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ABSTRACT. The availability of consistency (C) and availability (A)-based micro-service systems 

is low when both consistency and partition tolerance (P) are satisfied. Considering the low 

resource occupation and fast supply of containers, this paper puts forward an approach to 

optimize the availability of CP micro-service systems based on the elastic scheduling of 

container resources, and sets up a prediction model of response time using the cascade queuing 

system. Then, the author determined whether to relax, restrict or maintain the container 

resource in light of the conformity of the response time. Finally, the proposed optimization 

approach was verified through experiments. The results show that a 2~3s-long adaptation 

period is needed for the approach under abrupt load changes, and the response time can be 

accurately predicted to ensure the system availability in the other cases. 

RÉSUMÉ. La disponibilité des systèmes de micro-service basés sur la cohérence (C) et la 

disponibilité (A) est faible lorsque la cohérence et la tolérance de partition (P) sont satisfaites. 

Compte tenu de la faible occupation des ressources et de l'approvisionnement rapide de 

conteneurs, cet article propose une approche visant à optimiser la disponibilité des systèmes 

de micro-service CP basés sur la planification élastique des ressources de conteneur et établit 

un modèle de prévision du temps de réponse à l'aide du système de mise en file d'attente en 

cascade. Ensuite, l’auteur a déterminé s’il fallait assouplir, restreindre ou maintenir la 

ressource du conteneur compte tenu de la conformité du temps de réponse. Enfin, l'approche 

d'optimisation proposée a été vérifiée par des expériences. Les résultats montrent qu’une 

période d’adaptation de 2 à 3 secondes est nécessaire pour l’approche lors de changements 

brusques de la charge et que le temps de réponse peut être prédit avec précision pour garantir 

la disponibilité du système dans les autres cas.  
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1. Introduction 

Micro-service system has a typical distributed structure, whose consistency (C), 

availability (A), and partition tolerance (P) cannot be satisfied simultaneously (Thönes, 

2015; Newman, 2015). In general, the availability and partition tolerance are 

prioritized in commerce platforms and similar service systems requiring high 

availability (Souri et al., 2014), while consistency and partition tolerance are 

highlighted in military field and other service systems requiring high data consistency 

(Wei et al., 2017). Thus, the former systems are referred to as the AP systems while 

the latter as the CP systems. In the CP systems, the availability should be maximized 

without sacrificing the consistency.  

Concerning the trade-off between availability and consistency, the BASE 

(Basically Available, Soft state and Eventually consistent) theory holds that the two 

properties can be weighted according to demand rather than have an either-or 

relationship (Jiang et al., 2012). Inspired by the BASE theory, the quorum algorithm 

only needs a small number of read-write instances to achieve strong consistency, 

thereby improving the system availability (Raja and Prabhu, 2017). In addition, some 

scholars have enhanced the availability of containers deployed with micro-services by 

elastic provision of resources, in light of the low resource occupation and fast supply 

of the containers (Hao et al., 2017). For instance, Cherkasova established a loss model 

of session and throughput to estimate resource demand and realize precise scheduling 

(Cherkasova and Phaal, 2002). Based on performance isolation, Karlsson analysed the 

resource requirements of various applications, and adaptively supplied resources for 

containers (Karlsson et al., 2009). 

The above studies show that elastic resource scheduling can optimize the 

availability of micro-service systems. However, there is no report on how to improve 

the system availability while ensuring strong consistency. To make up for this gap, 

this paper proposes a method to effectively enhance the availability of micro-service 

systems without scarifying consistency. 

The remainder of this paper is organized as follows: Section 2 describes the 

general framework of our approach; Section 3 details the prediction model of response 

time and the scheduling algorithm of container resources; Section 4 verifies the 

proposed approach through experiment; Section 5 wraps up this paper with 

conclusions. 

