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 Point cloud processing is a struggled field because the points in the clouds are three-

dimensional and irregular distributed signals. For this reason, the points in the point clouds 

are mostly sampled into regularly distributed voxels in the literature. Voxelization as a 

pretreatment significantly accelerates the process of segmenting surfaces. The geometric 

cues such as plane directions (normals) in the voxels are mostly used to segment the local 

surfaces. However, the sampling process may include a non-planar point group (patch), 

which is mostly on the edges and corners, in a voxel. These voxels can cause misleading the 

segmentation process. In this paper, we separate the non-planar patches into planar sub-

patches using k-means clustering. The largest one among the planar sub-patches replaces 

the normal and barycenter properties of the voxel with those of itself. We have tested this 

process in a successful point cloud segmentation method and measure the effects of the 

proposed method on two point cloud segmentation datasets (Mosque and Train Station). The 

method increases the accuracy success of the Mosque dataset from 83.84% to 87.86% and 

that of the Train Station dataset from 85.36% to 87.07%. 
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1. INTRODUCTION 

 

3D point clouds are unorganized data whose elements 

(points) are spatially located in three-dimensional space [1, 2]. 

These data are obtained from the surfaces of real-life 

environments, structures, and objects via laser scanners. 

Meaningful information at a high level can be extracted from 

the cluttered surface points by processing the data with 

effective methods. Processing of the point clouds is a subject 

of interest in the fields of computer science, photogrammetry, 

remote sensing, architecture, archaeology, and robotic. 

Through the processing of point clouds; objects, structures, 

and environments can be modeled in digital environments and, 

many real-life problems can be solved automatically [3-10]. 

The surface normal of a point group signifies the inclination 

of their fitting plane in the 3D spatial space [11]. The local 

plane inclinations (represented by local surface normals) and 

the tangent vector of the estimated common plane of two 

adjacent point groups (represented by the vectors between the 

barycenters of the adjacent local point groups) are some 

geometric features used as the basis for the segmentation 

process through many methods in the literature [12, 13]. These 

local features, which compose the surface gradients, are 

estimated by using neighboring point groups. In the literature, 

this neighborhood is obtained generally via two approaches 

which are computing the nearest neighbors for each point and 

grouping the points into cubic volumes (voxels) of a regular 

grid structure (voxelization) [14]. The voxelization approach 

has some advantages [15]. Firstly, the local point groups are 

determined faster than the nearest neighboring approach, and 

reaching the nearby groups is easy due to the regular indexing 

of the voxels. Besides these advantages, due to the noise and 

dense points in voxels are suppressed, the data to be evaluated 

in the segmentation process is reduced by avoiding paying 

attention to similar points one by one in very dense regions. 

The octree organized hierarchical dividing is mostly used 

voxelization technique in the literature because of the low 

memory usage and the indexing facilities [14, 16]. 

The voxelization process may come with some undesirable 

situations such as the voxels that fall on the points at the edges 

and corners of objects and structures. These voxels have not a 

planar feature, and thus the point groups (patches) in these 

voxels are named as “non-planar patches” in this paper. A non-

planar patch comprises more than one small planar patch that 

belongs to a surface. In a voxel-based region growing point 

cloud segmentation process, these patches may cause a 

growing region to switch to another surface that shows 

different plane inclination. For this reason, the non-planar 

patches are divided into small planar patches with the k-means 

clustering algorithm. The normal and barycenter features of 

the voxel are replaced with the features of the largest small 

planar patch obtained after the clustering process. This process 

ensures the non-planar patch belongs to a surface more 

precisely. Before testing the non-planar patches fitted to new 

planes in a voxel-based segmentation algorithm, firstly the 

voxel-based point cloud segmentation algorithms are reviewed 

in the following paragraphs. 

A non-planar local point group can significantly affect the 

segmentation of a large and important segment in a voxel-

based segmentation process. In this study, a refinement 

method that is named “refitting” is proposed as an intermediate 

process for voxel-based point cloud segmentation methods. 

This method firstly detects the non-planar local surfaces on the 

edges and corners and then, clusters these surfaces into planar 
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sub-surfaces with a clustering method. In our experiments, this 

intermediate-process saves the boundaries of some important 

segments and increases the segmentation successes on the 

dataset used in the experiments. On the other hand, this 

process extends the duration of the segmentation, but not much 

compared to the normal duration. The extended time depends 

on the number of non-planar patches in the data and clustering 

sensitivity. 

