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 Composite materials are very widely used in the manufacturing of structures because of 

their specific mechanical properties. However, they are characterized by heterogeneity 

and anisotropy and they present great challenges in designing and also in predicting their 

behavior by using the numerical simulation. The unidirectional composite material has a 

more relevant property which is the transverse elasticity modulus E2. The determination 

of E2 is still interesting researchers because of the diversity of results obtained by several 

models and approaches. This study aims to predict the transverse elasticity modulus E2 

of a unidirectional Glass/Epoxy composite material, the effect of the arrangement fibers 

on the transverse elasticity modulus and predict the values of the reinforcement factorξ 

used in the Halpin-Tsai model. To do so first we adopted the micromechanical approach, 

which is accurate but requires much computing, and we used a calculation code based on 

FEM method and considered two parameters to vary, which are the volume fraction of 

fibers and the distribution of fibers. The obtained results of numerical modeling were 

tightly compared to those obtained by the available analytical models and the adopted 

approach can be used to predict the transverse elasticity modulus E2 and the 

reinforcement factor ξ. 
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1. INTRODUCTION 

 

Today, composite materials are more and more used in the 

realization of structures in many fields such as transport, 

automobile, shipbuilding, sports accessories and more 

particularly aeronautics and aerospace because of their high 

performance/mass ratio compared to other more conventional 

materials such as steel or aluminum and also the possibility of 

obtaining complex shapes by reducing the number of leads, 

this is due to the use of materials with specific mechanical 

characteristics such as carbon, glass or Kevlar and the use of 

the production processes layer by layer with molds and counter 

molds [1-4]. 

Unidirectional composites are those that have all fibers 

aligned in one direction, their mechanical properties vary with 

the orientations of the fibers therefore these materials are 

anisotropic. The strength of unidirectional composites in the 

direction of the fibers is generally dominated by the properties 

of the fibers while in the transverse direction it is dominated 

by the properties of the matrix. However, the heterogeneity 

and anisotropy of composite materials present great challenges 

to the design of structures, consequently to the numerical 

simulation of their behavior. In order to respond to these 

challenges, the current trend is multi-scale modeling because 

it makes it possible to predict the effective response of 

heterogeneous materials from their microstructure, and it even 

gives the possibility of designing new materials with desired 

or optimized properties. There are two basic approaches are 

usually considered in the modeling of composites: the 

macromechanical approach and the micromechanical one. 

In the macromechanical approach, the composite is 

considered as an anisotropic material and the details of the 

arrangement of the constituent materials are ignored and the 

micromechanical one aims to develop solutions to be able to 

predict the effective behavior of a heterogeneous anisotropic 

material depending on the behavior of the constituent 

materials and their arrangement [5]. Most theories of 

homogenization are limited to a few idealized mathematical 

models of two-phase systems. Many analytical approaches 

have been developed over the years [6-8], and comprehensive 

bibliographic studies have been published on the prediction of 

longitudinal and transverse elastic modulus of unidirectional 

composites, the estimation of the reinforcement factor ξ and 

the use of the model of Halpin-Tsai to determine the transverse 

elasticity modulus E2 [9-18]. 

The analytical methods provide a reasonable prediction for 

relatively simple configurations of the phases for example 

square or triangular arrangements of the fibers but when it is 

about complex geometries numerical methods are used for 

approximate solutions by simplifying hypotheses on 

microstructures and boundary conditions, as it is the case with 

finite element method. Numerical methods for calculating the 

properties of composite materials generally involve the 

analysis of a representative volume element (RVE). 

This work aims mainly to predict the transverse elasticity 

modulus of a unidirectional Glass/Epoxy composite material 

with different values of fiber volume fractions, to study the 

effect of the arrangement randomize of the fibers on the values 

of the transverse elastic modulus and to predict the values of 

the reinforcement factor 𝜉. 
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In section 2 we introduced the analytical models based on 

the mixture rule, these models will be used to compare our 

obtained results. 

Section 3 is the main part of this work, it is devoted to 

numerical modeling, in this section we used Cast3m as a 

calculation software based on finite element method, the 

numerical model was developed by using the homogenization 

method which is a micromechanical approach. The analysis is 

performed on a representative volume element (RVE). 

Finally, the obtained results are compared to those obtained 

by different models based on the representative elementary 

volume. 