2. Approach overview 

If service  𝑘  has 𝑄𝑁(𝑘)  instances, the traditional method to maintain strong 

consistency requires that writing operations must be successful for all the 𝑄𝑁(𝑘) 

instances, such that any instance can be read to get consistent and up-to-date data. The 

quorum algorithm allows the writing operations to be completed only 

𝑄𝑊(𝑘) (𝑄𝑊(𝑘) ≤ 𝑄𝑁(𝑘)) times, at the cost of reading data from 𝑄𝑅(𝑘) (𝑄𝑅(𝑘) ≤
𝑄𝑁(𝑘)) instances. Thus, the strong data consistency can be guaranteed as long as 

𝑄𝑊(𝑘) + 𝑄𝑅(𝑘) > 𝑄𝑁(𝑘) . This method is equivalent to transferring part of the 
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writing operation overhead to the reading operation. Thus, the values of 𝑄𝑊(𝑘) and 

𝑄𝑅(𝑘) are related to the system efficiency in reading and writing operations. 

In existing systems, the values of 𝑄𝑊(𝑘) and 𝑄𝑅(𝑘) are typically configured in 

advance and not changed unless an instance fails or new instances need to be added. 

For example, Dynamo uses the “322” mode, in which  𝑄𝑊(𝑘) = 𝑄𝑅(𝑘) = 2 

if 𝑄𝑁(𝑘) = 3, and adopts the balance strategy under uncertain reading and writing 

frequencies (Decandia et al., 2007). In actual systems, however, one operation may 

be more intensive than the other, making it hard to improve system performance 

through the “322” mode. 

In addition, it is common to deploy multiple containers simultaneously on the 

same physical machine. Despite being isolated from each other, the containers use the 

same CPU and memory at the bottom level. The resulting unfair resource usage and 

resource competition may make services unavailable. 

To solve these two problems, our approach is implemented in the following steps 

(Figure 1). 

(1) Data collection: Collect such data as the number of service instances, CPU 

usage and memory usage. 

(2) Model calculation: Import the collected data into the prediction model and 

initialize the model. 

(3) Forwarding rule adjustment: Adjust the values of 𝑄𝑊(𝑘) and 𝑄𝑅(k) according 

to the current frequencies of reading and writing operations. 

(4) Time prediction: Predict the response time based on the model, and judge by 

the response time whether container resources need elastic resource scheduling 

(5) Resource scheduling: Execute the scheduling instruction and return to Step (1), 

forming a close loop approach. 
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Figure 1. General framework of our approach 
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In summary, our approach for optimizing system availability combines the 

forwarding rule adjustment and container resource scheduling. The forwarding rule 

adjustment, known for its high speed, low cost and optimization degree, enables the 

system the respond the requests with fewer instances while ensuring strong 

consistency. The container resource scheduling is featured by slow speed, high cost 

and optimization degree. The integrated approach both ensures the availability of the 

system, and reduces the response cost without significantly reducing the availability. 

3. System availability optimization 

3.1. Request processing model 

The cascade queuing system was adopted to build the request processing model 

for the following reasons: 

(1) In the micro-service structure, the micro-service nodes are highly decoupled 

and the demand of each node is satisfied by multiple independent service centres at 

randomized service time. 

(2) The micro-service nodes communicate with each other through messages to 

satisfy the demand of requests being processed in multiple service centres. 

(3) When a request is processed in the service centre, it can choose to jump to the 

next node or leave the system. 

For a service with multiple instances, the request will jump to the next node or 

respond to the user only if all the processing results of 𝑄(𝑘), (𝑄(𝑘) ≤ 𝑄𝑁(𝑘)) nodes 

are returned. The 𝑄(𝑘)  is an adjustable variable: 𝑄(𝑘) = 𝑄𝑊(𝑘)  for writing 

operations and 𝑄(𝑘) = 𝑄𝑅(𝑘) for reading operations. 

Let 𝑓 be the user request stream and ki be the 𝑖–th service visited by the request 

(1 ≤ 𝑖 ≤ 𝑚). Then, the relationship between 𝑓 , 𝑘𝑖 and 𝑄(𝑘𝑖) can be described as: 

When a request 𝑓 arrives at 𝑘𝑖, 𝑄(𝑘𝑖) instances should be processed: either jump to 

the service ki+1 or leave the system. 

The response time to the request can be expressed as: 

𝑇𝑟 = 𝑑 + ∑ 𝑇𝑝(𝑘𝑖)
𝑚
𝑖=1                                                (1) 

where 𝑇𝑟 is the response time of the request; d is the network transmission time of the 

request; 𝑇𝑝(𝑘𝑖) is the total processing time of 𝑘𝑖; ∑ 𝑇𝑝(𝑘𝑖)
𝑚
𝑖=1  is the total processing 

time of all services. 

