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 For most construction projects, the complex engineering environment, the backward data 

collection technology, and the unreasonable monitoring network have resulted in many 

problems in monitoring data such as lots of noise and missing data items, therefore, it is 

of great significance to study the safety monitoring system of construction projects based 

on wireless sensor network (WSN). For this reason, this paper proposed a construction 

safety monitoring and evaluation (CSME) model based on multi-sensor fusion. First, the 

system structure and data flow model of the construction safety monitoring system were 

constructed; then, combining with a multi-sensor deep fusion system which was built on 

physical and information systems, this paper designed a spectrum sensing algorithm for 

sensor signals within the construction area. After that, tempo-spatial correlation analysis 

was conducted on the monitoring data, and a multi-sensor monitoring network joint sparse 

(MSMN-JS) model was constructed, which realized reconstruction of missing data items. 

At last, this paper used experimental results to prove the application value of the algorithm 

model to the safety monitoring and evaluation of construction projects. 
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1. INTRODUCTION 

 

The booming social economy and the progressive 

construction technology has promoted the construction 

engineering industry to update and advance constantly, and 

significant achievements have been made in the fields of road 

and bridge network building, urban infrastructure construction 

and real estate development, which have put forward higher 

requirements for the safety monitoring and management of 

construction projects [1, 2]. For the safety monitoring and risk 

evaluation of the entire processes of construction projects, 

obtaining accurate monitoring data through modern 

information technology is the prerequisite and basis. WSN has 

been widely used in industry, agriculture, medical care, and 

service sector due to its merits of high accuracy, wide 

distribution, convenient management, and good fault tolerance 

[3, 4], and the research on applying WSN to the safety 

monitoring of construction projects has very important value 

and significance.  

The actual engineering process of construction projects 

often ignores the importance of safety monitoring and 

management, and thus resulting in frequent accidents. For this 

reason, domestic and foreign scholars have cast their eyes on 

the safety management and risk control of construction 

projects [5-8] and achieved a few research results. In terms of 

the influencing factors of the safety management of 

construction projects, Suguna and Rathinasabapathy [9] 

analyzed and summarized the safety factors of the bridge 

suspending scaffolding construction site, and it emphasized 

that the key to safety assurance is the accurate identification 

and control of hazards combining with project progress and 

status. Lee et al. [10] sorted out the safety management 

processes to reduce accidents in construction projects, which 

included three steps: hazard identification, hazard area 

partition and construction time-space conflicts. In terms of 

construction safety monitoring and management methods, Sita 

[11] developed an integrated knowledge-enhanced safety 

management module for construction safety and constructor 

occupational health control based on system safety 

management theory. Based on radio frequency technology, 

Trutaev et al. [12] constructed a construction site safety 

management system for preventing high fall accidents. Teizer 

and Castro-Lacouture [13] adopted WSN to collect the real-

time status of personnel, materials and equipment at the 

construction sites, and improved the monitoring and 

management efficiency. Sutton et al. [14] realized remote 

monitoring of construction projects based on WSN, and 

achieved functions of safety monitoring, quality monitoring 

and building energy saving. Murty and Shrestha [15] 

combined the CI system with the enhanced RFID positioning 

technology to realize multi-parameter monitoring of key parts 

of bridge structures and applied it to the risk warning of bridge 

structure damages. In the 2015 Annual Summit of China's 

Construction Industry, the concept of smart building and 

engineering based on AI, sensing technology and VR had been 

proposed for the first time [16]. From the two perspectives of 

monitoring technology and management strategy, Sukhanov et 

al. [17] divided the smart construction sites into stages 

according to the technology development process and the 

degree of data accumulation and analyzed the related 

characteristics. After reviewing relevant literatures concerning 

the safety evaluation of construction projects, we found that 

scholars at home and abroad mostly focused on the 

construction of safety risk index systems and intuitive 

evaluation models [18-20]. Taenaka et al. [21] evaluated the 

possible risks in construction projects caused by support 

beams and cut columns in the process of industrial building 

renovation, and provided corresponding risk control strategies. 
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Takai et al. [22] proposed a risk distribution quadrant diagram 

for the construction sites of real estate projects, and introduced 

the ISM model to dynamically simulate all identified risk 

factors to achieve effective risk prediction of the entire project 

processes. Schott et al. [23] introduced the BIM technology 

into the quantitative risk evaluation model, based on the 

history data and the characteristics of different construction 

processes, it integrated the conditional dependence of model 

parameters, and realized staged risk control in both technology 

and management. 

