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ABSTRACT. This paper studies the varying-coefficient heteroscedastic partially linear models 

where some covariates are measured with additive errors. To eliminate the bias of the usual 

profile least squares estimation when measurement errors are ignored, a modified profile least 

squares estimator of the regression parameter is suggested and the local polynomial smoother 

is applied to constructing estimators of the varying coefficient function and error variance 

function. Further, for the purpose of accounting for heteroscedasticity and the estimation 

accuracy, re-weighted estimations of the regression parameter and varying coefficient function 

are proposed. Asymptotic behaviors of the above estimators are established and the re-

weighted estimator is shown to be more efficient than the modified profile least-squares 

estimator. Both simulated and real data examples are conducted to illustrate the applications 

of the proposed approaches. 

RÉSUMÉ. Cet article examine les Modèles partiellement linéaires à coefficient variable avec 

erreurs hétéroscédastiques, dans lesquels certaines covariables sont mesurées avec des erreurs 

additives. Pour résoudre le problème d'erreur de négliance de mesure dans l'estimation des 

moindres carrés du profil classique, un estimateur de moindres carrés du profil modifié du 

paramètre de régression a été mis au point et le lisseur polynomial local a été appliqué pour 

construire des estimateurs de la fonction de coefficient variable et de la fonction de variance 

d'erreur. En outre, des estimations re-pondérées du paramètre de régression et une fonction de 

coefficient variable ont été proposées, en tenant compte de l'hétéroscédasticité et de la 

précision de l'estimation. En comparant les exemples de données simulées aux données réelles, 

les comportements asymptotiques des estimateurs ci-dessus se sont avérés valables et il a été 

démontré que l'estimateur repondéré était plus efficace que l'estimateur des moindres carrés 

du profil modifié, indiquant que la stratégie proposée est réalisable et applicable. 

KEYWORDS: varying-coefficient partially linear model, profile least squares, errors-in-variables, 

heteroscedasticity, re-weighted estimation. 
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1. Introduction 

In the last decades, driven by many practical applications and fueled by modern 

computing power, lots of useful data-analytic modeling techniques have been 

proposed to relax traditional parametric models and to exploit possible hidden 

structure. Recently, partially linear varying-coefficient model (PLCVM) which was 

introduced by Fan and Huang (2005) has attracted much attention from statisticians 

and practitioners and has the following form: 

𝑌𝑖 = 𝑋𝑖
𝑇𝛽 + 𝑍𝑖

𝑇𝛼(𝑈𝑖) + 𝜀𝑖，𝑖 = 1, ⋯ , 𝑛,                           (1.1) 

where Yi are the response variables, 𝛽 = (𝛽1, ⋯ , 𝛽𝑝)𝑇  is a vector of p-dimensional 

unknown parameters, 𝛼(⋅) = (𝛼1(⋅), ⋯ , 𝛼𝑞(⋅))𝑇𝑌𝑖 = 𝑋𝑖
𝑇𝛽 + 𝑍𝑖

𝑇𝛼(𝑈𝑖) + 𝜀𝑖，𝑖 =

1, ⋯ , 𝑛,  is a q-dimensional vector of unspecified smooth coefficient  functions, 

𝑋𝑖 = (𝑋𝑖1, ⋯ , 𝑋𝑖𝑝)𝑇 , 𝑍𝑖 = (𝑍𝑖1, ⋯ , 𝑍𝑖𝑞)𝑇  and Ui are the regressors, and εi are the 

random errors with 𝐸(𝜀𝑖|𝑋𝑖 , 𝑍𝑖 , 𝑈𝑖) = 0, Var(𝜀𝑖|𝑋𝑖 , 𝑍𝑖 , 𝑈𝑖) = 𝜎2(𝑈𝑖). 

Model (1.1) can reduce the high risk of misspecification relative to a fully 

parametric model and avert some critical drawbacks of purely nonparametric 

approaches such as the curse of dimensionality, poverty of interpretation, and lack of 

extrapolation ability. This model has been widely studied in the literature and the 

majority of the work done so far assumed that the errors εi are homoscedastic. For 

example, Fan and Huang (2005) employed a profile least squares (PLS) technique to 

estimate the parameter in the semi-varying coefficient model and obtained the 

asymptotic normality for the PLS estimator. In addition, they proposed the profile 

likelihood ratio test for the semi-varying coefficient model and demonstrated that it 

follows an asymptotically chi-squared distribution under the null hypothesis. You and 

Zhou (2006) applied empirical likelihood method to semi-varying coefficient model 

and derived a nonparametric version of the Wilk’s theorem. Based on this, the 

confidence regions for parametric components with asymptotically correct coverage 

probabilities can be constructed. More references and techniques of the semi-varying 

coefficient models can be found in Zhang et al. (2002), Kai et al. (2011), Fan et al. 

(2013) among others. 

The above referred articles assumed that the random errors are homoscedastic, that 

is, εi are independent of (Xi, Zi, Ui). However, in applications, heteroscedasticity is 

often found in the model error terms and has been extensively studied by many authors. 

For example, Ma (2006) discussed efficient semiparametric estimator in 

heteroscedastic partially linear models; Zhou et al. (2009) proposed a new method for 

estimating the unknown transformation and regression parameters in non-parametric 

heteroscedastic transformation regression models for skewed data; Lu (2009) 

employed empirical likelihood method to discuss heteroscedastic partially linear 
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models; Shen et al. (2014) studies the semi-varying coefficient model with 

heteroscedastic errors. An estimation procedure for the error variance function was 

suggested to obtain a consistent estimator. Then a re-weighted estimation of the 

unknown parameter was proposed and asymptotic normalities of the resulting 

estimators were established; Menictas and Wand (2015) developed fast mean field 

variational methodology for Bayesian heteroscedastic semiparametric regression, in 

which both the mean and variance are smooth, but otherwise arbitrary, functions of 

the predictors.  

In addition, measurement error data are often encountered in many fields, 

including biomedical sciences, engineering, economics and biology et al. For instance, 

it has been well documented in the literature that covariates such as serum cholesterol 

level (Carroll et al., 1995), urinary sodium chloride level (Wang et al., 1996) and 

exposure to pollutants (Tosteson et al., 1989) are often subject to measurement errors 

(errors-in-variables). Simply ignoring measurement errors, known as the naive 

method, will result in biased estimators. So the measurement errors models are 

somewhat more practical than the ordinary regression model. Some work has been 

done in lots of regression models with measurement errors. For example, Wei (2012) 

investigated statistical inference for the semiparametric model when the covariates in 

the linear part are measured with additive error and some additional linear restrictions 

on the parametric component are available. They proposed a restricted modified 

profile least-squares estimator for the parametric component, and proved the 

asymptotic normality of the proposed estimator. More work of measurement error 

data models can be founded in Fuller (1987), You et al. (2006), Zhou and Liang (2009), 

Ma et al. (2013), Fan et al. (2013) and Feng and Xue (2014) among others. However, 

the above articles worked under homoscedastic assumption. 

In this paper, we consider the following partially linear varying-coefficient errors-

in-variables model (PLVCEVM) model with heteroscedastic errors 

(
𝑌𝑖 = 𝑋𝑖

𝑇𝛽 + 𝑍𝑖
𝑇𝛼(𝑈𝑖) + 𝜀𝑖,

𝜉𝑖 = 𝑋𝑖 + 𝜂𝑖 ,
                                     (1.2) 

where Var(𝜀𝑖|𝑋𝑖 , 𝑍𝑖 , 𝑈𝑖) = 𝜎2(𝑈𝑖) is an unknown function of Ui representing possible 

heteroscedasticity and the covariate variable Xi is measured with additive error. That 

is, instead of the true Xi, the surrogate variable ξi are observed by ξi=Xi+ηi, where ηi 

are the measurement errors, which are mean zero, independent of (Xi, Zi, Ui, εi) and 

have the same covariance matrix Cov(η)=∑η. In order to identify the model, we further 

assume that the covariance matrix ∑η is known as in Hwang (1986), Zhu and Cui 

(2003), You et al. (2006) and Feng & Xue (2014) among others. When ∑η is unknown, 

we can obtain a √n-consistent estimator as long as we have replicates of ξi; see Liang 

et al. (1999) for more details. For PLVCEVM with heteroscedastic errors, Fan and 

Huang (2013) employed empirical likelihood method to study the parameter β. Based 

on the result of Fan & Huang (2013), one can only obtain the confidence regions of β. 

However, the point estimator and its asymptotic normality of β and the statistical 

inference of coefficient function α(•) are still not studied up to now. 
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The aim of this paper is to extend the results in Shen et al. (2014) from the PLVCM 

with heteroscedastic errors to the PLVCEVM with heteroscedastic errors (1.2) and 

develop a modified PLS approach and a re-weighted estimation approach to improve 

the accuracy of traditional estimation methods. Compared with You and Chen (2006) 

and Ma et al. (2013), the error in model (1.2) is assumed to be heteroscedastic. In 

order to improve the estimation accuracy by taking account for heteroscedasticity, the 

re-weighted estimations of the regression parameter and varying coefficient function 

are proposed in this paper. 