Assuming that the request processing times of micro-service nodes are 

independent of each other and exponentially distributed, the density function of the 

request processing times can be expressed as: 

𝑓(𝑥) = {

1

𝜃(𝑘𝑖)[1−𝜇(𝑘𝑖)]
𝑒−𝑥 𝜃(𝑘𝑖)[1−𝜇(𝑘𝑖)]⁄    , 𝑥 ≥ 0

                0               ,   𝑥 < 0
                      (2) 
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where 1/{𝜃(𝑘𝑖)[1 − 𝜇(𝑘𝑖)]} is the mean processing time of multiple instances of 𝑘𝑖; 

𝜃(𝑘𝑖) is the parameter of exponential distribution with a resource utilization rate of 0; 

𝜇(𝑘𝑖) is the preferred resource utilization rate of ki. The preferred resource is defined 

as the resource with the highest utilization rate in the computer. 

Let 𝜃[𝜇(𝑘𝑖)] = 𝜃(𝑘𝑖)[1 − 𝜇(𝑘𝑖)]. Then, the distribution function can be written 

as: 

𝐹(𝑥) = {1 − 𝑒−𝑥 𝜃[𝜇(𝑘𝑖)]⁄         ,    𝑥 ≥ 0
    0                       ,    𝑥 < 0

                              (3) 

Thus, the total processing time of 𝑘𝑖 is: 

𝑇𝑝(𝑘𝑖) = 𝐸[𝑋𝑄(𝑘𝑖)]                                           (4) 

where 𝑋𝑄(𝑘𝑖) is the 𝑄(𝑘𝑖) –th smallest node among the 𝑄𝑁(𝑘𝑖) nodes. Thus, we have: 

𝐹𝑄(𝑘𝑖)(𝑥) = 𝑃(𝑋1 ≤ 𝑥, 𝑋2 ≤ 𝑥, … , 𝑋𝑄(𝑘𝑖) ≤ 𝑥, 𝑋𝑄(𝑘𝑖)+1 ≥ 𝑥, … , 𝑋𝑄𝑁(𝑘𝑖) ≥

𝑥)=[𝐹(𝑥)]𝑄(𝑘𝑖)[1 − 𝐹(𝑥)]𝑄𝑁(𝑘𝑖)−𝑄(𝑘𝑖)                       (5) 

According to equation (5), the mathematical expectation 𝐸[𝑋𝑄(𝑘𝑖)]  can be 

obtained on Matlab before deriving the mean processing time 𝑇𝑝(𝑘𝑖). When 𝑄𝑁(𝑘𝑖) 

is fixed, the size of 𝐸[𝑋𝑄(𝑘𝑖)] depends on 𝜇(𝑘𝑖), 𝜃(𝑘𝑖) and 𝑄(𝑘𝑖). 

Combining equations (2) and (5), the response can be obtained as: 

Tr = d + ∑ E[XQ(ki)] m
i=1                                            (6) 

Note that, during the calculation of  Tr , 𝜇(𝑘𝑖)  and m  can be obtained by 

monitoring, Q(ki)  can be determined by message forwarding rules, while d  and 

𝑄(𝑘𝑖), which are difficult to monitor, need to be computed according to existing 

parameters when the system is running. 

3.2. Prediction of response time based on Kalman filtering 

Kalman filtering, originally designed to estimate the optimal state of linear 

systems, has been modified into extended Kalman filtering, traceless Kalman filtering 

and many other filtering algorithms with wide application and high accuracy in the 

past decades (Chen et al., 2017; Degue and Ny, 2018). Here, Kalman filtering is 

employed to predict the response time of request. 