 

 

2. ANALYTICAL MODELS BASED ON THE RULE OF 

MIXTURE 

 

The analytical method uses various mathematical 

expressions to predict elastic constants such as the stiffness 

and strength of the composite material. An example of the 

different methods used to assess the elastic properties of the 

composite material, for example the rule of mixture method, 

the Halpin-Tsai model, the Nielsen method and the Chamis 

model. 

 

2.1 Rule of mixture (ROM) 

 

This is the simplest method to determine the elastic 

properties of a unidirectional composite material. The classical 

ROM accurately predicts the longitudinal Young's modulus E1, 

Eq. (1), Poisson's ratio v12, Eq. (2), but does not accurately 

predict the transverse Young's modulus, in general and more 

particularly when the fiber volume is high, Eq. (3) [19-21]. 

 

𝐸1 = 𝐸𝑓𝐿 . 𝑉𝑓 + 𝐸𝑚. (1 − 𝑉𝑓)  (Voigt model) (1) 

 

𝜈12 = 𝜈𝑓 . 𝑉𝑓 + 𝜈𝑚. (1 − 𝑉𝑓)   (Voigt model) (2) 

 

𝐸2 =
𝐸𝑓𝑡.𝐸𝑚

𝐸𝑓𝑡.(1−𝑉𝑓)+𝐸𝑚.𝑉𝑓
    (Reuss model)  (3) 

 

where, EfL, Eft, vf are fiber properties (longitudinal elastic 

modulus, transversal elastic modulus and Poisson’s ratio, 

respectively), Em, vm are matrix properties (elastic modulus 

and Poisson’s ratio, respectively) and Vf is the fiber volume 

fraction. 

 

2.2 Halpin-Tsai (HT) and modified Halpin-Tsai 

(HTM) models 

 

The Halpin-Tsai equation, Eq. (4), was developed as a semi-

empirical model in order to produce more complex results on 

the transverse Young's modulus and the longitudinal shear 

modulus [6]. 

 

𝐸2 = 𝐸𝑚(
1 + 𝜉. 𝜂. 𝑉𝑓

1 − 𝜂. 𝑉𝑓
) (4) 

 

The coefficient 𝜂 is given by:𝜂 =
(
𝐸𝑓𝑡

𝐸𝑚
)−1

(
𝐸𝑓𝑡

𝐸𝑚
)+𝜉

. 

𝜉 is an empirical factor, which measures the reinforcement 

of the fibers of the composite material which depends on the 

geometry of the fiber, the arrangement of the fibers and the 

loading conditions. In generally, 𝜉  may vary from zero to 

infinity, and the Reuss and Voigt models, Eqns. (3) and (1) are 

special case for 𝜉 = 0 and 𝜉 → ∞, respectively. 

Limiting values of 𝜂 are [6]: for very rigid inclusions 𝜂=1, 

for homogeneous material 𝜂=0 and for voids 𝜂 =
−1

𝜉
 . 

JC Halpin and SW Tsai obtain an excellent agreement with 

the results obtained by DF Adams and DR Doner, for the 

transverse modulus of a square array of circular fibers having 

a fiber volume fraction of 0.55, by a finite difference method 

applied to the case of cylindrical fibers distributed according 

to a square arrangement and for a volume fraction of fibers of 

0.55, taking 𝜉=2 to calculate E2 and 𝜉=1 to calculate the shear 

modulus G12 [22, 23]. 

A general recommendation to be used when there is not 

experimental data for calibration is presented in the sequence, 

Eq. (5) [6]. 

 

ξ = 2 + 40. 𝑉𝑓
10𝑓𝑜𝑟 𝐸2 (5) 

 

Recently, a modified Halpin-Tsai model was proposed by 

Giner et al. [9], wherein a set of finite element analyses were 

performed considering randomly distributed unidirectional 

fibers for different volume fractions Vf and the following 

analytical expressions have been adjusted to the ξ estimations 

for random fiber arrangement, Eq. (6): 

 
ξ

= {
4.924 − 35.888 𝑉𝑓 + 125.118 𝑉𝑓

2 − 145.121𝑉𝑓
3   if   𝑉𝑓 < 0.3

1.5 + 5500. 𝑉𝑓
18if   𝑉𝑓 ≥ 0.3

 (6) 

 

In some cases, for the reinforcement efficiency, a constant 

value of ξ can be calculated from the result of the experimental 

test, or by numerical modeling with known volume fractions 

Vf and Vm. When reinforcement efficiency is higher, it means 

that the fibers contribute to the strength of the composite. The 

Halpin-Tsai method offers the advantage of being simple (easy 

to use in the design process) and offers a more precise 

prediction, the choice of the value of 𝜉 base limits of the use 

of this equation for a generalized case. 