The rest of this paper is organized as follows. The modified PLS estimation of the 

unknown parameter and the estimators of the coefficient function and the error 

variance function are proposed in Section 2. The re-weighted estimations of the 

parametric vector and coefficient function are also introduced in this section. Section 

3 gives the main results of the proposed estimators. In Section 4, simulation studies 

and a real-data example are conducted to examine the finite-sample behavior of the 

proposed methods. Some remarks are put in Section 5 and all the technical proofs are 

relegated to Appendix. 

2. Estimation methodology 

In this section, we shall construct the estimators for parametric component β and 

the estimators of the nonparametric component α(•) and the error variance σ(•). 

Considering the influence of the measurement errors, we cannot use PLS 

estimation method and should apply the so-called "correction for attenuation" (see 

Fuller, 1987 and Liang et al., 1999, for example) to overcome inconsistency. Motived 

by You et al. (2006) and Fan et al. (2013), we will employ the modified PLS 

estimation technique to estimate β and the local linear estimators of the coefficient 

function α(•) will also be proposed in Section 2.1. The local linear estimator of the 

error variance function σ(•) will be introduced in Section 2.2. Take into account the 

heteroscedasticity, in Section 2.3, we further improve the estimations and propose re-

weighted estimators for parametric component β and the nonparametric component 

α(•). 

2.1. Modified PLS estimation 

In view of the relationship 

𝐸(𝑍𝑖
𝑇|𝑈𝑖 = 𝑢0)𝛼(𝑢0) = 𝐸(𝑌𝑖 − 𝑋𝑖

𝑇𝛽|𝑈𝑖 = 𝑢0) = 𝐸(𝑌𝑖 − 𝜉𝑖
𝑇𝛽|𝑈𝑖 = 𝑢0) 

The varying-coefficient function {𝛼𝑗(⋅), 𝑗 = 1, ⋯ , 𝑞} can be estimated by a local 

polynomial method. Specifically, for u in a neighborhood of u0, we use a local linear 

approximation 𝛼𝑗(𝑈) ≈ 𝛼𝑗(𝑢0) + 𝛼𝑗
′ (𝑢0)(𝑈 − 𝑢0) ≡ 𝑎𝑗 + 𝑏𝑗(𝑈 − 𝑢0),  𝑗 = 1, ⋯ , 𝑞, 

where 𝛼𝑗
′ (𝑢0) denote the first order derivative of 𝛼𝑗(𝑢) at u0. We obtain the estimates 

of 𝛼𝑗(⋅) by finding {(𝑎𝑗 , 𝑏𝑗), 𝑗 = 1, ⋯ , 𝑞} to minimize 
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∑ {(𝑌𝑖 − ∑ 𝜉𝑖𝑗
𝑝
𝑗=1 𝛽𝑗)𝑛

𝑖=1 − ∑ [𝑎𝑗 + 𝑏𝑗(𝑈𝑖 − 𝑢0)]
𝑞
𝑗=1

2}ijZ 𝐾ℎ1
(𝑈𝑖 − 𝑢0),       (2.1) 

Where K(•) is a given kernel function and Kh1(•)=K(•/h1)/h1 with a bandwidth h1. 

For notational simplicity, let 𝑌 = (𝑌1, ⋯ , 𝑌𝑛)𝑇 , 𝜉 = (𝜉1, ⋯ , 𝜉𝑛)𝑇 , 𝑀 =

(𝑀1, ⋯ , 𝑀𝑛)𝑇 = (𝑍1
𝑇𝛼(𝑈1), ⋯,  𝑍𝑛

𝑇𝛼(𝑈𝑛))𝑇 , �̃� = (𝐼 − 𝑆)𝑌 , 𝜉 = (𝐼 − 𝑆)𝜉 , 𝑊(𝑢) =
diag(𝐾ℎ1

(𝑈1 − 𝑢), ⋯ , 𝐾ℎ1
(𝑈𝑛 − 𝑢)), where I is the n×n identity matrix, 

𝑆 = (
(𝑍1

𝑇 0𝑇)[𝐷𝑇(𝑈1)𝑊(𝑈1)𝐷(𝑈1)]−1𝐷𝑇(𝑈1)𝑊(𝑈1)
⋮

(𝑍𝑛
𝑇 0𝑇)[𝐷𝑇(𝑈𝑛)𝑊(𝑈𝑛)𝐷(𝑈𝑛)]−1𝐷𝑇(𝑈𝑛)𝑊(𝑈𝑛)

),  

𝐷(𝑢) = (

𝑍1
𝑇 𝑈1−𝑢

ℎ1
𝑍1

𝑇

⋮ ⋮

𝑍𝑛
𝑇 𝑈𝑛−𝑢

ℎ1
𝑍𝑛

𝑇

)  

and 0 is the q×1 null vector. 

The solution of problem (2.1) is given by  

(�̂�1(𝑢, 𝛽), ⋯ , �̂�𝑞(𝑢, 𝛽), ℎ1�̂�1(𝑢, 𝛽), ⋯ , ℎ1�̂�𝑞(𝑢, 𝛽))𝑇  

= [𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)(𝑌 − 𝜉𝛽).                          (2.2) 

Then the local polynomial estimator of M  is 

�̂�(𝛽) = (𝑍1
𝑇�̂�(𝑈1, 𝛽), ⋯ , 𝑍𝑛

𝑇�̂�(𝑈𝑛 , 𝛽))𝑇 = 𝑆(𝑌 − 𝜉𝛽).  

Motivated by You and Chen (2006) and Fan et al. (2013), we introduce the 

modified PLS approach to estimate β as follows, �̂� = [∑ 𝜉𝑖
𝑛
𝑖=1 𝜉𝑖

𝑇 − 𝑛𝛴𝜂]−1 ∑ 𝜉𝑖
𝑛
𝑖=1 �̃�𝑖 . 

Which is derived by minimizing ∑ [𝑛
𝑖=1 (𝑌𝑖 − 𝜉𝑖

𝑇𝛽 − 𝑍𝑖
𝑇�̂�(𝑈𝑖 , 𝛽)2 − 𝛽𝑇𝛴𝜂𝛽].  

Based on �̂� , a plug-in estimator of M can be expressed as �̂� =

(𝑍1
𝑇�̂�(𝑈1, �̂�), ⋯ , 𝑍𝑛

𝑇�̂�(𝑈𝑛 , �̂�))𝑇 = 𝑆(𝑌 − 𝜉�̂�). 

2.2. Estimation of the error variance function 

In this subsection, we introduce the estimator of the error variance function σ2(•) 

which can be employed to improve the estimators of the parametric component β and 

the coefficient function α(•). 

Local linear estimator as a more attractive estimation methodology, has many 

appealing properties, such as no boundary effect, design adaptation, and mathematical 

efficiency (cf. Fan and Gibels, 1992; Ruppert and Wand, 1994; Hastie and Loader, 

1993). Thus, we employ the local linear method to estimate 𝜎2(𝑢) in this paper. Note 

that 𝜎2(𝑢) = 𝐸{(𝑌𝑖 − 𝜉𝑖
𝑇𝛽 − 𝑍𝑖

𝑇𝛼(𝑈𝑖))2 − 𝛽𝑇𝛴𝜂𝛽|𝑈𝑖 = 𝑢}. 
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Specifically, the local linear estimator of 𝜎2(𝑢) is defined by �̂�2(⋅) = �̂�, where 

(�̂�, �̂�) = argmin𝜇,𝑣 ∑ {𝑛
𝑖=1 [(𝑌𝑖 − 𝜉𝑖

𝑇�̂� − 𝑍𝑖
𝑇�̂�(𝑈𝑖 , �̂�))2 − �̂�𝑇𝛴𝜂�̂�] − 𝜇 − 𝜈(𝑈𝑖 −

𝑢)}2𝐾ℎ2
(𝑈𝑖 − 𝑢), and Kh2(•) has the same form as Kh1(•) except that h1 is replaced by 

the bandwidth h2=h2n. Simple calculation yields that 

�̂�2(𝑢) = ∑ 𝑊ℎ2𝑖
𝑛
𝑖=1 (𝑢)[𝑌𝑖 − 𝜉𝑖

𝑇�̂� − 𝑍𝑖
𝑇�̂�(𝑈𝑖 , �̂�)]2 − �̂�𝑇𝛴𝜂�̂�,              (2.3) 

where the weight functions Wh21i(•) have the following explicit form (Fan and 

Gijbels, 1996): 

𝑊ℎ2𝑖(𝑢) =
(𝑛ℎ2)−1𝐾(ℎ2

−1(𝑈𝑖−𝑢)){𝐴𝑛,2(𝑢)−(𝑈𝑖−𝑢)𝐴𝑛,1(𝑢)}

𝐴𝑛,0(𝑢)𝐴𝑛,2(𝑢)−𝐴𝑛,1
2 (𝑢)

,                    (2.4)  

With 𝐴𝑛,𝑗(𝑢) =
1

𝑛ℎ2
∑ 𝐾ℎ2

𝑛
𝑖=1 (

𝑈𝑖−𝑢

ℎ2
)(𝑈𝑖 − 𝑢)𝑗 , 𝑗 = 0,1,2. 