In many methods in the literature, the points in the clouds 

are voxelized as a pre-processing stage. Wang and Tseng [17] 

divide the point cloud by using the octree structure until each 

leaf node of the octree has plane features in their method. The 

planar point groups are seen as the vertices and, the 

connections between the adjacent groups are weighted by 

using the angles of normal vectors of the vertices. The weights 

that are higher than the specified criterion is cut. Vo et al. [14] 

improved a voxel-based region growing algorithm by using 

the surface normal in the weight measurements of the 

connections between adjacent voxels. Bassier et al. [18] 

proposed another voxel-based region growing algorithm by 

using the surface normal and the RGB color values in two 

separate weight measurements. Xu et al. [19] improved edge 

weight measurements composed with the surface normals, the 

vector between the barycenters, and the spatial distances of the 

voxels in their algorithm "Voxel and Graph-based 

Segmentation" (VGS). Saglam et al. [20] proposed a voxel-

based segmentation method that uses only the normal and 

barycenter features of the voxels in their algorithm “Boundary 

Constrained Voxel Segmentation” (BCVS). 

The supervoxel-based approaches are also prevalent in the 

literature. A supervoxel consists of spatially close voxels that 

are similar to each other according to some specified features. 

Papon et al. [21] used the CIELAB color value differences 

between the adjacent voxels as the weight value of the 

connections to compose the super voxels in the first level 

segmentation of their method “Voxel Cloud Connectivity 

Segmentation” (VCCS). In the second level segmentation, 

they merged the supervoxels using the spatial coordinates, 

color values, and the 33 elements of “Fast Point Feature 

Histograms” (FPFH) defined in Rusu’s study [22]. Stein et al. 

[23] extended the VCCS method in their method “Local 

Convex Connected Patches” (LCCP). They used the surface 

normals in the weight values when composing the supervoxels. 

In the second level segmentation, they used a convexity 

criterion to merge the supervoxels. Zhu et al. [24] composed 

the supervoxels by using the surface normals, the barycenters, 

and the RGB color values in their weight measurement. 

Verdoja et al. [25] used the surface normals and the vectors 

between the barycenters to compose the supervoxels. Xu et al. 

[19] improved the VGS algorithm by using the supervoxels in 

their algorithm “Supervoxel- and Graph-based Segmentation” 

(SVGS). 

In the literature, there are also some refinement methods. 

Vo et al. refine the points in the boundary voxels after the 

segmentation process. This method accomplishes the 

refinement at the end of the segmentation. Therefore, their 

refinement affects segmentation success slightly [14]. Li and 

Sun [26] refine the points to the nodes that represent the 

supervoxels by resampling the points iteratively with the k-NN 

algorithm. Jung et al. [27] fit the powerlines on some specific 

datasets using a re-clustering approach as refinement. Poux et 

al. refine the non-planar point groups after the segmentation 

process in their study [14, 28].  

In this paper, the BCVS algorithm is used to test the 

proposed refitting method as the test segmentation method 

because of its success and speed of operation and needing only 

one parameter in addition to the parameter of voxel size [20]. 

In Section 2, the surface normals of the patches and the 

BCVS segmentation method are mentioned as preliminaries. 

In Section 3, the proposed refitting method for non-planar 

patched is explained. In Section 4, the proposed method is 

tested on two point cloud segmentation datasets using the 

BCVS algorithm, and the segmentation success as without 

refitting and with refitting are compared based on accuracy 

values and visual outputs. 

 

 

2. PRELIMINARIES 

 

In this section, some preliminary information about the 

surface normals of patches and the inherent voxel-based 

segmentation method used the experiments is mentioned. To 

understand the proposed plane refitting method, understanding 

of the geometrical expressions of local surface structures of 

points and the BCVS method is an especially crucial issue. 