Based on the response time of the previous sampling period and the measured 

parameter values in the current period, the state equation and the observation equation 

can be established as: 

{
𝑋(𝑡) = 𝑌(𝑡 − 1) + 𝑊(𝑡)

𝑍(𝑡) =  𝐹𝐻(𝑡) + 𝑈(𝑡)
                                     (7) 
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where 𝑋(𝑡)  is the initial predicted response time at time t; 𝑌(𝑡 − 1)  is the final 

predicted response time at time 𝑡 − 1 ; 𝑊(𝑡)  is the process noise; 𝑍(𝑡)  is the 

calculated response time at time t;  F is the rule to convert parameters to the calculated 

response time; 𝑊(𝑡) is the measurement noise; 𝐻(𝑡) is a multidimensional vector of 

parameters; 𝐻(𝑡) can be described as: 

𝐻(𝑡) = (𝑑, 𝑚, 𝜃(𝑘𝑖), 𝑄(𝑘𝑖) , 𝜇(𝑘𝑖))𝑇                                (8) 

𝑊(𝑡) and 𝑈(𝑡) are white Gaussian noises, whose mean value is usually zero (Cai 

et al., 2012). However, the accuracy of these noises may be greatly affected under 

abrupt load changes and inaccurate statistics of noise model. In light of this, the values 

of  𝑊(𝑡) and 𝑈(𝑡) were adjusted adaptively according to the error, aiming to correct 

the model error and make the Kalman filter adapt to the time-varying system. 

Thus, the noise model is modified as: 

{
𝑊(𝑡) = 𝛼(𝑡)𝑊0

𝑈(𝑡) =  𝛽(𝑡)𝑈0
                                               (9) 

where 𝑊(𝑡) and 𝑈(𝑡) are initial noises; 𝛼(𝑡) and 𝛽(𝑡) are time-varying adjustment 

parameters. Besides determining the initial parameters, the adjustment rules of 𝛼(𝑡) 

and 𝛽(𝑡) should be specified as: 

{
𝑟1 = [𝑌̃(𝑡) − 𝑋(𝑡)] 𝑌̃(𝑡)⁄

𝑟2 = [𝑌̃(𝑡) − 𝑍(𝑡)] 𝑌̃(𝑡)⁄
                                   (10) 

where 𝑌̃(𝑡)  is the true response time at time t; 𝑟1  is the deviation between the 

predicted value and the true value; r2 is the deviation between the true value and the 

calculated value. The value of r1 is negatively correlated with the system stability, 

and the proximity of r2 to zero is positively correlated with the model accuracy. 

Obviously, when r1 ≈ r2 ≈ 0, the prediction deviation is so small that it is not 

necessary to adjust the values of 𝛼(𝑡) and 𝛽(𝑡). However, when r1 and r2 deviate far 

from the zero point, the values of 𝛼(𝑡) and 𝛽(𝑡) should be adjusted such that the 

predicted value is close to the true value. Table 1 shows the proposed adjustment rules 

of 𝛼(𝑡) and 𝛽(𝑡). 

Table 1. Adjustment rules of 𝛼(𝑡) and 𝛽(𝑡) 

              r1 

          r2 

Small Zero Large 

Small α(t) ↓, β(t) ↓ β(t) ↓ α(t) ↑, β(t) ↓ 

Zero α(t) ↓ -- α(t) ↑ 

Large α(t) ↓, β(t) ↑ β(t) ↑ α(t) ↑, β(t) ↑ 
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In Table 1, the symbol ↑ represents an increase, and the symbol ↓ indicates a 

decrease. Small, Zero and Large represent the following three cases: far less than 0, 

equal to 0 and far greater than 0.  

The three cases should be classified by the system’s tolerance of the prediction 

error. The classification rules are as follows: when 𝑟1 and 𝑟2 fall in (−0.1~0.1), i.e. 

the predicted or calculated value deviates from the true value by less than 10%, the 

deviation can be considered as in the Zero state; otherwise,  the predicted or calculated 

value deviates from the true value by more than 10%, the deviation can be considered 

as in the Small or Large state, which calls for the adjustment of 𝛼(𝑡) or 𝛽(𝑡). The 

adjustment range of 𝛼(𝑡) or 𝛽(𝑡) depends on the degree of deviation between the 

predicted value and the calculated value. After the adjustment, the predicted value and 

the calculated values should return to the Zero state. 