2.3. Re-weighted estimation 

In this subsection, we introduce the re-weighted estimations of the parametric 

vector β and coefficient function 𝛼(⋅)based on the variance estimates �̂�2(𝑢) given in 

(2.3). It is show from Theorem 3.4 that the re-weighted estimate �̂�𝑅 has no greater 

asymptotic variance than the modified PLS estimate �̂� that ignores heteroscedasticity. 

In order to give the re-weighted estimations of β and 𝛼(⋅), we resort to the idea of the 

generalized least-squares approach in heteroscedastic linear models. By taking notice 

of the influence of measurement errors, the re-weighted estimate of the coefficient β 

in model (1.2) is given by 

�̂�𝑅 = (�̂�1𝑅 , ⋯ , �̂�𝑝𝑅)𝑇 = [𝜉𝑇�̂�𝜎
−1𝜉 − ∑ �̂�−2𝑛

𝑖=1 (𝑈𝑖)𝛴𝜂]−1𝜉𝑇�̂�𝜎
−1�̃�,           (2.5) 

Where �̂�𝜎 = diag(�̂�2(𝑈1), ⋯ , �̂�2(𝑈𝑛))  is an estimator of 𝛴𝜎 =
diag(𝜎2(𝑈1), ⋯ , 𝜎2(𝑈𝑛)). Furthermore, the re-weighted estimator of the coefficient 

function 𝛼(𝑢) = (𝛼1(𝑢), ⋯ , 𝛼𝑞(𝑢))𝑇 is expressed as  

�̂�𝑅(𝑢) = (�̂�1𝑅(𝑢), ⋯ , �̂�𝑞𝑅(𝑢))𝑇 = 

(𝐼𝑞 , 0𝑞)[𝐷(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)(𝑌 − 𝜉�̂�𝑅),                  (2.6) 

Where 𝐼𝑞  is the 𝑞 × 𝑞 identity matrix and 0𝑞 is the 𝑞 × 𝑞 null matrix. 

3. Main results 

In this section, we give the asymptotic properties for variance estimator �̂�2(𝑢), 

modified PLS estimator �̂� , local polynomial estimator �̂�(⋅, �̂�)  and re-weighted 

estimators �̂�𝑅  and �̂�𝑅(⋅) . For convenience, let 𝛤(𝑢) = 𝐸[𝑍1𝑍1
𝑇|𝑈 = 𝑢] , 𝛷(𝑢) =

𝐸[𝑍1𝑋1
𝑇|𝑈 = 𝑢], 𝜓𝑖 = 𝑋𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖 and 𝐴⊗2 = 𝐴𝐴𝑇. 
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Theorem 3.1 Suppose that conditions (C1)-(C8) in the Appendix hold. Then 

𝑠𝑢𝑝
𝑢∈𝒟

|�̂�2(𝑢) − 𝜎2(𝑢)| = 𝑂𝑝(𝑏𝑛),  where 𝒟  is domain of the variable U and 𝑏𝑛 =

(
𝑙𝑜𝑔 𝑛

𝑛ℎ2
)1/2 + ℎ2

2
. 

Theorem 3.2 Under the conditions (C1)-(C7), the modified PLS estimator �̂� 

follows the following asymptotic normality, √𝑛(�̂� − 𝛽) →
𝑑

𝑁(0, 𝛴1
−1𝛴2𝛴1

−1)   as 𝑛 →

∞,  where 𝛴1 = 𝐸(𝜓1𝜓1
𝑇)  and 𝛴2 = 𝐸{𝜓1𝜓1

𝑇(𝜀1 − 𝜂1
𝑇𝛽)2]} + 𝛴𝜂𝐸(𝜎2(𝑈1)) +

𝐸{(𝜂1𝜂1
𝑇 − 𝛴𝜂)𝛽𝛽𝑇(𝜂1𝜂1

𝑇 − 𝛴𝜂)}.  Further, �̂�1
−1�̂�2�̂�1

−1  is a consistent estimator of 

𝛴1
−1𝛴2𝛴1

−1, where�̂�1 = 𝑛−1𝜉𝑇𝜉 − 𝛴𝜂 and �̂�2 =
1

𝑛
∑ {𝑛

𝑖=1 [𝜉𝑖(�̃�𝑖 − 𝜉𝑖
𝑇�̂�) + 𝛴𝜂�̂�]}⊗2. 

Theorem 3.3 Suppose that conditions (C1)-(C8) in the Appendix hold, we 

have√𝑛(�̂�𝑅 − 𝛽) →
𝑑

𝑁(0, 𝛴1𝑅
−1𝛴2𝑅𝛴1𝑅

−1),  as  𝑛 → ∞,  where𝛴1𝑅 = 𝐸(𝜓1𝜓1
𝑇𝜎−2(𝑈1)) 

and 𝛴2𝑅 = 𝐸{𝜓1𝜓1
𝑇(𝜀1 − 𝜂1

𝑇𝛽)2𝜎−4(𝑈1)]} + 𝛴𝜂𝐸(𝜎−2(𝑈1)) + 𝐸{(𝜂1𝜂1
𝑇 −

𝛴𝜂)𝛽𝛽𝑇(𝜂1𝜂1
𝑇 − 𝛴𝜂)𝜎−4(𝑈1)}.  Further, �̂�1𝑅

−1�̂�2𝑅�̂�1𝑅
−1  is a consistent estimator of 

𝛴1𝑅
−1𝛴2𝑅𝛴1𝑅

−1 , where �̂�1𝑅 = 𝑛−1𝜉𝑇�̂�𝜎
−1𝜉 −

1

𝑛
∑ �̂�−2𝑛

𝑖=1 (𝑈𝑖)𝛴𝜂 and �̂�2𝑅 =
1

𝑛
∑ �̂�−4𝑛

𝑖=1 (𝑈𝑖){[𝜉𝑖(�̃�𝑖 − 𝜉𝑖
𝑇�̂�) + 𝛴𝜂�̂�]}⊗2. 

Theorem 3.4 Suppose that conditions (C1)-(C8) in the Appendix hold, then the 

leading term of the asymptotic variance of the re-weighted estimate �̂�𝑅 is not greater 

than that of the modified PLS estimate �̂� , saying 𝛴1𝑅
−1𝛴2𝑅𝛴1𝑅

−1𝛴1
−1𝛴2𝛴1

−1 . That is, 

𝛴1𝑅
−1𝛴2𝑅𝛴1𝑅

−1 − 𝛴1
−1𝛴2𝛴1

−1 is a positive semidefinite matrix. 

In the following three theorems, we give the asymptotic behaviors for local linear 

estimator �̂�(⋅, �̂�): = �̂�(𝑢) in (2.2) and re-weighted estimator �̂�𝑅(𝑢) in (2.6}). Define, 

𝛼 ′′(𝑢) = (𝛼1
′ (𝑢), ⋯, 𝛼𝑞

′ (𝑢))𝑇 , 𝜇𝑗 = ∫ 𝑡𝑗 𝐾(𝑡)𝑑𝑡 , 𝑣𝑗 = ∫ 𝑡𝑗 𝐾2(𝑡)𝑑𝑡 and let 𝑝(𝑢) be 

the density function of U. 

Theorem 3.5 Suppose that conditions (C1)-(C7) hold. Then for any 𝑢 ∈ 𝒟, we 

have 𝑠𝑢𝑝
𝑢∈𝒟

‖�̂�(𝑢) − 𝛼(𝑢)‖ = 𝑂𝑝(𝑐𝑛)  and, 𝑠𝑢𝑝
𝑢∈𝒟

‖�̂�𝑅(𝑢) − 𝛼(𝑢)‖ = 𝑂𝑝(𝑐𝑛),  where 

𝑐𝑛 = {𝑙𝑜𝑔 𝑛 /𝑛ℎ1}1/2 + ℎ1
2
. 

Theorem 3.6 Suppose that conditions (C1)-(C7) hold. Then for any u , we 

have the following asymptotic normality √𝑛ℎ1{�̂�(𝑢) − 𝛼(𝑢) −
1

2
ℎ1

2𝜇2𝛼 ′′(𝑢)} →
𝑑

𝑁(0, 𝑣0𝛤−1(𝑢)(𝜎2(𝑢) + 𝛽𝑇𝛴𝜂𝛽)𝑝−1(𝑢)). 

Theorem 3.7 Suppose that conditions (C1)-(C8) hold. Then for any u , we 

have the following asymptotic normality 

2 1 2 1

1 1 2 0

1
( ) ( ) ( ) 0, ( )( ( ) ) ( ) .

