’Opti-SW se caractérise par une faible complexité temporelle, une 

vitesse de calcul rapide et une charge de calcul légère. Les résultats de la recherche ont jeté 

un nouvel éclairage sur la recherche dans la base de données des séquences de gènes.  
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1. Introduction 

Sequence alignment, an important operation in bioinformatics, has been widely 

used in such field as disease diagnosis, drug engineering and biomaterial engineering 

(Chen, 2016). One of the most popular methods for sequence alignment is Smith-

Waterman (SW) algorithm. This pairwise sequence alignment algorithm is known for 

its high accuracy (Zhang, 2015). However, the SW algorithm is not suitable for long 

sequence alignment and other big data scenarios, due to its high spatiotemporal 

complexity. 

Many heuristic algorithms have been developed to achieve long sequence 

alignment, including Fasta algorithm, Blast algorithm and Burrows-Wheeler 

Transform (BWT)-SW (Gao et al., 2014). Nonetheless, none of these heuristic 

approaches has sufficient alignment accuracy to overtake the dominance of the SW 

algorithm. As a result, the SW algorithm has been optimized with the aid of various 

techniques, such as graphic processing unit (GPU) (Wei et al., 2009; Jain and Kumar, 

2014; Liu et al., 2012; Cao et al., 2015; Liu et al., 2013), message passing interface 

(MPI) (Balaji et al., 2008; Xue, 2015), cluster (Feng and Gao, 2016; Feng, 2015; Li, 

2011), single instruction multiple data (SIMD) (Xu et al., 2017; Daily, 2016; Zhao et 

al., 2013; Farrar, 2007) and field programmable gate array (FPGA) (Benkrid et al., 

2009; Wang et al., 2015). With heavy computing load and slow computing speed, 

these optimized SW algorithms still cannot satisfy the needs of largescale gene 

sequence alignment. 

To overcome these difficulties, this paper optimizes the SW algorithm by reducing 

the complexity and task load of the computation of the scoring matrix without 

sacrificing the alignment accuracy. Then, the optimized algorithm, denoted as the 

Opti-SW, was verified through experiment. The results show that the Opti-SW boasts 

low time complexity, fast computing speed and light computing load.  

The remainder of this paper is organized as follows: Sections 2 introduces the SW 

algorithm; Section 3 describes the philosophy of improving the SW algorithm into the 

Opti-SW; Section 4 verifies the accuracy of the Opti-SW through experiment and 

compares the performance between the Opti-SW and the SW algorithm; Section 5 

wraps up this paper with meaningful conclusions. 

2. SW algorithm 

The SW algorithm is a dynamic programming strategy to search for the local 

optimal alignment between two gene/protein sequences. Inspired by the Needleman-

Wunsch algorithm, the SW algorithm mainly supports double sequence alignment in 

the local range. This is the most accurate method for double and multiple sequence 

alignments. However, the high accuracy is achieved at the sake of excessively high 

spatiotemporal complexity.  

Let s and t be two gene sequences (Figure 1), whose lengths are m and n, 

respectively. Then, the i-th character of sequence s can be denoted as si (1≤i≤m), and 
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the j-th character of sequence t can be denoted as tj (1≤j≤n). Let D be the score matrix 

(Figure 2) of the two sequences, and dij be the element in the i-th row and j-th column 

of the score matrix. 

 

Figure 1. Gene sequences a and t 

 

Figure 2. Score matrix D 

The workflow of SW algorithm can be described below: 

Step 1: Initialization 

Assign zero to the element in the first row and first column of score matrix D, that 

is, d0j=0(1≤j≤n) and di0=0(1≤i≤m) (Figure 3). 

