
 

 
 
 

 
 

 
1. INTRODUCTION 
 

The discovery of Carbon nanotubes (CNT’s) in 1991 by 
Lijima [1], has enhanced the scientific research and opened 
new prospects for nanotechnology and materials science. 
Applications of Carbon Nanotubes are multiple including 
nano electro-mechanical systems (NEMS) [2], medical and 
biological devices, electronic chips, reinforced structures in 
menufacturing, singal precessing and measurment such as 
Atomic Force microscopy, this interest in CNTs is explained 
due to their exceptional mechanical [3], chemical, physical 
and thermal properties. 

Considerable efforts has been devoted to invesitigate and 
understand the mechanical properties of CNT’s using 
molecular dynamics [4] which need much time and high 
efficient computational resources, and Quantum mechanics 
by using the theory of non-local elsticity wich has been 
introduced by Eringen [5], this theory could investigate the 
dynamic behavior of nanoscale structures such as CNT’s 
using the well-known beams models : Temoshenko beam  and 
Euler-Bernoulli beam, Many studies have been done to 
understand the mechanical behaviour of CNT’s[6,7,8,9, 10]. 

Various studies in the literature carried out the free 
vibration of single-walled carbon nanotubes embedded in 
elastic medium [11,12], SWCNT’s with waviness [13], 
CNT’s conveying fluids [14,15,16]. 

Arda and Aydogdu [17] studied  the effect of the 
surrounding environment on the torsional free vibration of 
carbon nanotubes, they showed that non-local parameter and 
the stiffness (viscol-elastic medium)  effect on the non 
dimensioanl frequency  in decreasing way, and the nanotube 
length  effect the non dimensional frequency decresasingly 

and the non dimensional dumping increasingly. Bocko and 
Lengvarski [18] studied the bending vibration of armchair 
SWCNT under four types of boundary conditions using the 
theory of non-local elasticity; they showed the effect of non-
local parameter on the bending frequencies of the CNT. 

In this paper, the equation of motion is disceritized using 
the differential quadrature method (DQM) which was 
introduced for the first time in 1972 by Bellman et al. [19], 
since that, it has been widely used for solving multiscale 
structures dynamic, Malik and bert [19] had employed it for 
solving different problems in applied mechanics. 

 
 

2. MATHEMATICAL MODELLING 

 

 
 

Figure 1. Molecular diagram of a SWCNT. 

 
The present paper investigates the transverse free vibration 

of a single-walled carbon nanotube (SWCNT) embedded in 
an elastic medium described as a Winkler-type elastic 
foundation. The elastic medium is assumed to act as a 
pressure acting on the outer layer of the SWCT.  

The figure.1 illustrates the molecular diagram of a 
SWCNT modelled by a molecular dynamic software.  

Based on Euler-Bernoulli beam theory, the displacement 
field at any point can be expressed as: 
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ABSTRACT  
 
Carbon nanotubes (CNT’s) has revolutionized the world of nanotechnology by their exceptional proprieties, 
which make them the core of many applications in several fields, many studies has been done to investigate 
their mechanical proprieties since their discovery. In this paper, the free vibration of a single walled carbon 
nanotube is studied in an elastic environment based on the theory of non-local elasticity and discretized by 
differential quadrature method (DQM); the effect of the surrounding medium on fundamental frequencies is 
discussed. 
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                                          (1) 
 

                                                            (2) 
 

The linear strain-displacement relations for the Euler-
Bernoulli beam are expressed as: 
 

                                                                 (3) 
 

  

 
The law of Hook expressing the strain as following: 

 

                                    (4) 

 
We define herein the kinetic and strain energies, 

respectively: 
 

                                    (5) 
 

                                               (6) 
 

Then, the governing equations are obtained by deriving the 
above energies expressions based on the Hamilton’s principle 
defined  as follwing: 
 

                                                           (7) 
 

Two equation of motion are obtained: longitudinal and 
transverse inertia, only transverse vibration equation 
containig the deflection w(x,t) is the aim of this study, 
expressed as : 
 

                                                         (8) 
 

By introducing the surrounding elastic medium law: 
 

                                                   (9) 
 

                                                                         (10) 
 

Due to nearest neighbor interaction and beyond the single 
lattice in the sense of lattice average stress and strain. Eringen 
[5] improved that the stress of a reference point of the body 
depends on the strain of other adjacent points of this body. 
The non-local elasticity is expressed as: 
 

                                                     (11) 
 

By applying the constituve theory of Eringen, we obtain:  

 

                                                              (12) 
 

The transverse deflection law is defined as: 
 

                                                               (13) 

 
We define the follwing demonsionless paramaters: 

 

 
  

The dimensionless equation of motion is transformed to: 
 

      (14) 
 
The resolution of the above equation consists in solving the 

follwing eigen-problem:  
 

                                                                (15) 

 
The frequency of the Euler-Bernoulli beam eigen-problem 

is: 
 

                                                                               (16) 

 
 

3. DIFFERENTIAL QUADRATURE METHOD 
 

The discretization of the governing equation is done using 
the semi-analytical procedure: differential quadrature method 
(DQM), It transforms the differential equation to a set of 
equivalent simultaneous equations using the weighting 
coefficients summation. 