By comprehensively reviewing domestic and foreign 

studies concerning construction project safety monitoring and 

management, we found that the complex engineering 

environment, the backward data collection technology, and the 

unreasonable monitoring network have resulted in many 

problems in monitoring data such as lots of noise and missing 

data, and it cannot be directly used for the risk evaluation and 

managerial decision-making of construction projects. For this 

reason, this paper proposed a CSME model based on multi-

sensor fusion. The content and structure of the paper is: the 

second part constructed the system structure and data flow 

model of the construction engineering safety monitoring 

system, and introduced the data collection process of multi-

sensor fusion based on the BIM information system. 

Combining with a multi-sensor deep fusion system which was 

built on physical and information systems, the third part 

designed a spectrum sensing algorithm for sensor signals 

within the construction area and gave the algorithm 

implementation steps. The fourth part analyzed the tempo-

spatial correlation of the multi-sensor monitoring data, and 

calculated the tempo-spatial autocorrelation coefficients of the 

safety monitoring data of monitoring points at the construction 

sites. The fifth part built a MSMN-JS model and realized the 

reconstruction of missing monitoring data items, and the 

effectiveness of the algorithm model was verified by 

experimental results. 

2. STRUCTURE OF THE CONSTRUCTION SAFETY 

MONITORING SYSTEM 

 

To realize comprehensive safety monitoring of construction 

projects, it is necessary to fully understand the causes of 

construction safety problems. The data information that can 

reflect the degree of risks of construction projects mainly 

includes: basic information of the building, natural 

environment information, artificial environment information 

and WSN monitoring information. The basic information of 

the building does not require monitoring, it mainly includes 

the overall situation of the construction project, the building 

structure, and the architectural drawings, etc. Natural 

environment information and artificial environment 

information respectively describes the natural environment 

where the building is located and the working environment of 

the constructors. The WSN monitoring information can reflect 

the quality of the building in real time, the installed sensors 

collect data and monitor the safety status of each part of the 

building in real time.  

Now, using WSN to monitor the safety status of 

construction projects has replaced the traditional on-site 

manual detection method. The construction safety monitoring 

system should be able to realize a series functions such as 

automatic data collection and real-time upload, data analysis 

and processing, safety status evaluation, and real-time 

response and feedback of monitoring data and safety status, 

etc. Based on above-mentioned system functions, Figure 1 

gives a diagram of the structure of the construction safety 

monitoring system. The system was divided into four layers: 

monitoring information sensing layer, monitoring information 

processing layer, safety status evaluation layer, and human-

computer interaction layer. 

 

 

 
 

Figure 1. Structure of construction safety monitoring system 
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Figure 2. Data flow model of the construction safety monitoring system 

 

 
 

Figure 3. Multi-sensor fusion data collection model based on the BIM information system 
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By generalizing construction safety issues, this paper built 

a construction safety monitoring data flow model, as shown in 

Figure 2. The input data of the monitoring data information 

layer includes basic information (such as sensor model, serial 

number, and parameters), real-time monitoring data 

information, and reference data values of monitoring positions. 

In view of the complex building structure and natural and 

artificial environment, for a same safety issue, it is necessary 

to monitor it comprehensively using multiple indicators, at 

multiple positions and adopting sensors of multiple types. For 

construction safety monitoring, the commonly used 

monitoring sensors include load sensor, tilt angle sensor, 

displacement sensor, settlement sensor, crack sensor, 

temperature and humidity sensor, and sound and light alarms, 

etc. 

However, when the real-time monitoring information of 

sensor network is used for the safety status evaluation of 

construction projects, misjudgments often occur, therefore, it 

requires detailed history data of each link in the construction 

cycle of the project to assist decision-making. Figure 3 shows 

the multi-sensor fusion data collection model based on the 

BIM information system. 