 

Figure 3. Initialization of the elements in the first row and first column 
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Step 2: Calculation of score matrix D 

The score function of score matrix D can be expressed as: 

{

p(a,a)=1

p(a,b)=0, (a≠b)

p(a,-)=p(-,b)=-1

                                              (1) 

where p(a,a)=1  indicates that the score is 1 when the two characters match; 

p(a,b)=0, (a≠b) indicates that the score is 0 when the two characters do not match; 

p(a,-)=p(b,-)=-1 indicates that the score is -1 when one of the two characters is vacant. 

The element dij in score matrix D can be calculated as: 

dij = max

{
 

 
di-1,j+p(si,-)

di,j-1+p(-,tj)

di-1,j-1+p(si,tj)

0

(1≤i≤m,1≤j≤n)                          (2) 

According to Equations 1 and 2, each element dij  of the score matrix can be 

calculated, and used to comprise the score matrix. 

Step 3: Backtracking 

Find the largest element dij in score matrix D, determine whether dij is calculated 

from di,j-1, di-1,j or di-1,j-1 elements, and write down the result. Repeat this process until 

reaching an element whose value is zero. In this way, a backtracking path can be 

obtained (Figure 4). 

 

Figure 4. Backtracking path 

Step 4: Solving local optimal alignment 

Starting with the largest element dij  of scoring matrix D, search for the local 

optimal alignment through reverse backtracking according to the path generated in 
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Step 3 until reaching an element whose value is zero. During the backtracking process, 

if dij  comes from di-1,j , si should be compared with “-”; if dij  comes from di,j-1 , “-” 

should be compared with tj; if dijcomes from di-1,j-1, si should be compared with tj. 

3. Improvement of the SW algorithm 

Recent years has seen some improvements to the SW algorithm. For instance, Step 

2 of the SW algorithm has been modified as: determine the value of element di-1,j-1 in 

the score matrix according to the upper element di-1,j, front element di,j-1 and diagonal 

element di-1,j-1 of the matrix; Step 3 has been revised into: starting with the largest 

element dij of matrix D, determine whether dij is calculated from di,j-1, di-1,j or di-1,j-1 

elements, and write down the result; repeat this process until reaching an element 

whose value is zero. After these improvements, the SW algorithm can record the 

source of element dij when its value is calculated in Step 2, eliminating the need to 

compute its value in source tracking of Step 3. Thus, the improved algorithm features 

much less time complexity than the original one. This train of thought is followed in 

this paper to improve the SW algorithm. 

3.1. Philosophy of algorithm improvement 

3.1.1. Reducing computing load 

(1) According to equations 1 and 2, the elements d00, d10 and d01 of the score 

matrix and the score functions p(s1,-), p(−, t1) and p(s1, t1) can be obtained as: 

{
 
 

 
 

d00=0

d10=0

d01=0

p(s1,-)=-1

p(-,t1)=-1

p(s1,t1)=0 or 1

 

The above conclusion can be used to calculate element d11 in the score matrix: 

d11 = max{

d00+p(s1,t1)

d10+p(s1,-)

d01+p(-,t1)

0

=d00+p(s1,t1) =p(s1,t1) 

It can be inferred from equation 𝑑11=d
00

+p(s1,t1) that element 𝑑11 of the score 

matrix is calculated from d00. In other words, 𝑑11 is derived from d00. According to 

equation d11=p(s1,t1), if the first elements of the two sequences do not match, then 

p(s1,t1)=0  and d11=p(s1,t1)=0 ; otherwise, p(s1,t1)=1 and d11=p(s1,t1)=1 , which 

correspond to the maximum value of 𝑑11. For simplicity, d11is considered as equal to 

or smaller than 1 here. 
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(2) According to equations 1 and 2 and the above conclusion that d11≤1, the 

elements d02 and d01 of the score matrix and the score functions p(𝑠1, −), p(−, 𝑡2) 
and p(s1,t2) can be obtained as: 

{
 
 

 
 

d11≤1

d02=0

d01=0

p(s1,-)=-1

p(-,t2)=-1

p(s1,t2)=0 or 1

 