2
{ } ( )

d
T

Rnh u u h u N v u u p u       − −− − →  +   
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Remark 3.1 Theorems 3.6-3.7 imply that the local polynomial estimator ˆ ( )u  

and re-weighted estimator �̂�𝑅(𝑢) have the same asymptotic distributions, which just 

embodies the characteristic of the local regression in nonparametric models. 

4. Simulation study 

In this section, we carry out a simulation to investigate the finite sample behavior 

of the modified PLS estimator �̂� , local polynomial estimators �̂�(⋅)and �̂�2(⋅)and the 

re-weighted estimators �̂�𝑅 and �̂�𝑅(⋅)which are proposed in section 2. In particular, the 

simulation in the first subsection aims to investigate the consistency of the estimators; 

the simulation in the second subsection is to show how good the asymptotic normality 

is by histograms and QQ-plots of the estimators; whereas the third applies the 

proposed methods to Boston housing data. 

4.1. Consistency 

Example 4.1 Consider the following VCPLEVM with heteroscedastic errors: 

{
𝑌𝑖 = 𝑋𝑖

𝑇𝛽 + 𝑍𝑖
𝑇𝛼(𝑈𝑖) + 𝜀𝑖,

𝜉𝑖 = 𝑋𝑖 + 𝜂𝑖 ,
 𝑖 = 1, ⋯ , 𝑛,                               (4.1) 

where 𝛽 = (𝛽1, 𝛽2, 𝛽3)𝑇 = (1,2,3)𝑇 , 𝛼1(𝑢) = 0.5 + 𝑐𝑜𝑠( 6𝜋𝑢) , 𝛼2(𝑢) = 2 +
𝑐𝑜𝑠( 2𝜋𝑢), 𝑍𝑖1  and 𝑍𝑖2  are independently generated from 𝑈(−1,1), 𝑈𝑖~𝑈(0,1) and 

the error variance function is taken as 𝜎2(𝑢) = 0.25 + [𝛾{1 + 𝑠𝑖𝑛( 2𝜋𝑢)}]2 . 𝑋𝑖  is 

generated from multivariate normal distribution with mean 1  and pairwise covariance 

Cov(𝑋𝑖𝑗 , 𝑋𝑖𝑘) = 0. 5|𝑗−𝑘| . The measurement error 𝜂𝑖~𝑁(0, 𝛴𝜂)  , with 𝛴𝜂 = 0.25𝐼3 

and 0.5𝐼3 which represent different levels of measurement errors and 𝐼3 is the 3 × 3 

identity matrix. 

The kernel is chosen to be the Gauss kernel, i.e., 𝐾(𝑢) = 𝑒𝑥𝑝( − 𝑢2/2)/√2𝜋 and 

the bandwidths are selected by cross-validation. To show the good performance of 

our proposed BC estimator �̂�2(𝑢), we compare it with the naive estimator �̆�2(𝑢) 

defined in Remark 2.1. We run 500 replications for 𝛾 = 1, 2  and 4  respectively. 

Then the $500$ estimated values of the error variance function at each grid point /i n  

are generated, and the averaged value of these 500 estimated values is taken as the 

final estimated value of error variance function at 𝑖/𝑛. The final estimated curves of 

�̂�2(𝑢) and �̆�2(𝑢) are depicted in Figure 1. 

On the other hand, in order to compare the performance of the re-weighting 

estimator �̂�𝑅  with the modified PLS estimator �̂�  and the naive estimator 𝛽𝑛 

(neglecting the measurement errors), we calculate the sample means, the average 

model errors (MEs) defined as 𝑀𝐸(⋅) = (⋅ −𝛽)⊤𝐸(𝑋𝑇𝑋)(⋅ −𝛽),  and the mean 

squared errors (MSEs) for the three estimators with 𝛾 = 1, 2, 4, 6, 𝛴𝜂 = 0.25𝐼3 and 
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0.5𝐼3  respectively for 800n =  based on 500 replications. The naive estimator of 

(𝛽1, 𝛽2, 𝛽3)𝑇 is defined as 𝛽𝑛 = (𝛽1, 𝛽2, 𝛽3)𝑇 = (𝜉𝑇�̂�𝜎
−1𝜉)−1𝜉𝑇�̂�𝜎

−1�̃�. 

Moreover, we give global mean square errors (GMSEs) of �̂�𝑅(⋅)and �̂�(⋅)in Table 

1, where GMSE of �̂�1𝑅  is defined by GMSE(�̂�1𝑅) = (1/

𝑀𝑛) ∑ ∑ {�̂�1𝑅(𝑛
𝑘=1

𝑀
𝑙=1 𝑢𝑘, 𝑙) − 𝛼1(𝑢𝑘, 𝑙)}2 with 500.M =  

 

Figure 1. The estimated curves for BC estimator 2ˆ ( )u  and naive estimator 2 ( )u  

with n = 500 

From Table 1 and Figure 1 the following observations are obtained: 

(1) Shown in Figure 1, the proposed estimator of error variance performs better 

than the naive estimator especially for large measurement error for each fixed γ. 

(2) It is shown from Table 1 that the re-weighted estimator performs best for most 

circum- stances among three estimators since the re-weighted estimator gives the 

smallest ME. It is also interesting to note that when the measurement error is 

negligibly small, the re-weighted estimator may perform worse than the naive 

estimator. Also, when the error heteroscedasticity is rather weak, the re-weighted 

estimator may perform worse than the modified PLS estimator. 

(3) Seen from GMSEs in Table 1, the weighted estimator of coefficient function 

performs better than the estimator which ignores the heteroscedasticity. 
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Table 1. Simulated results of BC estimator �̂�, RWBC estimator �̂�𝑅 and the naive 

estimator 𝛽𝑛 for true 𝛽 = （1,2,3）
𝑇
, and GMSEs for �̂�(⋅) and �̂�𝑅(⋅) 

 Σ𝜂 = 0.25𝐼3 Σ𝜂 = 0.5𝐼3 

Items  𝛾 = 1 𝛾=2 𝛾=4 𝛾=6 𝛾 = 1 𝛾=2 𝛾=4 𝛾=6 

Mean �̂�1 1.0180 0.9796 1.0261 0.9615 0.9590 0.9524 1.0241 0.8760 

 �̂�1𝑅  1.0079 0.9597 1.0153 0.9770 0.9484 0.9599 1.0102 0.9109 

 �̆�1 1.2604 1.2322 1.2611 1.2363 1.3164 1.3237 1.3575 1.3081 

 �̂�2 1.9680 2.0296 1.9291 2.0060 2.0237 2.0291 2.0360 1.9838 

 �̂�2𝑅 1.9705 2.0412 1.9372 2.0161 2.0288 2.0275 2.0374 1.9905 

 �̆�2 1.8826 1.9260 1.8682 1.9137 1.8348 1.8292 1.8264 1.7997 

 �̂�3 3.0447 3.0042 3.0984 3.0561 3.0607 3.0895 2.9838 3.1716 

 �̂�3𝑅 3.0496 3.0135 3.0914 3.0227 3.0695 3.0816 2.9995 3.1439 

 �̆�3 2.5751 2.5529 2.6094 2.5607 2.3110 2.314 2.2724 2.3529 

ME �̂� 0.0592 0.1250 0.3185 0.7592 0.1388 0.2232 0.5635 0.9877 

 �̂�𝑅 0.0572 0.1179 0.2809 0.6305 0.1483 0.2151 0.5435 0.8870 

 �̆� 0.2769 0.3122 0.3693 0.6047 0.7710 0.7492 0.9537 0.9721 

MSE �̂�1 0.0218 0.0578 0.1435 0.3865 0.0717 0.1448 0.3045 0.5787 

 �̂�1𝑅  0.0203 0.0610 0.1342 0.2957 0.0784 0.1330 0.3202 0.5576 

 �̆�1 0.0753 0.0772 0.1243 0.1893 0.1135 0.1338 0.2002 0.2123 

 �̂�2 0.0289 0.0658 0.1687 0.3339 0.0789 0.1271 0.2895 0.5756 

 �̂�2𝑅 0.0269 0.0615 0.1369 0.2916 0.0882 0.1206 0.2815 0.5130 

 �̆�2 0.0243 0.0282 0.0758 0.1376 0.0425 0.0527 0.0850 0.1573 

 �̂�3 0.0382 0.0689 0.1777 0.4006 0.0791 0.0997 0.3295 0.5468 

 �̂�3𝑅 0.0385 0.0613 0.1504 0.3223 0.0814 0.0983 0.2923 0.4623 

 �̆�3 0.1944 0.2235 0.2138 0.3269 0.4902 0.4680 0.5887 0.5145 

GMSE �̂�1 0.3225 0.6437 1.8775 3.9901 0.5202 0.8167 1.9131 4.1134 

 �̂�1𝑅 0.3214 0.6458 1.8756 3.9981 0.5235 0.8207 1.9039 4.0861 

 �̂�2 0.2605 0.6247 1.8569 4.0876 0.4336 0.7699 2.1216 4.4723 

 �̂�2𝑅 0.2614 0.6248 1.8588 4.0784 0.4339 0.7662 2.1064 4.4637 
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4.2. Asymptotic normality 

In this subsection, we shall investigate the problem of asymptotic normality of the 

estimator �̂�(⋅)and the re-weighted estimator �̂�𝑅(⋅). Specifically, in Example 4.1, we 

take 𝛴𝜂 = 0.25𝐼3 and𝛾 = 2, 4 and 6, respectively. The sample size n  is chosen to be 

100 and the number of simulated realizations is 500. The other variables are chosen 

as that in Example 4.1. The histograms for �̂�1(0.5) and QQ-normality plots for re-

weighted estimator �̂�2𝑅(0.5) with𝛾 = 2, 4 and 6 are put in Figure 2. It can be seen 

from Figure 2 that the sampling distributions of the estimators fit the normal 

reasonably, this fit is better as decreasing the value of 𝛾 or increasing the sample size. 