After predicting the response time 𝑌(𝑡) at time 𝑡 can be predicted, the following 

steps should be implemented: 

(1) Let 𝑌(𝑡 − 1) and 𝑌̃(𝑡 − 1) be the predicted and true response times at time 𝑡 −
1 , respectively. Then, the deviation is [𝑌̃(𝑡 − 1) − 𝑌(𝑡 − 1)]  and the covariance 

is 𝑃(𝑡 − 1) = [𝑌̃(𝑡 − 1) − 𝑌(𝑡 − 1)]2. 

(2) Taking 𝑌(𝑡 − 1) as the temporary predicted value X, the deviation can be 

obtained as 𝑃(𝑡|𝑡 − 1) = 𝑃(𝑡 − 1) + 𝑊(𝑡) . Then, the Kalman gain 𝐾 =
𝑃(𝑡|𝑡 − 1) [𝑃(𝑡|𝑡 − 1) + 𝑈(𝑡)]⁄  can be derived. Finally, the final predicted value 

𝑌(𝑡) = 𝑋(𝑡) + 𝐾[𝑍(𝑡) − 𝑋(𝑡)] can be obtained based on the calculated value 𝑍(𝑡). 

(3) If a request arrives at the system between 𝑡~𝑡 + 1 , update 𝑃(𝑡) =
[𝑌̃(𝑡) − 𝑌(𝑡)]2, otherwise make 𝑃(𝑡) = 𝑃(𝑡 − 1). Then, predict the 𝑌(𝑡 + 1) for the 

next period based on 𝑌(𝑡) and 𝑃(𝑡). In this way, the Kalman filter can continuously 

predict the response time of the next period  by recursion. 

In the above calculation method, the values of d and 𝜃(𝑘𝑖) must be calculated first 

according to the measured parameters before determining the two initial values 𝑌(0) 

and 𝑃(0) of the Kalman filter and the initial values of 𝑊0 and 𝑈0 can be determined. 

Thus, it takes a certain time for the filter to reach convergence. 

3.3. Scheduling algorithm 

As shown in Figure 2, the external requests are distributed to the container via 

routing services, and processed by independent services in the container. The routing 

services are initiated when the number of processed instances reaches the minimum 

number for reading or writing. Meanwhile, the monitoring service continuously 

collects system data, container resource utilization and other data, and transfers the 

collected data to the scheduler. Next, the scheduler will firstly analyse the data and 

adjust the forwarding rules periodically, then calculate the response time of the request 

by the prediction model and determine whether to relax, restrict or maintain the 

container resource, and finally send the scheduling signal to the executor. The 

executor mainly performs two functions: obtain the resource utilization rate of the 
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containers through docker stats command and submit the data to monitoring service; 

modify the minimum number instances for reading or writing and control the resource 

quotas of each container in light of the scheduling signal. The above process hinges 

on the correct implementation of the scheduler. 

Physical machine

Physical machine

Physical machine

...

Executor 

Container Container
...

Scheduler

scheduling signal

Service information

Request Request routing

Routing service

Monitoring service

Data monitoring

Container data

Running data

response Request response

 

Figure 2. Implementation framework of our optimization approach 

Scheduling algorithm 

1     global var readNum, writeNum, α, β; 

2     const var T_MAX_LIMIT, T_MIN_LIMIT,T_REFRESH_CYCLE; 

3     define func Adjusted_value(); 

4     define func Expand(Service); 

5     define func Contract(Service); 

6     Input: H(t) = (d, m, θ(ki), Q(ki) , μ(ki))T; 

7     var α,β=W0,U0;  
8     (α,β)=Adap(X(i),Y(i),Z(i)); 

9     var Y(i+1)=KF(Y(i),P(i)); 

10   During last TIME_REFRESH_CYCLE 

11   if |readNum −  writeNum| ≫ 0: Adjusted_value(); 

12   end if 

13   if Y(i+1)< TIME_MIN_LIMIT: Contract(Service); 

14   end if  

15   if Y(i+1)> TIME_MAX_LIMIT: Expand(Service); 

16   end if 

Line 1 defines the parameter variables α and β in Kalman filtering and the number 

of instances for reading and writing as global variables. Line 2 defines the maximum 

response time, the minimum response time, and the refresh cycle. Lines 3~5 define 

the adjustment function, as well as the expansion function and restriction function of 

container resources. Lines 6~9 set out the rules to predict the response time of the next 

request. Lines 10~12 specify the rules to judge whether the adjustment function is 

executed. Lines 13~14 lay down the rules to judge whether the restriction function is 
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executed. Lines 15~16 provide the rules to judge whether the expansion function is 

executed. 