Then, element d12 in the score matrix can be calculated as: 

d12 = max

{
 

 
d02+p(s1,-)

d11+p(-,t
2
)

d01+p(s1,t2)
0

=d01+p(s1,t2)=p(s1,t2) 

It can be inferred from equation 𝑑12=d
01

+p(s1,t2) that element 𝑑12 of the score 

matrix is calculated from d01. In other words, 𝑑12 is derived from d01. If the proper 

elements of the two sequences do not match, then p(s1,t2)=0  and d12=p(s1,t2)=0 ; 

otherwise, p(s1,t2)=1 and d12=p(s1,t2)=1, which correspond to the maximum value of 

𝑑12. For simplicity, d12is considered as equal to or smaller than 1 here. 

Similarly, it can be proved that all elements d1j(1<j≤n) in the second row of the 

score matrix are calculated from d0,j-1, that is, 𝑑13 is derived from d02, 𝑑14 is derived 

from d03, …, d1j is derived from d0,j-1(1 < j ≤ n). If the proper elements of the two 

sequences do not match, then d13 = 0, d14 = 0, …, d1j=0(1<j≤n); otherwise, d13 = 1, 

d14 = 1, …, d1j=1(1<j≤n). To sum up, for all elements d1j(1<j≤n) in the second row 

of the score matrix, if p(s1,tj)=1 , then d1j=1(1<j≤n)  and if p(s1,tj)=0 , then 

d1j=0(1<j≤n): 

d1j= {
1, p(s1,tj)=1

0, p(s1,tj)=0
      (1<j≤n)                                 (3) 

(3) According to equations 1 and 2 and the above conclusion that d11≤1, the 

elements d20 and d10 of the score matrix and the score functions p(s2,-), p(−, t1) and 

p(s2,𝑡1) can be obtained as: 

{
 
 

 
 

d11≤1

d20=0

d10=0

p(s2,-)=1

p(-,t1)=1

p(s2,𝑡1)=0 or 1
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Then, element d21 in the score matrix can be calculated as: 

d21= max{

d11+p(s2,-)

d20+p(-,t1)

d10+p(s2,t1)

0

=d10+p(s2,t1)=p(s2,t1) 

It can be inferred from equation  d21=d10+p(s2,t1) that element d21 of the score 

matrix is calculated from d10. In other words, d21 is derived from d10. If the proper 

elements of the two sequences do not match, then p(s2,t1)=0  and d21=p(s2,t1)=0 ; 

otherwise, p(s2,t1)=1 and d21=p(s2,t1)=1, which correspond to the maximum value of 

𝑑21. For simplicity, d21is considered as equal to or smaller than 1 here. 

Similarly, it can be proved that all elements d1j(1<j≤m) in the second column of 

the score matrix are calculated from di-1,0 , that is,  d31  is derived from d20 , d41  is 

derived from d30, …, di1 is derived from di-1,0(1<i≤m). If the proper elements of the 

two sequences do not match, then d31 = 0, d41 = 0, …, di1=1(1<i≤m); otherwise, 

d31 = 1, d41 = 1, …, di1= 1(1<i≤m). To sum up, for all elements di1(1<i≤m) in the 

second column of the score matrix, if p(si,t1)=1, then di1= 1(1<i≤m) and if p(si,t1)=0, 

then di1=0(1<i≤m): 

di1= {
1, p(si,t1)=1

0, p(si,t1)=0
   (1<i≤m)                                  (4) 

To sum up, all elements d1j(1<j≤n) of the second row in the score matrix are 

derived from d0,j-1(1<j≤n), all elements di1(1<i≤m) of the second column in the score 

matrix are derived from di-1,0(1<i≤m)  and d11  is derived from d00 . If the proper 

elements of the two sequences match, it means p(si,tj)= 1  and d11=1 , and then 

d1j=1(1<j≤n)  and di1=1(1<i≤m) ; otherwise, it means p(si,tj)= 0  and d11=0 , then 

d1j=0(1<j≤n) and di1= 0(1<i≤m) (Figure 5). 