 

Figure 2. Histograms of re-weighted estimator �̂�1𝑅(0.5) and QQ-normality plots of 

re-weighted estimator �̂�2𝑅(0.5) with 𝛾 = 2 (left), 𝛾=4 (center) and 𝛾=6 (right) 

4.3. Application to Boston housing data 

We analyze the data from Boston housing data (see Harrison and Rubinfeld, 1978) 

to illustrate the proposed methodology developed in this paper. The data set consists 

of the median value of owner-occupied homes in 506 US census tracts in the Boston 

area in 1970, together with several variables. Following Fan and Huang (2005), 

several explanatory variables are per capita crime rate by town (CRIM) denoted by 

𝑍2, nitric oxide concentration parts per 10 million (NOX) denoted by 𝑍3, average 

number of rooms per dwelling (RM) denoted by 𝑍4, full value property tax per $10000 

(TAX) denoted by 𝑍5, pupil-twacher ratio by town school district (PTRAIO) denoted 

by 𝑋1,proportion of owner-occupied units built prior to 1940 (AGE) denoted by 𝑋2 

and lower status of the population (LSTAT). Take 𝑍1 = 1 as the intercept term and 

𝑈 = √LSTAT . Based on the observations (𝑌; 𝑍1, 𝑍2, 𝑍3, 𝑍4, 𝑍5, 𝑋1, 𝑋2, 𝑈) , Fan and 

Huang (2005) employed the following semi-varying coefficient model: 𝑌 = 𝛽1𝑋1 +
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𝛽2𝑋2 + ∑ 𝛼𝑖
5
𝑖=1 (𝑈)𝑍𝑖 + 𝜀 to fit the given data. It is shown that the coefficient of 

2X  

is not significant at 0.01 significance level and the coefficient of 
1X  is 0.7199− . Due 

to some reasons, for example, some people did not remember the exact time, or for 

their own interests they gave the incorrect results whether their owner-occupied units 

were built prior to 1940. At the same time, for some reasons, some schools gave the 

wrong data of pupil-teacher ratio by town school district. Therefore, covariates 𝑋1 and 

𝑋2 may have measurement errors and the surrogate variable 𝜉 = (𝜉1, 𝜉2)𝑇  is observed 

by 𝜉 = 𝑋 + 𝜂 with 𝑋 = (𝑋1, 𝑋2)𝑇. 

To demonstrate the proposed approach, a sensitivity analysis is conducted, as 

mentioned in Lin and Carroll (2000). To estimate the measurement error covariance

Cov( ) , one either needs a validation study or replicates of AGE and PTRATIO 

count measures. Unfortunately, these are not available in the Boston housing data, and 

hence we can not estimate Cov(𝜂) by using the Boston housing data. Similar to Lin 

and Carroll (2000) who assumed that the variance of the measurement errors is 1/ 4  

and 1/2  and Feng and Xue (2014) who assumed the measurement error follows 

normal distribution (0,0.3)N , we here assume that Cov(𝜂)=diag(1,1) . Further 

more we assume the model errors are heteroscedastic which has the form 

Var(𝜀|𝑋, 𝑍, 𝑈) = 𝜎2(𝑈).  

The fitted values of the re-weighted estimators of 𝛽1 and 𝛽2 are 𝛽1 = −0.9985 

and 𝛽2 = −0.0072. It can be observed that 𝛽2 is nearly zero, so it can be conclude 

that the value of housing is almost not revelent to AGE (proportion of owner-occupied 

units built prior to 1940). Also, the estimated curves of 𝛼𝑖(𝑢) (𝑖 = 1, ⋯ ,5) with our 

proposed method and the estimation method of Fan and Huang (2005) are reported in 

Figure 3. The results indicate that more crowded school in the tracts often result in 

lower value of housing. 

 

Figure 3. The estimated curve �̂�2(𝑢) and the estimated curves for varying-

coefficient functions 𝛼𝑖
2(𝑢) (𝑖 = 1, ⋯ ,5) with our proposed method (dashed line) 

and the estimation method of Fan and Huang (2005) (solid line) 
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Appendix: Assumptions and Proofs 

For the convenience and simplicity, let 𝑋 = (𝑋1, ⋯ , 𝑋𝑛)𝑇 , 𝜀 = (𝜀1, ⋯ , 𝜀𝑛)𝑇 , 

1( , , )T

n  = , 

�̃� = (𝐼 − 𝑆)𝑋 , �̃� = (𝐼 − 𝑆)𝑀 , 𝜀̃ = (𝐼 − 𝑆)𝜀̃ , �̃� = (𝐼 − 𝑆)𝜂  and 𝐶  denote 

positive constant whose value may vary at each occurrence. Before proving the main 

theorems, we begin this section with making the following assumptions.  

(C1) The kernel 𝐾(⋅)is a symmetric and Lipschitz continuous function with a 

compact support [−1,1]. 

(C2) The matrixes 𝛤(𝑢)  and 𝛷(𝑢)  are non-singular, 𝐸[‖𝑍1‖2𝑠] < ∞ , 

𝐸[‖𝑋1‖2𝑠] < ∞ and 𝐸[‖𝜂1‖2𝑠] < ∞ for some 𝑠 > 2, where ‖ ⋅ ‖ is the 𝐿2 norm. 

(C3) The variable 𝑈 has a bounded support 𝒟 and its density function 𝑝(𝑢) > 0 

is Lipschitz continuous and has continuous second order derivative on 𝒟. 

(C4) {𝛼𝑗(⋅), 𝑗 = 1, ⋯ , 𝑞} have continuous second derivative. 

(C5) There exist a 𝛿 < 1 − 𝑠−1 such that 𝑙𝑖𝑚
𝑛→∞

𝑛2𝛿−1ℎ1 = ∞. 

(C6) The variance function 𝜎2(⋅)is uniformly bounded, bounded away from zero 

and has continuous second order derivative on its domain. 

(C7) The bandwidth ℎ1 satisfies that 𝑛ℎ1
2 → ∞, 𝑛ℎ1 → 0 and 𝑙𝑖𝑚

𝑛→∞

[𝑙𝑜𝑔(1/ℎ1)]2

𝑛ℎ1
= 0. 

(C8) The bandwidth ℎ2 satisfies that 𝑛ℎ2
2 → ∞, 𝑛ℎ2

8 → 0 and 𝑙𝑖𝑚
𝑛→∞

[𝑙𝑜𝑔(1/ℎ2)]2

𝑛ℎ2
= 0. 

Lemma A.1 Assume that conditions (C1)-(C4) are satisfied. Then 

𝑠𝑢𝑝
𝑢∈𝒟

1

𝑛ℎ1
∑ 𝐾𝑛

𝑖=1 (
𝑈𝑖−𝑢

ℎ1
)(

𝑈𝑖−𝑢

ℎ1
)𝑘𝑍𝑖𝑗1

𝑍𝑖𝑗2
= 𝑝(𝑢)𝛤𝑗1𝑗2

(𝑢)𝜇𝑘 + 𝑂{ℎ1
2 + (

𝑙𝑜𝑔 𝑛

𝑛ℎ1
)1/2} 𝑎. 𝑠. 

𝑠𝑢𝑝
𝑢∈𝒟

1

𝑛ℎ1
∑ 𝐾𝑛

𝑖=1 (
𝑈𝑖−𝑢

ℎ1
)(

𝑈𝑖−𝑢

ℎ1
)𝑘𝑍𝑖𝑗𝜀𝑖 = 𝑂{(

𝑙𝑜𝑔 𝑛

𝑛ℎ1
)1/2} 𝑎. 𝑠. 

where 𝑗, 𝑗1, 𝑗2 = 1, ⋯ , 𝑞 , 0,1,2,4k =  and 𝛤𝑗1𝑗2
(𝑈)  is the (𝑗1, 𝑗2)𝑡ℎ  element of 

𝛤(𝑈). 

Lemma A.1 can be proved as Lemma A.2 in Xia and Li (1999). 