 

2.1 Surface normals of the patches 

 

The local surface normal of the patch in a voxel can be 

estimated by utilizing the Principle Component Analysis 

(PCA) [29, 30]. The PCA method estimates the principle 

distribution directions (eigenvectors) and the variances in 

those directions (eigenvalues) of the data in a multi-

dimensional space [3]. The PCA procedure extracts three 

eigenvectors e1, e2 and e3 and three eigenvalues λ1≥λ2≥λ3 

(corresponding to the eigenvectors in the same order) from a 

point group in a 3D space. The normal vector n is represented 

by the eigenvector e3 corresponding to the smallest eigenvalue 

λ3. If the point group constitutes a planar structure, its normal 

vector is perpendicular to the plane surface as seen in Figure 

1. As seen in the figure, e1 is the orthogonal direction in which 

the points spread with the highest variation and e2 and e3 is the 

other orthogonal directions in which the points spread with the 

second and third highest variations and perpendicular to e1. 

 

 
 

Figure 1. The normal vector among the PCA eigenvectors 

 

Although the normals of two surfaces are parallel to each 

other, they can indicate the opposite directions. In order to 

rotate the normals onto the same aspect, an origin point and 

the barycenters of the voxels can be used [3, 20, 23, 25, 31]. If 

the angular difference between the unit normal vector of a 

voxel and the vector from the origin to the barycenter of the 

points in the voxel is higher than the angle 90°, the normal of 

the voxel is inverted, or vice versa. In this way, the angular 

differences between the normals can be up to 90°, because it 

is important that the inclinations of the vectors, not their 

directions as seen in Figure 2. If two vectors are parallel to 

each other but in opposite directions, nevertheless, the 

inclinational difference of the two vectors must be zero. 
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Figure 2. Setting the normal direction according to an origin 

 

Another situation in the normal calculation is the non-

surface voxels that do not have 3D surface properties. The 

patch in these voxels may exist in two forms. One is the 

patches that include less than three points [14, 32], and the 

other one is the patches that their points are sequenced linearly 

through a line [20]. Linear sequenced points can be determined 

by using the rate of 2 to 1 [33]. These non-surface voxels 

are marked as non-surface in implementation because weight 

values of the connections to these voxels from their adjacency 

voxels are computed in a different way as can be seen in the 

following subsection.  

 

2.2 The segmentation algorithm used in the experiments 

 

The BCVS algorithm [20] that is used to test the impact of 

the proposed intermediate process on the voxel-based 

segmentation process consists of some stages after the 

voxelization and normal estimation processes. The first stage 

is determining the connections between adjacent voxels, the 

second is weighting the connections according to the local 

geometric features, and the third is merging the voxels as long 

as the merging criteria are met until to create final segments. 

The connection determining process can be accomplished 

using the “Connected Component Labeling” (CCL) method 

[34]. The adjacent leaf voxels of all leaf voxels are determined 

by usually 26 neighborhood (3×3×3 frame by centering the 

query voxel) in our implementation like many 

implementations in the literature. 

To weight the connection between two adjacent voxels, the 

normals (𝑛𝑖 and 𝑛𝑗) of the voxels and the barycenters (𝑋𝑖 and 

𝑋𝑗) of the points in the voxels are used according to the source 

study [20]. One of the values, which is used in the weight 

measure, is the angle 𝜃𝑖𝑗 between the normals 𝑛𝑖 and 𝑛𝑗. The 

angle can be computed by Eq. (1). 

 

𝜃 = cos−1(𝑛𝑖 ∙ 𝑛𝑗) (1) 

 

The other value used in the weight measure is the average 

of the angles 𝛼𝑖 and 𝛼𝑗 between the patches and the vector 𝑑𝑖𝑗  

between 𝑋𝑖 and 𝑋𝑗 respectively as illustrated in Figure 3 (a). 

To obtain the two angles, firstly the angles 𝛽𝑖 and 𝛽𝑗 between 

the normal vectors and 𝑑𝑖𝑗  is computed (if any of these angles 

is largest than 90°, the angle is replaced with its supplementary 

to 180° shown in Figure 3 (b)) and then, the complementary 

angles of them to 90° give the angles 𝛼𝑖  and 𝛼𝑗 . After the 

angles 𝜃𝑖𝑗 , 𝛼𝑖  and 𝛼𝑗  are computed, the weight value 𝑤𝑖𝑗  is 

computed according to Eq. (2). 