 

Figure 5. Source of each element  
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3.1.2. Simplifying computing complexity 

According to equations 1 and2, the following conclusion can be drawn: 

{
 
 

 
 p(si,-)=-1

p(-,tj)=-1

di-1,j-1 ≥ 0

p(𝑠𝑖,tj)≤1

 

On this basis, the element dij in the score matrix can be calculated as: 

dij = 𝑚𝑎𝑥

{
 

 
di-1,j + p(si,-) 

di,j-1 + p(-,tj)

di-1,j-1 + p(si,t𝑗)

0

= 𝑚𝑎𝑥 {

di-1,j − 1

di,j-1 − 1

di-1,j-1 + p(si,t𝑗)

 Considering num = max(di-1,j,  di,j-1) , the calculation formula of element dij 

above can be simplified as dij=max {
num-1

di-1,j-1+ p(si,tj)
. 

Since p(si,tj)≤1 , if num − 2 ≥ di-1,j-1 , we have num − 1 ≥

di-1,j-1+1≥di-1,j-1+p(si,tj) and dij=max {
num-1

di-1,j-1+ p(si,tj)
=num-1 (num-2≥di-1,j-1). 

If num − 2 < di-1,j-1, then num − 1 < di-1,j-1+1. Since num is an integer, then the 

maximum value of num − 1 is di-1,j-1, that is, num − 1 ≤ di-1,j-1. 

Whereas p(si,tj)=0 or 1 , then di-1,j-1 ≤ di-1,j-1 + p(si,tj)  and num − 1 ≤

di-1,j-1≤ di-1,j-1+p(si,tj). Therefore, if num − 2 < di-1,j-1 + p(si,tj), we have: 

dij = max {
num-1

di-1,j-1+p(si,tj)
=di-1,j-1+p(si,tj) (num-2<di-1,j-1) 

Thus, the following equation is valid: 

dij = {
num-1, (num-2≥di-1,j-1) (num = max(di-1,j, di,j-1))

di-1,j-1+ p(si,tj), (num-2<di-1,j-1)
                (5) 

3.2. Design of Opti-SW 

Following the above philosophy of improvement, this paper proposes the Opti-

SW algorithm that reduces the computing load of the score matrix through 

simultaneous initialization of the elements in the first row and first column and of 

those in the second row and second column. In this algorithm, the computing 

complexity is further reduced by optimizing the calculation formula of the score 

matrix. The workflow of the Opti-SW is illustrated in Figure 6 below. 
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Figure 6. Workflow of the Opti-SW 

The specific process of the proposed Opti-SW is explained as follows: 

Step 1: initialization of the elements in the first row and those in the first column 

Initialize the elements in the first row of the score matrix d0j= 0 (1≤j≤n), and those 

in the first column of the score matrix di0= 0 (1≤i≤m). 

Step 2: initialization of elements in the second row and the elements in the second 

column 

Initialize the elements in the second row and second column in score matrix 

according to equations 3 and 4, and record the source of each element. Specifically, 

derive the elements in the second row from d0,j-1 (1<j≤n), and those in the second 

column from di-1,0(1<i≤m). If an element comes from di-1,j , di,j-1 or di-1,j-1, it should 

be denoted as 1, 2 or 3, respectively. 

Step 3: Calculate score matrix 

Calculate score matrix D according to equation 3-3, and record the source of each 

element. If an element comes from di-1,j , di,j-1 or di-1,j-1, it should be denoted as 1, 2 or 
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3, respectively. 

Step 4: Solving local optimal alignment 

Starting with the largest element dij  of scoring matrix D, search for the local 

optimal alignment through reverse backtracking according to the path generated in 

Step 3 until reaching an element whose value is zero. During the backtracking process, 

if dij  comes from di-1,j , si should be compared with “-”; if dij  comes from di,j-1 , “-” 

should be compared with tj; if dijcomes from di-1,j-1, si should be compared with tj. 