4. Experimental simulation and results analysis 

4.1. Experimental environment and initial configuration 

The initial configuration of the experimental environment is shown in Table 2. 

Two computers with the same configuration were selected for the experiment. One 

computer was equipped with Linux and Docker 1.7 for deploying the inventory 

management system, and the other was equipped with Windows and JMeter stress 

testing tool for testing the availability of the said system (Boettiger, 2015; You et al., 

2015). 

Table 2. Experimental configuration 

Hardware CPU Intel® Core™ i7-4790 CPU @ 3.60GHz 

Memory 8.00 GB 

Operating system Linux Ubuntu-16.04 

Windows Windows 7 

Software Container Docker 1.7 

Testing tool JMeter 

Three service instances were deployed in the experimental environment using the 

“322” mode. The container runtime accounts for 10% of the CPU working time (the 

cpu-period: 1,000,000; the cpu-quota: 100,000). The upper limit of the container 

memory was configured as 512MB by setting -m to 512M . 

4.2. Experimental design 

The experiment mainly consists of the comparison between predicted and true 

response times and the verification of our approach to optimize system availability. 

4.2.1. Comparison between predicted and true response times 

The external requests were generated by JMeter, and the parameters were read 

continuously during the system operation. Calculated by Matlab, the predicted 

response time was contrasted against the true response time to verify the accuracy of 

the prediction model. The experimental load generated by JMeter simulated such five 

cases as steady load, steady load increase, abrupt load increase, steady load decrease 

and abrupt load decrease. The response time comparison was carried out in the five 

cases and the results were analysed in details. 
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4.2.2. Verification of availability optimization approach 

The scheduling program was imported to the inventory management system. Then, 

the availability optimization approach was verified by the observed fluctuation range 

of the response time under the five cases. The approach applicability was obtained in 

various application environments by simulating different loads and types of requests. 

4.3. Comparative experiment of prediction model 

The applicability of the prediction model was verified in three cases: the number 

of requests is relatively steady (Case 1); the number of request changes steadily (Case 

2); the number of request changes abruptly (Case 3).  

Case 1: Simulated by JMeter, the number of writing operations equals that of 

reading operations. Ten requests were simulated per second in the 100s-long 

experiment. The predicted value was compared with the mean value of all requests in 

the next second. The predicted values are shown in Figure 3 below.  

 

Figure 3. Predicted values under steady load 

As shown in Figure 3, the prediction model converged in 5s at the beginning, and 

the prediction was very effective after convergence. Thus, the prediction model can 

work accurately when the number of requests is relatively steady. 

Case 2: Simulated by JMeter, the number of writing operations equals that of 

reading operations. The total number of requests increased or decreased steadily 

throughout the experiment. Ten requests were simulated per second in 0~20s, twenty 

per second in 21~30s, thirty per second in 31~40s, forty per second in 41~50s, fifty 

per second in 51~60s, forty per second in 61~70s, thirty per second in 71~80s, twenty 

per second in 81~90s, and ten per second in 91~100s. The experiment lasts for 100s. 

The predicted value was compared with the mean value of all requests in the next 

second. The predicted values are shown in Figure 4 below.  
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Figure 4. Predicted values under steady load changes 

As shown in Figure 4, the predicted values were close to the true values except for 

the convergence period. This means the prediction model enjoys high accuracy 

despite the steady changes in the number of requests. 

Case 3: Simulated by JMeter, the number of writing operations equals that of 

reading operations. The total number of requests increased or decreased abruptly 

throughout the experiment. Ten requests were simulated per second in 0~30s, fifty per 

second in 31~70s, and ten per second in 71~100s. The experiment lasts for 100s. The 

predicted value was compared with the mean value of all requests in the next second. 

The predicted values are shown in Figure 5 below.  

 

Figure 5. Predicted values under abrupt load changes 

As shown in Figure 5, the predicted results were relatively accurate in the steady 

load period. Two 2~3s-long inaccurate periods appeared at the abrupt increase of the 
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number of requests at 30s and the abrupt decrease at 70s, respectively. After that, the 

predicted values returned to the relatively accurate state. The results indicate that the 

prediction model needs 2 to 3 seconds to adapt to abrupt load changes. 