 

𝑤𝑖𝑗 = min (𝜃𝑖𝑗 ,
𝛼𝑖 +  𝛼𝑗

2
) (2) 

 

 
 

Figure 3. Angles between the vectors 

 

Since the normals of the non-surface voxels cannot be 

computed, the weight value of the connections to these voxels 

can be computed using the angles 𝛼𝑖  and 𝛼𝑗 . Although they 

have not a normal vector, they have barycenter. In the 

weighting the connection between the voxels 𝑉𝑖 and 𝑉𝑗, if the 

𝑉𝑖 is non-surface, 𝑤𝑖𝑗  is 𝛼𝑗, or vice versa. If both of them are 

non-surface, the connection between them is removed. 

 

 

 
 

Figure 4. The datasets used in the experiments 
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In the merging stage, firstly the connections are listed 

according to their weight values in ascending order. Each 

voxel is initially assumed to be a segment. Starting the least 

weighted connection, the two segments at the ends of the 

connection are taken into consideration to merge them. In 

consideration, the boundary voxels between the two segments 

are determined at first. After that, the boundary voxels in the 

two segments are on-to-one paired mutually by the smallest 

weighted connection priority. If the all weight values of the 

connections between the voxels pairs are less than or equal the 

threshold parameter 𝜏𝑎𝑛𝑔, the segments are merged. If one of 

the two segments is a non-surface voxel, they are merged 

regardless of the merging criterion. A non-surface voxel can 

be merged once and is ignored in the future pairing processes. 

 

2.3 The segmentation datasets 

 

The two outdoor datasets Mosque and Train Station have 

been obtained from the study [20] and used in the tests of this 

work. The datasets have their segmentation ground-truth. The 

Mosque dataset includes 3,069,150 points, and its ground-

truth has 42 segments. On the other hand, the Train Station 

dataset includes 2,742,237 points, and its ground-truth has 106 

segments. In their source study, the voxel sizes of Mosque and 

Train Station are determined as 0.03 m and 0.045 m 

respectively. In the experiments of this work, the same values 

have been used as voxel size. In Figure 4, the original versions 

of the datasets and their colored ground truth are presented. 

 

 

3. PROPOSED PLANE REFITTING METHOD 

 

Determining the non-planar local points in the patches and 

refitting them are the main contributions of this paper. These 

processes are carried out before accomplishing the 

segmentation process in this paper, unlike some refinement 

methods in the literature. The plane refitting method proposed 

as an intermediate refinement process in this study consists of 

two stages. The first is determining the non-planar patches; 

and, the other is refitting the non-planar patches using the 

plane clustering process. 

 

3.1 Determining the non-planar patches 

 

 
 

Figure 5. The examples of non-planar patches 

 

In the literature, some point cloud segmentation algorithms 

[14, 32] split the point clouds by the octree-organization until 

the points in the octants reach the planar property. They use 

the standard deviation of the points from the fitting plane to 

decide that a point group is planar. In this work, this technique 

is used to determine whether a patch is planar or not. In the 

plane standard deviation and plane refitting stages, the non-

surface patches should not be included in these operations. To 

compute the standard deviation 𝜎𝑖 of a fitting plane, first the 

dot productions of the spatial coordinates of the points 𝑝𝑙
𝑖 , 

which is 𝑙th point in the voxel 𝑉𝑖 , and the barycenter 𝑋𝑖  of 

them with 𝑛𝑖 are calculated. In the way in Eq. (3) and (4), the 

normal axis values 𝑝𝑙
𝑖 and �⃗�𝑖 of them are obtained, and then 𝜎𝑖 

is calculated as in Eq. (5), where 𝑚𝑖 is the number of points in 

𝑉𝑖. If 𝜎𝑖 is bigger than the threshold parameter 𝜏𝜎 , 𝑉𝑖 is marked 

as non-planar as seen in Eq. (6). In Figure 5, some examples 

of non-planar patches can be seen on a point cloud sample 

obtained from the study [35]. 