4. Experiment and results analysis 

4.1. Accuracy test 

The accuracy of the Opti-SW was tested through a contrastive experiment against 

the SW algorithm on a single-node platform. Table 1 lists the results of the two 

algorithms under different query sequences and database sequences. Note that 

comparison ratio =(comparison score/query sequence length) * 100%. 

The input data of the Opti-SW are as follows: 

The query sequence (queryFile) length is 2, 4, 8, 16, 32 and 64; the database 

sequence (dbFile) length is 64, 32, 16, 8, 4 and 2; the number of fragments (splitNum) 

is 32; The number of tasks (taskNum) is 1; the number of outputs (topK) is 1; the 

comparison rate of identity is 0.0 (i.e. any sequence of comparison ratios may be 

outputted).  

The input data of the SW algorithm are as follows: 

The query sequence (queryFile) length is 2, 4, 8, 16, 32 and 64; the database 

sequence (dbFile) length is 64, 32, 16, 8, 4 and 2; the number of fragments (splitNum) 

is 32; The number of tasks (taskNum) is 1. 

Table 1. Accuracy test results 

Query 

sequence 

length 

Target 

sequence 

length 

Comparison ratio Is the optimal local 

contrast of the Sw and 

Opti-SW output 

consistent? 

Opti-SW 

Accuracy SW 
Opti-

SW 

2 64 100% 100% √ 100% 

4 32 75% 75% √ 100% 

8 16 50% 50% √ 100% 

16 8 37.5% 37.5% √ 100% 

32 4 18.75% 18.75% √ 100% 

64 2 9.375% 9.375% √ 100% 



Opti-SW: An improved gene sequence alignment algorithm     83 

As shown in Table 1, the comparison ratio and the local optimal alignment of the 

Opti-SW algorithm and the SW algorithm are both consistent with the optimal local 

alignment under different sequences and comparison ratios. Thanks to the 

improvements, the Opti-SW outperformed the SW algorithm in the accuracy of 

sequence alignment. 

4.2. Performance comparison 

Next, another experiment was conducted in the single-node environment to further 

compare the performance between the Opti-SW and the SW algorithm. In the 

experiment, the query sequence has 48 characters, and the database sequence files are 

10MB, 20MB, 40MB, 80MB and 160MB, respectively. The experimental results are 

presented in Figure 7, where T is the mean execution time of each algorithm measured 

in three tests, and S is the size of the database sequence file. 

It can be seen from Figure 7 that the Opti-SW consumed less time than the SW at 

the database sizes of 10MB~20MB, 20MB~40MB and 40MB~80MB, and the edge 

was increasingly obvious with the growth in data size. 

As the data size increased, the execution time of each algorithm grew slowly rather 

than exponentially. When the data size fell between 10MB and 80MB, the execution 

time of the Opti-SW increased at a slower rate than that of the SW algorithm, and the 

rate difference widened with the growth in data size. When the data size fell between 

80MB and 160MB, the execution time of each algorithm grew at an increasing rate, 

but the difference between the two algorithms remained constant. 

 

Figure 7. Comparison between the Opti-SW and the SW algorithm 

In Figure 7, the SW algorithm processed 160MB data in an execution time nearly 

2.8 times that needed to process 80MB data, while the Opti-SW processed 160MB 

data in an execution time almost 3.4 times that needed to process 80MB data. These 

results show that the Opti-SW still have some problems in handling large-scale gene 

sequence alignment. 
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5. Conclusions 

As a strategy pairwise sequence alignment, the SW algorithm has been widely 

used in database search thanks to its high accuracy. This paper improves the SW 

algorithm into the Opti-SW by reducing the computing complexity. The performance 

of the proposed algorithm was contrasted with the SW algorithm through a number of 

experiments. The results show that the Opti-SW realizes faster computation than the 

SW algorithm without sacrificing the alignment accuracy. 
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