Lemma A.2 (Mack and Silverman, 1982, Theorem B) Let (�̃�1, �̃�1), ⋯ , (�̃�𝑛, �̃�𝑛) 

be independent and identical distributed random vectors. Further assume there exists 

an 𝑠 > 2  which satisfies 𝐸|�̃�|𝑠 < ∞ and 𝑠𝑢𝑝
𝑥

∫ | 𝑦|𝑠𝑓(𝑥, 𝑦)𝑑𝑦 < ∞ , where 𝑓(⋅,⋅

) denotes the joint probability density of (�̃�, �̃�) . 𝐾(⋅) > 0  is a bounded positive 

function with a bounded compact support and satisfies the Lipschitz condition. Given 

that 𝑙𝑖𝑚
𝑛→∞

𝑛2𝛿−1ℎ = ∞ for some 𝛿 < 1 − 𝑠−1 , then 𝑠𝑢𝑝
𝑥

|
∑ 𝐾ℎ

𝑛
𝑖=1 (�̃�𝑖−𝑥)(�̃�𝑖−𝐸�̃�𝑖)

∑ 𝐾ℎ
𝑛
𝑗=1 (�̃�𝑖−𝑥)

| =

𝑂𝑝[(
𝑙𝑜𝑔(1/ℎ)

𝑛ℎ
)1/2]. 
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Lemma A.3 (You and Chen, 2006, Lemma A.2) Let 𝐷1, ⋯ , 𝐷𝑛  be i.i.d. random 

variables. If 𝐸|𝐷1|𝑠 < ∞for 𝑠 > 1, then 𝑚𝑎𝑥1𝑖𝑛 |𝐷𝑖| = 𝑜(𝑛1/𝑠) 𝑎. 𝑠. 

Lemma A.4 (Chiou and Muller, 1999, Lemma 4.1) Suppose that conditions 

(C1)-(C8) hold. Then 

𝑠𝑢𝑝
𝑢∈𝒟

| ∑ 𝑊ℎ2𝑖
𝑛
𝑖=1 (𝑢)𝜀𝑖

2 − 𝜎2(𝑢)| = 𝑂𝑝(𝑏𝑛), where 𝑊ℎ2𝑖(𝑢) is defined in (2.4). 

Lemma A.5 Suppose that conditions (C1)-(C7) hold. Then 

𝑛−1𝜉𝑇𝜉 →
𝑝

𝛴𝜂 + 𝛴1                                                                                            (A.1) 

𝑛−1𝜉𝑇�̂�𝜎
−1𝜉 −

1

𝑛
∑ �̂�−2𝑛

𝑖=1 (𝑈𝑖)𝛴𝜂 = 𝑛−1�̃�𝑇𝛴𝜎
−1�̃� + 𝑂𝑝(𝑐𝑛),                            (A.2) 

as 𝑛 → ∞, where 
1  is defined in Theorem 3.2. 

Proof. We first establish equation (A.1). Observe that 𝑛−1𝜉𝑇𝜉 =
1

𝑛
∑ (�̃�𝑖 +𝑛

𝑖=1

𝜂𝑖 − 𝑆𝑖
𝑇𝜂)(�̃�𝑖 + 𝜂𝑖 − 𝑆𝑖

𝑇𝜂)𝑇 . 

Similar to the proof of (A.6) and (A.9) in Shen et al. (2014), we can derive �̃�𝑖 =
[𝑋𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖]{1 + 𝑂𝑝(𝑐𝑛)} = 𝜓𝑖{1 + 𝑂𝑝(𝑐𝑛)},  

𝜀�̃� = 𝜀𝑖 + 𝑂𝑝(𝑐𝑛)  and �̃�𝑖 = 𝜂𝑖 + 𝑂𝑝(𝑐𝑛).                                                            (A.3) 

Note that {𝜓𝑖 , 𝑖 = 1, ⋯ , 𝑛} is independent and identical distributed, then together 

with (A.3), we have 

𝑛−1𝜉𝑇𝜉 =
1

𝑛
∑ [𝑛

𝑖=1 𝜓𝑖{1 + 𝑂𝑝(𝑐𝑛)} + 𝜂𝑖 + 𝑂𝑝(𝑐𝑛)][𝜓𝑖{1 + 𝑂𝑝(𝑐𝑛)} + 𝜂𝑖 +

𝑂𝑝(𝑐𝑛)]𝑇 =
1

𝑛
∑ (𝜓𝑖𝜓𝑖

𝑇 + 𝜂𝑖 + 𝜂𝑖
𝑇) + 𝑜𝑝(1)𝑛

𝑖=1 = 𝐸(𝜓1𝜓1
𝑇) + 𝛴𝜂, which proves (A.1). 

On the other hand, in order to prove (A.2), we denote 𝜓 = (𝜓1, ⋯ , 𝜓𝑛)𝑇. Then by 

equation (A.3) and Theorem3.1, it follows that 𝑛−1𝜉𝑇�̂�𝜎
−1𝜉 −

1

𝑛
∑ �̂�−2𝑛

𝑖=1 (𝑈𝑖)𝛴𝜂 =

𝑛−1(�̃� + �̃�)𝑇�̂�𝜎
−1(�̃� + �̃�) −

1

𝑛
∑ �̂�−2𝑛

𝑖=1 (𝑈𝑖)𝛴𝜂 = 𝑛−1�̃�𝑇𝛴𝜎
−1�̃� + 𝑛−1�̃�𝑇(�̂�𝜎

−1 −

𝛴𝜎
−1)�̃� + 𝑛−1𝜂𝑇𝛴𝜎

−1𝜂 −
1

𝑛
∑ �̂�−2𝑛

𝑖=1 (𝑈𝑖)𝛴𝜂 + 𝑂𝑝(𝑐𝑛) = 𝑛−1�̃�𝑇𝛴𝜎
−1�̃� + 𝛴𝜂 ⋅

1

𝑛
∑ (𝜎−2(𝑛

𝑖=1 𝑈𝑖) − �̂�−2(𝑈𝑖)) + 𝑂𝑝(𝑐𝑛) = 𝑛−1�̃�𝑇𝛴𝜎
−1�̃� + 𝑂𝑝(𝑐𝑛), which gives (A.2). 

Thus, the proof of Lemma A.5 is completed. 

Proof of Theorem 3.1. Denote �̃�(𝑢) = diag(𝑊ℎ21(𝑢), ⋯ , 𝑊ℎ2𝑛(𝑢)) , where 

𝑊ℎ2𝑖(𝑢) is defined in (2.4). Then by (2.3) and note 𝜉 = 𝑋 + 𝜂, we obtain �̂�2(𝑢) =

𝜀̂𝑇�̃�(𝑢)𝜀̂ − �̂�𝑇𝛴𝜂�̂� = (𝑌 − 𝜉�̂� − �̂�)𝑇�̃�(𝑢)(𝑌 − 𝜉�̂� − �̂�) − �̂�𝑇𝛴𝜂�̂� = [𝜀 + 𝑋(𝛽 −

�̂�) − 𝜂�̂� + (𝑀 − �̂�)]𝑇�̃�(𝑢)[𝜀 + 𝑋(𝛽 − �̂�) − 𝜂�̂� + (𝑀 − �̂�)] − �̂�𝑇𝛴𝜂�̂� =

𝜀𝑇�̃�(𝑢)𝜀 − 2(�̂� − 𝑀)𝑇�̃�(𝑢)𝜀 − 2[𝑋(�̂� − 𝛽)]𝑇�̃�(𝑢)𝜀 + [𝑋(�̂� −

𝛽)]𝑇�̃�(𝑢)[𝑋(�̂� − 𝛽)] + 2(�̂� − 𝑀)𝑇�̃�(𝑢)𝑋(�̂� − 𝛽) + (�̂� − 𝑀)𝑇�̃�(𝑢)(�̂� − 𝑀) −

2(𝜂�̂�)𝑇�̃�(𝑢)𝜀 + 2(𝜂�̂�)𝑇�̃�(𝑢)𝑋(�̂� − 𝛽) + 2(𝜂�̂�)𝑇�̃�(𝑢)(�̂� − 𝑀) +

(𝜂�̂�)𝑇�̃�(𝑢)𝜂�̂� − �̂�𝑇𝛴𝜂�̂�: = ∑ 𝐷𝑖
10
𝑖=1 . 
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Lemma A.4 implies that 𝑠𝑢𝑝
𝑢∈𝒟

|𝐷1 − 𝜎2(𝑢)| = 𝑂𝑝(𝑏𝑛). From Theorem 3.5 in You 

and Chen (2006), we have 𝑠𝑢𝑝
𝑢∈𝒟

‖�̂�(𝑢) − 𝛼(𝑢)‖ = 𝑂(𝑐𝑛) 𝑎. 𝑠., where 𝟏𝑞×1 denotes a 

column vector of order q  whose entities are all ones. By noting 𝑀𝑖 = 𝑍𝑖
𝑇𝛼(𝑈𝑖) 

and�̂�𝑖 = 𝑍𝑖
𝑇�̂�(𝑈𝑖), it follows that 

�̂�𝑖 − 𝑀𝑖 = 𝑂𝑝(𝑐𝑛), 𝑖 = 1, ⋯ , 𝑛.                                                                          (A.4) 

Then by Lemma A.2, we obtain that 𝑠𝑢𝑝
𝑢∈𝒟

|𝐷9 + 𝐷10| =

𝑠𝑢𝑝
𝑢∈𝒟

|
∑ 𝐾ℎ2

𝑛
𝑗=1 (𝑋𝑗−𝑥)(𝜂𝑗𝜂𝑗

𝑇−𝛴𝜂)

∑ 𝐾ℎ2
𝑛
𝑗=1 (𝑋𝑗−𝑥)

| = 𝑂𝑝(𝑏𝑛). 