 

�⃗�𝑖 = 𝑋𝑖 ∙ 𝑛𝑖 (3) 

 

𝑝𝑙
𝑖 = 𝑝𝑙

𝑖 ∙ 𝑛𝑖 (4) 

 

𝜎𝑖 = √
1

𝑘
∑(𝑝𝑙

𝑖 − �⃗�𝑖)
2

𝑚𝑖

𝑙

 (5) 

 

𝜎𝑖 > 𝜏𝜎𝑉𝑖 is non-planar (6) 

 

It is difficult to set the threshold value 𝜏𝜎  due to the point 

distribution change according to the data used. For this reason, 

the threshold selection is simplified in this work. To determine 

the threshold, the average standard deviation value 𝜎 

calculated in Eq. (7) is used. Instead of determining the value 

𝜏𝜎  in an ambiguous range for users, determining 𝑐 that refers 

to the Min-max [36] normalized 𝜏𝜎  in the ranges [0, 1] scaled 

from the range 𝜎  to 𝜎𝑚𝑎𝑥  (the maximum possible standard 

deviation) where 𝜏𝜎 > 𝜎 and [-1, 0] scaled from 0 to 𝜎 where 

𝜏𝜎 < 𝜎 helps users to determine a threshold value. The value 

𝜎𝑚𝑎𝑥  is the half of the farthest distance  in the voxel and 

calculated as in Eq. (8). The threshold parameter 𝑐 refers to the 

normalized form of 𝜏𝜎  as in Eqns. (9) and (10). 

 

𝜎 =
1

𝑚
∑ 𝜎𝑖

𝑚

𝑖

 (7) 

 

𝜎𝑚𝑎𝑥 =
√3 ∙ 𝑣𝑜𝑥𝑒𝑙 𝑠𝑖𝑧𝑒

2
 (8) 

 

𝑐 =
𝜏𝜎 − 𝜎

𝜎𝑚𝑎𝑥 − 𝜎
, 𝜏𝜎 > 𝜎 (9) 

 

𝑐 =
𝜏𝜎 − 𝜎

𝜎
, 𝜏𝜎 < 𝜎 (10) 

 

Instead of selecting 𝜏𝜎  by the user, selecting 𝑐 in the range 

[-1, 1] is pretty much easier. In our method, the parameter 𝜏𝜎  

is calculated as in Eq. (11). According to Eq. (11), 𝜏𝜎  would 

be 𝜎 where 𝑐 = 0. The case 𝑐 = 1 means that all of the voxels 

are planar. On the other hand, 𝑐 = −1 means that all of the 

voxels are non-planar. In Figure 6, the values 𝜎 and 𝜏𝜎  (where 

𝑐 = 0.05) are illustrated on the standard deviation histograms 

of the datasets Mosque and Train Station. 
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𝜏𝜎 = {

𝜎,                                 𝑐 = 0
𝜎 + 𝑐 ∙ (𝜎𝑚𝑎𝑥 − 𝜎), 𝑐 > 0

𝜎 ∙ (1 + 𝑐),                𝑐 < 0
 (11) 

 

 
 

Figure 6. The histograms of standard deviations of patches 

on two datasets 

 

After the threshold 𝜏𝜎  is obtained using the parameter 𝑐, the 

non-planar local points in the patched are determined by 

operating the comparison in Eq. (6) for each patch. 

 

3.2 Clustering-based plane refitting 

 

In this stage, the patches marked as non-planar in the 

previous stage are clustered to planar sub-patches. The normal 

and barycenter properties of the voxels are replaced with those 

of the largest sub-patch. The clustering process is performed 

using the k-means algorithm [37]. K-means algorithm clusters 

the data given up to k clusters iteratively. 

In traditional k-means clustering, appoint the data elements 

to the cluster whose cluster center is the nearest the element in 

each iteration, and the clusters and their centers are updated 

through the clustering until the termination criterion is 

satisfied [38]. In this work, the points are appointed to the 

clusters according to the proximity of the fitting planes of the 

clusters. In each iteration, the centers of normal axes (planes) 

of every cluster and the spatial coordinates of points on the 

normal axes are computed by the way in Eqns. (3) and (4). The 

points are appointed to the nearest plane and the clusters are 

redefined. The standard deviations of the new fitting planes of 

the clusters are computed. If all of the standard deviations of 

clusters are less than or equal to 𝜏𝜎  or the number of points is 

less than 3 (non-surface), the refitting is terminated and the 

normal of the largest cluster is assumed as the normal of the 

voxel. 

In the k-means clustering, the first operation is to determine 

the initial clusters. In this method, the initial clusters are 

determined by our specific method in this study. According to 

this method, the spatial coordinates of all points are transferred 

to the one-dimensional axis that stretches through the 

eigenvector corresponding to the highest eigenvalue. The new 

spatial values of the points through the axis are added to an 

empty list by sorting in ascending order. The list is divided into 

the 𝑘 equal parts, and each part represents an initial cluster. In 

Algorithm 1, the k-means plane clustering is sketched. 