If : is the first derivative, we define it as: 

 

                        (17) 
 
with: 
 

                                          (18) 
 
and when  
 

 

 
Similarly, second-, third- and fourth-order partial 

derivative are expressed as 
 

 : is the second derivative; 

 

 : is the third derivative;   

 

 : is the fourth derivative.  

 
The discretized governing equation is defined as:  
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                                                             (19) 

 
The resolution of the problem using DQM is done at a set 

of points satisfying the Chebyshev-Lobatto-Gauss, which 
satisfies: 
 

          (20) 
 

Various boundary conditions are implemented to 
investigate the transverse free vibration of a SWCNT 
embedded in an elastic medium; we define the following 
boundary conditions: 
clamped-clamped beam (C-C) 
 

  (21) 
 
clamped-pinned beam (C-P) 
 

      (22) 
 
pinned-pinned beam (P-P) 
 

  (23) 
 

 
4. NUMERICAL RESULTS AND DISCUSSION 
 

A Matlab code has been developed to compute 
fundamental frequencies of the SWCNT, boundary conditions 
are defined by setting the corresponding weighting 
coefficients to zero at the ends ( =0) and ( =1). The SWCNT 

proprieties are taken as following: 

; ;  

The dependency of natural frequencies on the length of the 
SWCNT is illustrated in Figure.2 for the clamped-pinned 
beam; it is clearly remarkable that the first four frequencies 
converge to a constant value at the end of the SWCNT. 
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Figure 2. First four natural frequencies of Clamped-pinned 
beam for K=0 

 
In following, the effect of non-local parameter and the 

elastic medium (Winkler-type) is studied, Figure.3 shows that 
the frequency parameter of clamped-clamped beam at a null 

elastic parameter decreases from the local value ( 21.4) to a 

stable value corresponding to µ=0.03. The effect of the non-

local parameter is clearly remarkable on the frequency 
parameters corresponding to K=200 where the difference of 

frequency parameter is 0.5 when µ ranging from 0.01 to 0.04. 
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Figure 3. Frquency parameters versus non-local parameter 
of C-C beam  

 
For the clamped-pinned beam in Figure.4, all frequency 

parameters with  different elastic values decrease when µ 

ranging from 0.01 to 0.03. We can conclude that the 
frequency parameters are independent of the non-local 

parameters when µ 0.03.  
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Figure 4. Frquency parameters versus non-local parameter 
of C-P beam 

 
The frequency parameters decrease with the increasing of 

the elastic medium parameter K. All remarks for the Figure.4 
remain valid for the Figure.5 which illustrate the variation of 
frequency parameters with the non-local parameter and the 
elastic medium parameter for a pinned-pinned beam. 
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Figure 5. Frquency parameters versus non-local parameter of 
P-P beam 

 

35



 

5. CONCLUSIONS 

 
Free transverse vibration of a single-walled carbon 

nanotube is investigated in detail, based on the non-local 
theory of elasticity by using the differential quadrature 
method. The non-local Euler-Bernoulli beam model is taken 
in consideration to study the vibrational behavior of the 
SWCNT under different boundary conditions, the nanotube 
length affected fundamental frequencies of SWCNT 
decreasingly; considered values of non-local parameter show 
a stability of frequency parameters less small than the local 
parameters. By increasing the elastic medium, the frequency 
parameters decrease. 
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NOMENCLATURE 

 
A First derivative 
a Internal caracteristic length 
B Seconde derivative 
C Third derivative 
D Fourth derivative 
d Nanotube diameter (nm) 
E Young’s modulus (PA) 
e0 
G 

Constant depends on the material  
Stifness matrix 

K spring constant relative to the elastic 
medium (Winkler type) (N/m2) 

 
Non dimensional spring constant  

Ke Kinetic energy (J) 
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L Nanotube length (nm) 
m Carbon nanotube mass (kg) 
M Mass matrix 
N Sampling points 
q Displacement vector 
P Polynomials of weighting coefficients 
S Section (m2) 
Se Strain energy (J) 
t Time (s) 
u displacement (nm) 
W Transverse amplitude  
w Transverse deflection 
x Axial component corresponding to axial 

axis 
z Transverse component  

 

 

 

 

 

 

 

Greek symbols 

 

 
Strain (N/m2) 

ρ Density(kg/m3) 

 
Partail derivative 

𝞷 Dimensionless axial component  

Ω  Dimensionless parameter corresponding 
to Frequecy  

µ Non-local parameter 

ω Natural frequency (Hz) 
 

Subscripts  
 

i Longitudinal matrix component  
j Transverse matrix component 
k Intermediar matrix component  
l Local 
nl Non-local 
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