Similarly, we can easily get that 𝑠𝑢𝑝
𝑢∈𝒟

|𝐷𝑖| = 𝑂𝑝(𝑏𝑛), 𝑖 = 2, ⋯ ,8, 

which completes the proof of Theorem 3.1.   

Proof of Theorem 3.2. Let 𝛻 = ∑ 𝜉𝑖
𝑛
𝑖=1 𝜉𝑖

𝑇 − 𝑛𝛴𝜂 . Similar to the proof of 

Theorem 3.1 in Fan et al. (2013), we write 

�̂� − 𝛽 = 𝛻−1𝑛𝛴𝜂𝛽 + 𝛻−1 ∑ 𝜉𝑖
𝑛
𝑖=1 (�̃�𝑖 − 𝜉𝑖

𝑇𝛽) = 𝛻−1𝑛𝛴𝜂𝛽 + 𝛻−1 ∑ (�̃�𝑖 +𝑛
𝑖=1

�̃�𝑖)(�̃�𝑖 + 𝜀�̃� − �̃�𝑖
𝑇𝛽).                                                                                                (A.5) 

From equation (A.3) and condition (C7), one can derive that 

1

√𝑛
∑ �̃�𝑖𝜀�̃�

𝑛
𝑖=1 =

1

√𝑛
∑ [𝑛

𝑖=1 𝑋𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖]{1 + 𝑂𝑝(𝑐𝑛)} ⋅ {𝜀𝑖 + 𝑂𝑝(𝑐𝑛)} =
1

√𝑛
∑ [𝑛

𝑖=1 𝑋𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖]𝜀𝑖 + 𝑜𝑝(1)                                                             (A.6) 

Similar to the proof of (A.6), from (A.3)-(A.4) and conditions (C7)-(C8), it is 

easily to prove that 

1

√𝑛
∑ �̃�𝑖�̃�𝑖

𝑇𝑛
𝑖=1 =

1

√𝑛
∑ [𝑛

𝑖=1 𝑋𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖]𝜂𝑖
𝑇 + 𝑜𝑝(1),  

1

√𝑛
∑ �̃�𝑖

𝑛
𝑖=1 𝜀�̃� =

1

√𝑛
∑ 𝜂𝑖

𝑛
𝑖=1 𝜀𝑖 + 𝑜𝑝(1),  

1

√𝑛
∑ �̃�𝑖

𝑛
𝑖=1 �̃�𝑖

𝑇 =
1

√𝑛
∑ 𝜂𝑖

𝑛
𝑖=1 𝜂𝑖

𝑇 + 𝑜𝑝(1),  
1

√𝑛
∑ �̃�𝑖

𝑛
𝑖=1 �̃�𝑖 = 𝑜𝑝(1) 

and 
1

√𝑛
∑ �̃�𝑖

𝑛
𝑖=1 �̃�𝑖 = 𝑜𝑝(1), which together with equation (A.5) yield that  

√𝑛(�̂� − 𝛽) = (
𝛻

𝑛
)−1 1

√𝑛
∑ {𝑛

𝑖=1 [𝑋𝑖 + 𝜂𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖](𝜀𝑖 − 𝜂𝑖
𝑇𝛽) +

𝛴𝜂𝛽} + 𝑜𝑝(1).                                                                                                                     (A.7) 

Note that {[𝑋𝑖 + 𝜂𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖](𝜀𝑖 − 𝜂𝑖
𝑇𝛽) + 𝛴𝜂𝛽, 𝑖 = 1, ⋯ , 𝑛}  is 

independent and identical distributed with mean zero. Thus 

Var{
1

√𝑛
∑ [𝑛

𝑖=1 (𝑋𝑖 + 𝜂𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖)(𝜀𝑖 − 𝜂𝑖
𝑇𝛽) + 𝛴𝜂𝛽]} = 𝐸[(𝑋𝑖 + 𝜂𝑖 −

𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖)(𝜀𝑖 − 𝜂𝑖
𝑇𝛽) + 𝛴𝜂𝛽]⊗2 = 𝛴2,  

Then, applying central limit theorem, we have 

1

√𝑛
∑ {𝑛

𝑖=1 [𝑋𝑖 + 𝜂𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖](𝜀𝑖 − 𝜂𝑖
𝑇𝛽) + 𝛴𝜂𝛽} →

𝑑
𝑁(0, 𝛴2),  
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which combining with Lemma A.4, equation (A.7) and the Slutsky theorem lead 

to the asymptotic normality for �̂�. 

By Lemma A.4 and the proof of the asymptotic normality of  , one can easy to 

obtain the consistency of �̂�1
−1�̂�2�̂�1

−1.  

Proof of Theorem 3.3. Denote �̂�𝑇 = (�̃�𝑇𝛴𝜎
−1�̃�)−1𝜉𝑇𝛴𝜎

−1�̃�. We first establish 

√𝑛(�̂�𝑅 − 𝛽) = √𝑛(�̂�𝑇 − 𝛽) + 𝑜𝑝(1).                                                               (A.8) 

Obviously, in order to prove (A.8), we need only to show that 

√𝑛(�̂�𝑅 − �̂�𝑇) = 𝑜𝑝(1).                                                                                      (A.9) 

By the definition of �̂�𝑅 , we have √𝑛(�̂�𝑅 − �̂�𝑇) = √𝑛{[𝜉𝑇�̂�𝜎
−1𝜉 −

∑ �̂�−2𝑛
𝑖=1 (𝑈𝑖)𝛴𝜂]−1𝜉𝑇�̂�𝜎

−1�̃� − (�̃�𝑇𝛴𝜎
−1�̃�)−1𝜉𝑇𝛴𝜎

−1�̃�} = √𝑛{[𝜉𝑇�̂�𝜎
−1𝜉 −

∑ �̂�−2𝑛
𝑖=1 (𝑈𝑖)𝛴𝜂]−1 − (�̃�𝑇𝛴𝜎

−1�̃�)−1}𝜉𝑇�̂�𝜎
−1(�̃�𝛽 + �̃� + 𝜀̃) +

√𝑛(�̃�𝑇𝛴𝜎
−1�̃�)−1(𝜉𝑇𝛴𝜎

−1̂ − 𝜉𝑇𝛴𝜎
−1)(�̃�𝛽 + �̃� + 𝜀̃)  

Then according to Theorem 3.1 and Lemma A.5, we can easily get (A.9). 

Analogously to the proof 

of Theorem 3.2, one can obtain that  

√𝑛(�̂�𝑇 − 𝛽) = (
�̃�𝑇𝛴𝜎

−1�̃�

𝑛
)−1 1

√𝑛
∑ {𝑛

𝑖=1 [𝑋𝑖 + 𝜂𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖]𝜎−2(𝑈𝑖)(𝜀𝑖 −

𝜂𝑖
𝑇𝛽) + 𝛴𝜂𝛽𝜎−2(𝑈𝑖)} + 𝑜𝑝(1)  

By (A.3)-(A.4), 𝑛−1�̃�𝑇𝛴𝜎
−1�̃� = 𝐸[𝜓1𝜓1

𝑇𝜎−2(𝑈1)] + 𝑜𝑝(1)  and𝐸(𝜀𝑖|𝑋𝑖 , 𝑍𝑖 , 𝑈𝑖) =

0, we can derive that 

(
�̃�𝑇𝛴𝜎

−1�̃�

𝑛
)−1 1

√𝑛
∑ {𝑛

𝑖=1 [𝑋𝑖 + 𝜂𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖]𝜎−2(𝑈𝑖)(𝜀𝑖 − 𝜂𝑖
𝑇𝛽) +

𝛴𝜂𝛽𝜎−2(𝑈𝑖)} →
𝑑

𝑁(0, 𝛴1𝑅
−1𝛴2𝑅𝛴1𝑅

−1) as 𝑛 → ∞. 

Thus, √𝑛(�̂�𝑅 − 𝛽) →
𝑑

𝑁(0, 𝛴1𝑅
−1𝛴2𝑅𝛴1𝑅

−1) . By Lemma A.4 and the proof of the 

asymptotic normality of �̂�𝑅, one can easy to obtain the consistency of �̂�1𝑅
−1�̂�2𝑅�̂�1𝑅

−1. 