Neilson [7] modified the Halpin-Tsai equation by including 

the maximum fiber volume content ∅𝑚𝑎𝑥 and the equation Eq. 

(4) transformed into Eq. (7): 
 

𝐸2 = 𝐸𝑚
(1 + 𝜉. 𝜂. 𝑉𝑓)

(1 − 𝜂. 𝜓. 𝑉𝑓)
 (7) 

 

where, 𝜂 =
(
𝐸𝑓𝑡

𝐸𝑚
)−1

(
𝐸𝑓𝑡

𝐸𝑚
)+𝜉

and𝜓 = 1 +
(1−𝜙𝑚𝑎𝑥)

𝜙𝑚𝑎𝑥
2 𝑉𝑓. 

where, 𝜙𝑚𝑎𝑥 is given by 0.785 for the square array of fibers, 

0.907 for the hexagonal arrangement and 0.82 for random 

packing [7]. 

 

2.3 Chamis (CH) model 

 

In the rule of mixture approach, for the evolution of the 

transverse modulus, it is assumed that the whole of the matrix 

and of the fiber are in series and therefore undergo the same 

transverse stress. In reality, we cannot consider that the whole 

matrix is in series with the fiber. To solve this problem, 

Hopkins and Chamis worked with a special RVE (fiber 

surrounded by the matrix), then they a determined the value of 

the transverse Young modulus E2 in both cases with and 

without interphase, for the case without interphase we have the 
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formula Eq. (8) [8]: 

 

𝐸2 =
𝐸𝑚

1 − (√𝑉𝑓 (1 −
𝐸𝑚

𝐸𝑓𝑡
))

 
(8) 

 

2.4 Tsai with contiguity model   

 

During the manufacture of fibrous composite materials, the 

fibers are often in a random arrangement rather than being in 

an ordinary arrangement, this randomness is much more 

typical for fibers of small diameter. Thus, the analysis 

concerning the modules of composite materials with regular 

arrangements must be modified to take into account the fact 

that the fibers are contiguous. Contiguity was introduced by 

Tsai as a method of making sense out of experimental data in 

comparison to theoretical predictions, and is based on fiber 

spacing and arrangement. In this case the fibers touching 

rather to be completely surrounded by the matrix. If c 

represents the degree of contiguity in the formula Eq. (9), then 

c = 0 corresponds to no contiguity (isolated fibers) and c = 1 

corresponds to perfect contiguity (all the fibers are in contact). 

Naturally with volume fractions important fibers, c should 

approach c = 1. This approach is an example of what Chamis 

and Sendeckyj present as a semi-empirical method, but it 

could also be classified as a bound technique [24]. 

 

𝐸2 = 𝐴∗[(1 − 𝑐)𝐵∗ + 𝑐. 𝐶∗] (9) 

 

where, the constants A*, B* and C*: 

 

𝐴∗=2[1 − 𝜈𝑓 + (𝜈𝑓 − 𝜈𝑚). 𝑉𝑚],  

𝐵∗=
𝐾𝑓(2.𝐾𝑚+𝐺𝑚)−𝐺𝑚(𝐾𝑓−𝐾𝑚)𝑉𝑚

(2.𝐾𝑚+𝐺𝑚)+2(𝐾𝑓−𝐾𝑚)𝑉𝑚
, 

𝐶∗=
𝐾𝑓(2.𝐾𝑚+𝐺𝑓)+𝐺𝑓(𝐾𝑚−𝐾𝑓)𝑉𝑚

(2.𝐾𝑚+𝐺𝑓)−2(𝐾𝑚−𝐾𝑓)𝑉𝑚
, 

𝐾𝑓 =
𝐸𝑓𝑡

2(1−𝜈𝑓)
, 𝐾𝑚 =

𝐸𝑚

2(1−𝜈𝑚)
, 

𝐺𝑓 =
𝐸𝑓𝑡

2(1+𝜈𝑓)
, 𝐺𝑚 =

𝐸𝑚

2(1+𝜈𝑚)
. 