The 𝑘  cluster number parameter is selected 2 as initial 

because it is most probable that the patch falls within an edge. 

If the termination criterion cannot be met in the specified 

number of iteration (40 in our experiments), there will be no 

refitting. In this case, the number 𝑘 is changed with 3 due to 

the probability that the patch may be in the corner, and the 

clustering process starts over as a second round. If the 

termination criteria cannot be reached in the second round, the 

refitting process ends without refitting. In Figure 7, the states 

of two example patches in several iterations are represented 

with gray level colors. 

 

 
 

Figure 7. The k-means plane clustering examples 
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4. EXPERIMENTAL RESULTS 

 

The experiments in this study were carried out using C++ 

programming language and performed on an Intel i9- 9900K 

CPU 3.6 GHz processor and 64GB of RAM. The segmentation 

successes of the two models which are the native BCVS and 

its extended version with the refitting process proposed in this 

study as an intermediate refinement method are compared in 

segmentation success and execution time.  

 

Algorithm 1. The k-means plane clustering 

Input: 𝑃 = {𝒑𝟏, 𝒑𝟐, 𝒑𝟑, ⋯ , 𝒑𝒎}, 𝑘 and 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 

1 ≥ 2 ≥ 3 ← the eigenvalues of 𝑃 

𝒆𝟏, 𝒆𝟐, 𝒆𝟑 ← the corresponding eigenvectors of 𝑃  

𝐿 ← ∅ 

𝑚 ← the size of 𝑃 

for 𝑙 ← 1 𝐭𝐨 𝑚 

        add  𝒑𝒍 ∙ 𝒆𝟏 to 𝐿 

sort 𝐿 in ascending order 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = {𝐶1, ⋯ , 𝐶𝑘} ←  the parts of equally divided 𝐿 

by 𝑘 

 

for 𝑖𝑡𝑒𝑟 ← 1 𝐭𝐨 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 

        for 𝑡 ← 1 𝐭𝐨 𝑘 

                1 ≥ 2 ≥ 3 ← the eigenvalues of 𝐶𝑡 

                𝒆𝟏 , 𝒆𝟐 , 𝒆𝟑  ← the corresponding eigenvectors of 

𝐶𝑡 

                𝒏𝒕 ← 𝒆𝟑 

                𝑿𝒕 ←  the barycenter of 𝐶𝑡 

                𝑥𝑡 ← 𝑿𝒕 ∙ 𝒏𝒕 

        for 𝑡 ← 1 𝐭𝐨 𝑘 

                𝐶𝑡 ← ∅ 

        for 𝑙 ← 1 𝐭𝐨 𝑚 

                for 𝑡 ← 1 𝐭𝐨 𝑘 

                        𝐷𝑖𝑠𝑡𝑙,𝑡 ← |𝒑𝒍 ∙ 𝒏𝒕 − 𝑥𝑡| 

                𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← the smallest 𝐷𝑖𝑠𝑡𝑙  number 

                𝐶𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ←  𝐶𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ∪ 𝒑𝒍 

        if ∀𝜎𝑝𝑙𝑎𝑛𝑒 of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 ≤ 𝜏𝜎  

                𝑚𝑎𝑥 ← the largest cluster number 

                if 𝑚𝑎𝑥 < 3 

                        the patch is non-surface 

                        return 

                𝒏𝒑𝒂𝒕𝒄𝒉 ← 𝒏𝒎𝒂𝒙 

                𝑿𝒑𝒂𝒕𝒄𝒉 ← 𝑿𝒎𝒂𝒙 

                return 

 

4.1 The accuracy measurement as quantitative evaluation 

 

As quantitative evaluations of the segmentation outputs, the 

accuracy measurement is used as described by Saglam et al. 

[20]. Quantitative measurement of a segmentation result is 

laborious compared to that for classification results because 

the number of segments and their labels of segmentation 

results are different from those of the ground-truth. For this 

reason, the result and ground-truth segments have been 

matched one-to-one mutually according to the method 

proposed in the study [39]. According to the matching method, 

the segments covered each other the most between the results, 

and ground-truth segments are matched in the first phase. In 

the second phase, the second mostly overlapped segments are 

looked for in mismatched segments. At the end of the second 

phase, some ground-truth segments may not be matched with 

any counter segment.   