Proof of Theorem 3.4. Denote 𝐴𝑖 = [𝑋𝑖 + 𝜂𝑖 − 𝛷𝑇(𝑈𝑖)𝛤−1(𝑈𝑖)𝑍𝑖](𝜀𝑖 − 𝜂𝑖
𝑇𝛽) +

𝛴𝜂𝛽, 𝐴 = (𝐴1, ⋯ , 𝐴𝑛)𝑇 and 𝜓 = (𝜓1, ⋯ , 𝜓𝑛)𝑇. Then from the proof of Theorem 3.2 

and Theorem3.3, we have 

𝛴1
−1𝛴2𝛴1

−1 = {𝐸(𝜓1𝜓1
𝑇)}−1𝐸(𝐴𝑖𝐴𝑖

𝑇){𝐸(𝜓1𝜓1
𝑇)}−1 =

(𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ 𝜓𝑖

𝑛
𝑖=1 𝜓𝑖

𝑇)−1(𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ 𝐴𝑖

𝑛
𝑖=1 𝐴𝑖

𝑇)(𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ 𝜓𝑖

𝑛
𝑖=1 𝜓𝑖

𝑇)−1 =

𝑛(𝜓𝑇𝜓)−1𝐴𝑇𝐴(𝜓𝑇𝜓)−1  

And 
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𝛴1𝑅
−1𝛴2𝑅𝛴1𝑅

−1 =

(𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ 𝜓𝑖

𝑛
𝑖=1 𝜓𝑖

𝑇𝜎−2(𝑈𝑖))−1(𝑙𝑖𝑚
𝑛→∞

∑ 𝐴𝑖
𝑛
𝑖=1 𝐴𝑖

𝑇𝜎−4(𝑈𝑖))(𝑙𝑖𝑚
𝑛→∞

1

𝑛
∑ 𝜓𝑖

𝑛
𝑖=1 𝜓𝑖

𝑇𝜎−2(𝑈𝑖))−1 =

(𝜓𝑇𝛴𝜎
−1𝜓)−1𝐴𝑇𝛴𝜎

−2𝐴(𝜓𝑇𝛴𝜎
−1𝜓)−1. 

For any given p -dimensional vector a , we find 

𝒂𝑇(𝜓𝑇𝜓)−1𝐴𝑇𝐴(𝜓𝑇𝜓)−1𝒂 = ‖𝐴(𝜓𝑇𝜓)−1𝒂‖2 = ‖𝐴(𝜓𝑇𝜓)−1𝒂 −
𝛴𝜎

−1𝐴(𝜓𝑇𝛴𝜎
−1𝜓)−1𝒂 + 𝛴𝜎

−1𝐴(𝜓𝑇𝛴𝜎
−1𝜓)−1𝒂‖2 = ‖𝐴(𝜓𝑇𝜓)−1𝒂 −

𝛴𝜎
−1𝐴(𝜓𝑇𝛴𝜎

−1𝜓)−1𝒂‖2 + ‖𝛴𝜎
−1𝐴(𝜓𝑇𝛴𝜎

−1𝜓)−1𝒂‖2 +
2𝒂𝑇(𝜓𝑇𝛴𝜎

−1𝜓)−1𝐴𝑇𝛴𝜎
−1[𝐴(𝜓𝑇𝜓)−1𝒂 − 𝛴𝜎

−1𝐴(𝜓𝑇𝛴𝜎
−1𝜓)−1𝒂 = ‖𝐴(𝜓𝑇𝜓)−1𝒂 −

𝛴𝜎
−1𝐴(𝜓𝑇𝛴𝜎

−1𝜓)−1𝒂‖2 + ‖𝛴𝜎
−1𝐴(𝜓𝑇𝛴𝜎

−1𝜓)−1𝒂‖2 ≥ ‖𝛴𝜎
−1𝐴(𝜓𝑇𝛴𝜎

−1𝜓)−1𝒂‖2 =
𝒂𝑇(𝜓𝑇𝛴𝜎

−1𝜓)−1𝐴𝑇𝛴𝜎
−2𝐴(𝜓𝑇𝛴𝜎

−1𝜓)−1𝒂, which implies that 𝛴1
−1𝛴2𝛴1

−1 ≥ 𝛴1𝑅
−1𝛴2𝑅𝛴1𝑅

−1 

and the proof of Theorem 3.4 is finished. 

Proof of Theorem 3.5. By the definition of �̂�(𝑢), similar to the proof of Theorem 

3.4 in 

Fan et al. (2013), we have �̂�(𝑢) − 𝛼(𝑢) =

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)(𝑌 − 𝜉�̂�) − 𝛼(𝑢) =

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)[𝑀 − 𝑍𝛼(𝑢)] +

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)𝜉(𝛽 − �̂�) −

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)𝜂𝛽 +

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)𝜀. 

Note that ‖𝛽 − �̂�‖ = 𝑂𝑝(𝑛−1/2) by Theorem 3.2. This, in conjunction with (A.2) 

and (A.4) in Shen et al. (2014) yields that 

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)𝜉(𝛽 − �̂�) =

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)𝑋(𝛽 − �̂�) +

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)𝜂(𝛽 − �̂�) = 𝟏𝑞×1𝑂𝑝(𝑛−1/2). 

Furthermore, by standard argument for local linear estimator, we have 

𝑠𝑢𝑝
𝑢∈𝒟

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)[𝑀 − 𝑍𝛼(𝑢)] = 𝟏𝑞×1𝑂𝑝(ℎ1
2). 

(A.9) in Shen et al. (2014) implies that 

(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)𝜀 = 𝟏𝑞×1𝑂𝑝(𝑐𝑛). 

Similarly, we can derive (𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)𝜂 =

𝟏𝑞×1𝑂𝑝(𝑐𝑛). 

Therefore, we have 𝑠𝑢𝑝
𝑢∈𝒟

‖�̂�(𝑡) − 𝛼(𝑡)‖ = 𝑂𝑝(𝑐𝑛). 

By using the same method and together with Theorem 3.3, yields that 

𝑠𝑢𝑝
𝑢∈𝒟

‖�̂�𝑅(𝑢) − 𝛼(𝑢)‖ = 𝑂𝑝(𝑐𝑛). 

Thus the proof of Theorem 3.5 is completed.   
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Proof of Theorem 3.6. By the Taylor expansion and a direct simplification, one 

can derive 

𝑀 = (

𝑍1
𝑇𝛼(𝑢) + (𝑈1 − 𝑢)𝑍1

𝑇𝛼 ′(𝑢) +
1

2
(𝑈1 − 𝑢)2𝑍1

𝑇𝛼 ′′(𝑢)

⋮

𝑍𝑛
𝑇𝛼(𝑢) + (𝑈𝑛 − 𝑢)𝑍𝑛

𝑇𝛼 ′(𝑢) +
1

2
(𝑈𝑛 − 𝑢)2𝑍𝑛

𝑇𝛼 ′′(𝑢)

) + 𝑜(ℎ
2).  

Then according to the proof of Theorem 3.4, conditions (C1)-(C4) and Theorem 

3.2, we have 

√𝑛ℎ1{�̂�(𝑢) − 𝛼(𝑢) − [
1

2
ℎ1

2𝜇2𝛼 ′′(𝑢) + 𝑜𝑝(ℎ1
2)]} =

√𝑛ℎ1(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)(𝜀 − 𝜂𝛽) + 𝑜𝑝(1).                    (A.10) 

Denote 
1

√𝑛ℎ
∑ 𝐾𝑛

𝑖=1 (
𝑈𝑖−𝑢

ℎ
)𝑍𝑖(𝜀𝑖 − 𝜂𝑖

𝑇𝛽) = ℋ.It is easy to obtain the conditional 

expectation and variance on  that 

𝐸(ℋ|𝒟) = 0 and Var(ℋ|𝒟) = 𝑣0𝛤−1(𝑢)(𝜎2(𝑢) + 𝛽𝑇𝛴𝜂𝛽)𝑝(𝑢).              (A.11) 

(A.2) in Shen et al. (2014) implies that 𝑛−1𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢) = 𝑝(𝑢)𝛤(𝑢) ⊗

(
1 0
0 𝜇2

){1 + 𝑂𝑝(𝑐𝑛)}. 

This, in conjunction with the (A.11) the Slutsky and central limit theorems yields 

that √𝑛ℎ1(𝐼𝑞 , 0𝑞)[𝐷𝑇(𝑢)𝑊(𝑢)𝐷(𝑢)]−1𝐷𝑇(𝑢)𝑊(𝑢)(𝜀 −

𝜂𝛽) →
𝑑

𝑁(0, 𝑣0𝛤−1(𝑢)(𝜎2(𝑢) + 𝛽𝑇𝛴𝜂𝛽)𝑝−1(𝑢)),  which together with (A.10) and 

the Slutsky theorem gives the result of Theorem 3.6.  

Since the proof of Theorem 3.7 is analogous to that of Theorem 3.6, we omit the 

details here. 