 

Vm is the matrix volume fraction and 0 ≤ 𝑐 ≤ 1. 

 

 

3. FINITE ELEMENT MODELING 

 

3.1 Objective 

 

Numerical modeling is a reliable tool despite the fact that 

the time devoted to defining the geometric dimensions and the 

calculation time always represent a major disadvantage 

compared to analytical models. To study the influence of the 

random arrangement of long fibers on the values of the 

transverse elastic modulus E2 in a representative volume 

element (part of the unidirectional fold requested in transverse 

traction) and to predict the values of the reinforcement factor 

𝜉. The numerical modelizations by finite elements are carried 

out using software Cast3m [25]. We developed calculation 

programs (language GIBIANE). To expand the study two 

parameters were to be varied: The first is the position of the 

fibers by considering 50 cases so 50 representative elementary 

volumes (RVEs) were obtained, Figure 1. For each of 50 

RVEs, 4 cases of the value of the radius of the fiber considered 

therefore 4 approximate values of volume fraction (44.3%, 

48.8%, 53.6% and 58.6%), for example RVEs (n °1 and n°34), 

Figure 2. The effect of the voids content has not been taken 

into consideration in this work. 

 

 
 

Figure 1. The models of RVEs for Vf = 0.443 
 

 
 

Figure 2. RVEs (n °1 and n°34) for 44.3%,48.8%,53.6 % and 

58.6% reinforcement volume ratio 

 

3.2 Materials and characterizations 

 

The composite material used in the numerical modeling 

corresponds to a unidirectional fold based on an epoxy resin 

and long E-glass fiber with circular section. Epoxy resin is a 

thermosetting polymer widely used in industry; it has excellent 

adhesion to glass fibers. Some mechanical properties of fiber 

glass and epoxy resin are summarized in Table 1. 
 

Table 1. The elastic characteristics [20] 
 

The elastic characteristics E-Glass fiber Epoxy 

Density [Kg/m3] 2600 1200 

Young’s modulus [GPa] 73 3.45 

Shear modulus [GPa] 29.9 1.33 

Poisson’s ratio 0.22 0.30 

Fracture stress [MPa] 3400 70 

Ultimate elongation [%] 4.5 2 

 

3.3 Representative volume element (RVE) 
 

The concept of representative volume element is the first to 

use numerical approximations of the effective properties of a 

composite. Square or cubic RVEs are used for most numerical 

approximations due to the ease of numerical resolution of limit 

value problems with these geometries. The difficulties 

encountered in generating statistical information on the 

distributions and the concentrations of particles cause 

difficulties for the rigorous determination of the sizes of RVE. 

Therefore, for most applications, the sizes of the RVEs have 

205



 

been rather arbitrary. In this work, we considered a square 

RVE model of side 48 𝜇m. Figure 3 shows a typical RVE. 

Each RVE is made up of 16 cells (fiber with matrix or matrix 

without fiber). 
 

 
 

Figure 3. Cross section in plane 2-3 and sketch of the 

domain analyzed numerically 

 

The boundary conditions listed are indicated in Table 2. 

Note that V and W are displacements according to directions 

2 and 3 respectively, AB, CB, CD and DA indicate the sides 

of the model RVE, Figure 3. The axial load is modeled by a 

traction displacement acting along axis 2. For such loading 

conditions, the limits (DA and AB) of the RVE also 

correspond to lines of symmetry. The displacement 𝛿 applied 

to the finite element model to determine E2 causes a 

longitudinal deformation in direction 2, 𝜀22 =
𝛿

𝐿
 . 

The boundary conditions based on the lines (or face) of 

symmetry in the RVE are used in several research works, for 

example [9, 12, 14]. 

 

Table 2. Boundary conditions along the 2 and 3 directions   

 
Direction along axis 2 along axis 3 

The side DA CB AB DC 

Displacement 
V=0 

W free 

V= 𝛿 

W free 

W=0 

V free 
V and W free 

 

3.4 Cell geometry used for meshes 

 

Figure 4 contains the geometries of the cells used to make 

the meshes. Each cell is used for a subroutine with the 

possibility of rotation of the cell according to the angles 90°, 

180° and 270°, for the realization of 50 RVEs. All the fibers 

are assumed to have the same diameter, and because of the 

complexity of the phenomenon and that the epoxy resin has 

excellent adhesion to glass fibers, the interface between the 

matrix and the fibers has not been taken into consideration in 

this work. 
 