After the matching process, the number of overlapped 

points between the matched segments is considered as true 

segmented points (TP). The rate of TP to the number of all 

points in the ground-truth data gives the accuracy value. 

 

4.2 Results 

 

In the test stage, the angle parameter of the BCVS method 

is tested in the range 0-90° by increments of 1° for both with 

and without refitting. The 𝑐  parameters in the refitting 

processes are set as 0.05. The refitting process is enforced to 

run the iteration of k-means at least two times in our 

experiments, although it meets the termination criterion in the 

first iteration. 

On the graphics in Figure 8, the accuracy results of 

segmentations with the angle parameters (𝜏𝑎𝑛𝑔) in the range 0-

90° by increments of 1° for the BSCV algorithm without 

refitting and with refitting can be seen. In Table 1, the 

quantitative segmentation results of segmentations with the 

best parameters are shown as accuracy values. The colored 

labels of result segments are presented in Figure 9. In the 

figure, the main correct and incorrect regions are also enclosed 

by dashed frames and marked these regions as correct () or 

incorrect (×).  

 

 
 

Figure 8. The accuracy lines of the methods with different 

angle parameters (τmax) 

 

Table 1. The accuracy results of segmentation processes 

 
Dataset/ Method BCVS without 

refitting 

BCVS with 

refitting 

Mosque 

Train Station 

0.8384 

0.8536 

0.8786 

0.8707 

 

Table 2. The execution times (s) of the two models 

 
Dataset/ Method BCVS without 

refitting 

BCVS with 

refitting 

Mosque 

Train Station 

2.429 

0.990 

2.550 

1.126 

1024



 
 

Figure 9. The colored labels of the result segments and the marks as correct () or incorrect (×) 

 

In the experiments, the effect of the proposed intermediate 

process is also measured on the two datasets. In Table 2, the 

execution times of the two models are included as seconds (s). 

As seen in Table 2, the refitting process has little effect on 

execution time compared to that of the native model on the 

dataset used. Besides the structs of the points in the datasets, 

this effect also depends on the k-means parameter k. As the 

value of k increases, the non-planar patches (especially on the 

corners) are fit more precisely. 

 

 

5. CONCLUSIONS 

 

The voxelization as a sampling technique is a useful pre-

processing for many point cloud processing applications. 

However, this technique has some deficiencies and the main 

one is that the variations in the feature such as local surface 

normal can be seen highly through the points (patch) in a voxel, 

against its usefulness such as data reduction, local neighbor 

finding, and outlier suppressing. The patches that have a high 

variation through points in it are named as non-planar patches 

in this work. The variation in the local surface normals in a 

patch may mislead a voxel-based segmentation method 

through the segmentation process. In this work, we determine 

non-planar patches using the plane standard deviations of 

patches and the mean of them. After non-planar patches are 

determined, the k-means clustering is applied to these patches 

in this study with some adaptations to cluster the patches into 

planar sub-patches. At the end of the clustering, if the process 

ends by satisfying the planarity criterion, the largest sub-patch 

replaces the spatial center and normal vector information of 

the patch with those of itself. The methods are applied to two 

point cloud segmentation datasets in a segmentation method. 

The results are examined quantitatively and visually. It is seen 

in the results that the refitting method increases the 

segmentation success by respectively approximately 4% and 

2% on the Mosque and Train Station datasets. The only 

disadvantage of the proposed intermediate process on the 

inherent method is the increase in the execution time. On the 

other hand, the increase is not much compared to the duration 

of the inherent method. Besides the effect on the voxel-based 

segmentation process, the usage of the k-means clustering with 

the modifications for plane clustering in this paper can be 

useful for other point cloud processing applications in further 

studies. 
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NOMENCLATURE 

𝜎𝑖 Plane standard deviation. 

𝜏𝜎 Plane standard deviation threshold. 

𝑐 The refitting parameter. The value of this parameter 

can be in the range [-1 1]. This parameter indicates 

the normalized form of 𝜏𝜎 .

𝜏𝑚𝑎𝑥 The angular segmentation parameter of the BCVS 

method. The value of this parameter can be in the 

range [0 90]. 
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