To sum up, the prediction accuracy is high under a relatively steady load or 

steadily changing load, but a 2~3s-long adaptation period is needed under abrupt load 

changes. This is because the prediction model depends on the predicted value of the 

previous period and the calculated value of the current period. Proper inclination to 

the calculated value can ensure the prediction accuracy at small load changes, but the 

predicted value of the previous period may seriously affect the prediction accuracy 

under instantaneous sharp load changes. Hence, the response time of our model is 

highly accurate unless under extreme conditions like frequent, abrupt load changes. 

4.4. Verification of availability optimization approach 

The availability optimization approach was experimentally verified under the 

writing-reading request ratio of 4:1 and the steady range of response time of 40~50ms. 

The experiment covers three cases: the number of requests is relatively steady at a low 

value (Case 1); the number of request changes steadily (Case 2); the number of request 

changes abruptly (Case 3). 

4.4.1. Availability in Case 1 

It can be seen from Figure 3 that most of the response times fell between 40 and 

50ms (Schafer et al., 2016) when the load was stabilized at 10 requests per second. 

Hence, the experimental condition in Figure 3 was applied to verify the relationship 

between the number of instances for reading and writing operations and response time. 

The experimental results are displayed in Figure 6 below. 

 

Figure 6. Availability under steady load 
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As shown in Figure 6, the response time of the optimization approach was slightly 

shorter than the original value. Since the response time always fell between 40 and 

50ms, there was no scheduling of container resources. It can be concluded that fewer 

instances for reading and writing operations can slightly improve the system 

availability. 

4.4.2. Availability in Case 2 

It can be seen from Figure 4 that the response time increased or decreased 

gradually with the steadily changing load. Under this condition, the experimental 

results after applying the optimization approach are presented in Figure 7 below. 

 

Figure 7. Availability optimization under steady load changes 

As shown in Figure 7, the response time of the optimization approach was much 

shorter than the original value and maintained between 40 and 50ms. This is 

attributable to the high prediction accuracy. When the response time at the next time 

is predicted to exceed 50ms, more resources will be allocated to the container to 

reduce the response time. 

4.4.3. Availability in Case 3 

It can be seen from Figure 5 that the response time increased or decreased 

dramatically with the abrupt changing load. When the load was too great, the response 

time exceeded 50ms. Under this condition, the experimental results after applying the 

optimization approach are shown in Figure 8 below. 
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Figure 8. Availability optimization under abrupt load changes 

As shown in Figure 8, the response time of the optimization approach was much 

shorter than the original value under steady, high load. However, the response time 

exceeded 50ms at 30s, owing to the prediction inaccuracy. The increasing amount of 

resources provided to the container could not reduce the response time to less than 

50ms. Thus, the response time was reduced slightly but still above 50ms in 2~3s. 

Meanwhile, the response time was below 40ms at 70s, also the result of prediction in 

accuracy. The response time stayed below 40ms for several seconds before returning 

to the steady state. 

In summary, the fewer number of instances for reading and writing operations can 

slightly improve the system availability. The system availability mainly depends on 

the  elastic scheduling of container resources. Under steady load or steadily changing 

load, the response time can be predicted accurately, and the system availability can be 

optimized effectively. Under abrupt load changes, a 2~3s-long convergence period is 

needed to predict the response time. In this case, the availability optimization 

approach cannot always guarantee the response time within a certain range. Of course, 

the proposed approach can optimize the system availability in normal conditions. 

5. Conclusions 

This paper ensures the strong data consistency by the quorum algorithm, 

establishes a prediction model based on cascaded queuing system, and predicted the 

response time of requests based on Kalman filtering. After judging whether the 

response time is in default, the author put forward an approach to optimize the 

availability of the CP micro-service system by adjusting the forwarding rules and 

container resource scheduling according to the compliance of the response time. 

Finally, the proposed optimization approach was verified through experiments. The 
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results show that a 2~3s-long adaptation period is needed for the approach under 

abrupt load changes, and the response time can be accurately predicted to ensure the 

system availability in the other cases. 
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