 
 

Figure 4. The cells used to make the meshes of the RVEs 

 

3.5 Mesh of the representative volume 

 

In most of the finite element calculation softwares, the 

geometric model is created in two stages: first, the definition 

of the geometry by basic geometric elements then secondly the 

generation of the mesh from the created geometries. A mesh is 

the spatial discretization of a continuous medium with finite 

elements to solve the requested problem, the mesh of geometry 

constitutes an essential and most determining part of a 

numerical study. A good mesh is the mesh which allows 

having results close to reality and allows the calculation to 

rotate with the available means. Indeed, the finite element 

method consists in interpolating the value of the functions 

inside the meshes, therefore the larger the mesh, the greater the 

difference between the “real” value of the function and its 

interpolated value, therefore to have a result close to reality, 

we are often tempted to use a fine mesh [26]. 

The triangular element (Tri3) used for the realization of the 

meshes in the present analysis is based on a general state of 

2D. The element comprises three nodes with two degrees of 

freedom per node. For example, RVE n °35 is composed of 

859816 elements, Figure 5, same number of elements for RVE 

n °41, Figure 6. 

 

 
 

Figure 5. Meshed model of RVE n °35, Vf = 0.443 
 

 
 

Figure 6. Meshed model of RVE n °41, Vf = 0.443 

 

3.6 Calculation of the transverse elasticity module E2 

 

By assuming a linear elastic behavior, the generalized 

Hooke’s law in terms of the compliance matrix [S] for an 

orthotropic lamina is [21, 27]: 

 

{
 
 

 
 
ε11
ε22
ε33
γ23
γ31
γ12}
 
 

 
 

=

(

 
 
 
 
S11
S12
S13
0
0
0

S12
S22
S23
0
0
0

S13
S23
S33
0
0
0

0
0
0
S44
0
0

0
0
0
0
S55
0

0
0
0
0
0
S66)

 
 
 
 

{
 
 

 
 
σ11
σ22
σ33
τ23
τ31
τ12}

 
 

 
 

 (10) 

 

where, S11 =
1

𝐸1
, S22 =

1

𝐸2
, S33 =

1

𝐸3
, S12 =

−ν12

𝐸1
, S13 =

−ν13

𝐸1
, 

S23 =
−ν23

𝐸2
,S44 =

1

𝐺23
, S55 =

1

𝐺13
 and S66 =

1

𝐺12
. 

As only a uniform strain in direction 2 is applied, the global 

equilibrium that σ33 = 0 and τ23 = 0due to the symmetry of 

the solution. Additionally, the plane strain condition implies 

that ε11 = 0, γ
31

 = 0 and γ
12

 = 0. An explicit expression for 

elastic modulus E2, Eq. (11) [9]: 
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𝐸2 =
𝐸1. 𝜎22

𝐸1. 𝜀22 + 𝜈12
2 . 𝜎22

 (11) 

 

Eq. (11) is used to estimate the elastic modulus E2 from 

numerical modeling, since 𝜀22  is the uniform deformation 

applied and the stress 𝜎22 is calculated by our program as the 

sum of the forces of reaction to the right limit divided by the 

section of the RVE (we have assumed a unit thickness). On the 

other hand, E1 and ν12 are obtained from the rule of mixtures, 

Eq. (1) and Eq. (2).  

 

3.7 Calculation of the reinforcement factor ξ 
 

To determine the reinforcement factor 𝜉, the value of the 

Young's modulus 𝐸2 is first calculated numerically using Eq. 

(11) and follows introduced into the formula of Halpin-Tsai, 

Eq. (4), this method is used in several research works, Eq. (12). 

 

ξ =
𝐸ft(𝐸2 − 𝐸m) − Vf𝐸2(𝐸ft − 𝐸m)

𝐸m[(𝐸ft − 𝐸2) − Vm(𝐸ft − 𝐸m)]
 (12) 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 The effect of the position of the fibers on the transverse 

modulus of elasticity E2 
 

Figures 7 to 10 contains the results obtained from the 

modeling of the ratio E2/Em for the 50 RVEs, in the interval of 

the reinforcement volume ratio considered. The results 

highlight the influence of the reinforcement rate and the 

arrangement of the long fibers on the overall mechanical 

behavior of the unidirectional Glass/Epoxy material and 

especially on the value of the transverse elastic modulus E2, 

for example the results of the RVE n °42 and higher than RVE 

n °5 of 19.77% for Vf = 0.443 and 38.89% for Vf = 0.586. 

The results of RVEs n °3 and 28 show that the presence of 

a zone of resin without fiber in a direction perpendicular to the 

stresses (σ22) create a remarkable weakness for the zone of 

RVE therefore decreases the modulus of elasticity E2, for 

example results of RVE n °1 are higher than RVE n °3 by 

3.38% for Vf = 0.443 and 9.90% for Vf = 0.586. Results of RVE 

n °2 are higher than RVE n °28 by 12.12 % for Vf = 0.443 and 

32.73% for Vf = 0.586. 

The random fiber distribution in certain cases gives a 

Young's modulus greater than the square or triangular 

distribution when there is a matrix zone without fibers, for 

example in the two cases: 

1-results of RVE n °41 is higher than RVE n °1 of 9.80% 

for Vf = 0.443 and 15.05% for Vf = 0.586. 

2-results of RVE n °36 is higher than RVE n °11 by 11.58% 

for Vf = 0.443 and 16.63% for Vf = 0.586. 

The results highlight the influence of the radius of the E-

glass fiber on the values of the transverse elastic modulus E2 

of the unidirectional material because the value of the radius 

influences the overall random distribution of the fibers. 

 

 
 

Figure 7. Comparison between ratio E2/Em obtained for Vf = 

0.443 
 

 
 

Figure 8. Comparison between ratio E2/Em obtained for Vf = 

0.488 
 

 
 

Figure 9. Comparison between ratio E2/Em obtained for Vf = 

0.536 

 
 

Figure 10. Comparison between ratio E2/Emobtained for Vf = 

0.586 

 

4.2 Normal stress distribution 𝜎22 

 

Figures 11a, 11b, 11c and 11d present, as an example, the 

normal stress distribution 𝜎22 in RVEs n°9 and n°34 for 0.443 

reinforcement volume ratio. Figure 12, as an example, where 

there can be the areas of stress concentration between the 

fibers in the matrix area (RVE n°41). 
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a. Stress 𝜎22 distribution in the matrix and fibers 

(RVE n °9) 

 
b. Stress 𝜎22 distribution in the matrix 

(RVE n °9) 

 
c. Stress 𝜎22 distribution in the matrix and fibers 

(RVE n °34) 

 
d. Stress 𝜎22distribution in the matrix 

(RVE n °34) 

 

Figure 11. Stress 𝜎22distribution 

 

 
 

Figure 12. Normal stress 𝜎22distribution in RVEn °41, Vf 

=0.443 

 

4.3 Transverse elasticity module as a function of the 

volume content of the fibers 

 

Figure 13 shows the variation of the ratio E2/Em as a 

function of the volume fraction of the fibers in the interval 

considered and a comparison between the results obtained by 

numerical modeling and the values calculated using the 

analytical models ROM, Halpin-Tsai (with ξ =2), Chamis and 

Tsai with contiguity (with c=0.2 and c=0.5). 

 
 

Figure 13. Comparison between the modeling results and the 

values calculated by using analytical models 
 

We can notice that the model of Chamis, Halpin-Tsai and 

Tsai with contiguity give much more agreement forecasts in 

the estimation of E2 on the contrary no RVE gives agreement 

for the calculation with the Rule of mixture (ROM). 

For long fiber unidirectional Glass/Epoxy composites with 

a fiber volume content of less than 0.5, the Chamis and Halpin-

Tsai model estimates the value of the transverse modulus 
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better than the Tsai with contiguity (c=0.5) and ROM model. 

For Vf higher than 0.5 the Halpin-Tsai model (ξ =2) estimate 

the value of the transverse modulus better than the Tsai model 

with contiguity (c=0.2). 

Using the results, we can draw the trend curve, Figure 14, 

suggest intervals, Eq. (13), or an approximate formula 

(coefficient of determination R2=0.876), Eq. (14), to estimate 

the value of the ratio E2/Em. 

For 
𝐸𝑓𝑡

𝐸𝑚
= 21.1594, 

 

2.4576 ≤
𝐸2
𝐸𝑚

≤ 2.9677      if𝑉𝑓 = 0.443 

2.7816 ≤
𝐸2
𝐸𝑚

≤ 3.4638     if𝑉𝑓 = 0.488

3.2112 ≤
𝐸2
𝐸𝑚

≤ 4.1846     if𝑉𝑓 = 0.536

3.8421 ≤
𝐸2
𝐸𝑚

≤ 5.3366     if𝑉𝑓 = 0.586 }
 
 
 
 

 
 
 
 

 (13) 

 

If 0.443 ≤ 𝑉𝑓 ≤ 0.586, 

 

𝐸2
𝐸𝑚

= 𝐶1. 𝑉𝑓
3 + 𝐶2. 𝑉𝑓

2 + 𝐶3. 𝑉𝑓 + 𝐶4 (14) 

 

where, the constants C1, C2, C3 and C4: 

C1=202.3, 𝐶2=−267.4, 𝐶3=126.1 and 𝐶4=−18.32. 

 

 
 

Figure 14. Trend curve obtained by numerical models of the 

ratio E2/Em 

 

 
 

Figure 15. Comparison between the trend curve and the 

values calculated using the analytical models 

 

Figure 15 presents a comparison between the values 

calculated using analytical models and the results obtained by 

modeling which are represented by the trend curve, Eq. (14). 

For a value of Vf between 0.443 and 0.488 we can observe an 

agreement of the results obtained with the Chamis model, for 

the interval (between 0.53 and 0.55) and an agreement of the 

results with the Halpin -Tsai model with ξ = 2. 

 

4.4 Reinforcement factor as a function of the volume 

content of the fibers 

 

Figure 16 shows the variation of the reinforcement factor ξ 

as a function of the volume fraction of the fibers and a 

comparison between the results obtained by the 50 RVEs and 

the values calculated using Eq. (5) and Eq. (6). We can suggest 

intervals, Eq. (15), or an approximate formula (coefficient of 

determination R2=0.451), Eq. (16), to estimate the value of the 

reinforcement factor ξ. 

 

 
 

Figure 16. The evolution of the reinforcement factor ξ as a 

function of the volume fraction of the fibers 

 

For 
𝐸𝑓𝑡

𝐸𝑚
= 21.1594, 

 
1.1901 ≤ 𝜉 ≤ 2.1732   if𝑉𝑓 = 0.443

1.2825 ≤ 𝜉 ≤ 2.4486   if𝑉𝑓 = 0.488

1.4066 ≤ 𝜉 ≤ 2.9088   if𝑉𝑓 = 0.536

1.6440 ≤ 𝜉 ≤ 3.8407   if𝑉𝑓 = 0.586}
 
 

 
 

 (15) 

 

If 0.443 ≤ 𝑉𝑓 ≤ 0.586, 

 

𝜉 = 𝐶1. 𝑉𝑓
3 + 𝐶2 . 𝑉𝑓

2 + 𝐶3 . 𝑉𝑓 + 𝐶4 (16) 

 

where, the constantsC1, C2, C3 and C4: 

𝐶1=205.8, 𝐶2=−282, 𝐶3=132.2 and 𝐶4=−19.57. 

Figure 16 shows that there is good agreement between the 

values of the factor ξ determined using Eq. (16) and the values 

calculated using Eq. (6) for Vf = 0.443 and Eq. (5) for Vf = 0.55. 

 

 

5. CONCLUSIONS 

 

This work aimed to predict of the transverse elastic modulus 

E2 and the estimation the reinforcement factor ξ  of the 

unidirectional Glass/Epoxy composite. We used the FEM 

method and the michromechanical approach, by varying the 

position of fibers and the volume fraction of the fibers we 

obtained results. We carried out the comparison with 

analytical models.  

The main observations are: 
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• The arrangement of the fibers affects the predicted

transverse elastic modulus for unidirectional

composites.

• The factor ξ  used in the Halpin-Tsai model which

measures the reinforcement of the fibers of the

composite material depends on the geometry of the

fibers, arrangement of the fibers, loading condition and

the volume fraction of the fibers.

• The transverse Young's modulus E2 shows a gradual

increase with the volume content of the fibers.

• The difficulty of the problem of random fibers

distribution (a large number of RVEs) requires to use

intervals to estimate the values of E2 and 𝜉.

Finally, considering the obtained results and the 

observations made above, we can conclude that the finite 

element method can be used to predict the elastic modulus E2 

and the reinforcement factor ξ using the micromechanical 

approach in the case of unidirectional composites. 
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