 

 

3. THE SPECTRUM SENSING ALGORITHM FOR 

SENSOR SIGNALS IN CONSTRUCTION AREA 

 

Generally, the natural and artificial environment of 

construction projects is quite complex. In order to improve the 

performance of the construction safety monitoring system and 

its adaptability, lower the requirements for sensor hardware 

sensitivity, and realize the comprehensive monitoring of the 

same target by multiple types of sensors, it is necessary to 

explore the issues of spectrum sensing and classification 

detection of wireless sensor signals under different signal-to-

noise ratios (SNRs). Figure 4 shows the multi-sensor deep 

fusion system built on physical and information systems. 

 

 

 
 

Figure 4. Multi-sensor fusion system structure 

 

Multiple types of sensors monitoring a same target can form 

a sensor cluster. In view of the spectrum sensing 

characteristics of sensors in the construction environment, in a 

sensor cluster within a region, assume there’re M core sensors 

and m assistant sensors, then for any sensor in the cluster, the 

regional WSN system model at sampling time t can be 

regarded as a binary model shown as Formula 1: 

 

( ) ( )

( ) ( ) ( )
1

:

:
M

i

i

SM o t Noise t

SM o t s t n t
=

=



 = +



 (1) 

 

where, SM is model without core sensor(s), and SM' is model 

with core sensor(s). si(t) is the cyclostationary signal of the 

sensor cluster in the zero-mean area without core sensor(s), 

Noise(t) is the zero-mean additive white Gaussian noise. Based 

on the model shown in Formula 1, the cyclic spectrum 

characteristics of the sensor signals in the case of SM and SM' 

were analyzed and the parameters were estimated. The 

corresponding eigenvectors can be expressed as F=(P, δs-max, 

δc-max)T and F'=(P', δ's-max, δ'c-max)T, respectively. P and P' 

respectively correspond to the average energy of the spectral 

function at the cycle frequency in the case of SM and SM'. δs-

max and δ's-max are the spectral correlation coefficients in the 

case of SM and SM'. δc-max and δ'c-max correspond to the 

maximum value of the spectral function at c in the case of SM 

and SM'. 

Assume: C is the cycle period and c=1/C is the cycle 

frequency. If the autocorrelation function A(t, λ) of the cyclic 

random signal o(t) of the sensor cluster in the zero-mean area 

shows periodic fluctuations, then it can be expressed by 
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Formula 2: 

 

( ) ( ) 2

0

1 C
c πctjA A t, e dt

C
  −=   (2) 

 

The cyclic spectrum can be expressed as: 

 

( ) ( ) 2c c πctjh k A e dt


−

−
=   (3) 

 

In practical applications, the cyclic spectrum is often written 

in discrete form: 

 

( ) ( ) ( )
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1ˆ 2 2
L

c

l l

l
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LN



=

= + −  (4) 

 

The data signals collected by the sensors were divided into 

L segments according to the sampling time, and each segment 

had N sampling points. O(tl, k) is the discrete Fourier transform 

of o(t) of each time segment, and O*(tl, k) was the conjugate of 

O(tl, k). The average energy P of the eigenvector parameters 

can be calculated by Formula 5: 

 

( )
1

2

0

1 J

j

P h j
J

−

=

=   (5) 

 

where, h(j) is the spectral function of ĥc(k) at c. The spectral 

correlation coefficients can be calculated by Formula 6: 

 

( )
( )

( ) ( )2 2

c

c

o

h k
k

h k c / h k c /
 =

+ −
 (6) 

 

The value range of the spectral correlation coefficients was 

[0,1], and the maximum value δs-max can be expressed by 

Formula 7: 

 

( )max max c

s o k − =  (7) 

 

The maximum value δc-max of the spectral function at c can 

be expressed by Formula 8: 

 

( )max 1

c

c c / Ch k − ==  (8) 

 

The eigenvector composed of the above parameters was 

taken as the training samples of the support vector machine 

(SVM) to perform the training, and the SVM that had 

completed the training can realize detection and classification 

of the samples, thereby achieving the spectrum sensing of the 

core sensor(s). Specific steps were as follows: 

1) In case of core sensor(s), the X eigenvectors F'i=(P'i, δ'i
s-

max, δ'i
c-max)T were taken as the positive samples for SVM, 

wherein i=1, 2, …, X. In case of no core sensor, Y eigenvectors 

Fi=(Pi, δi
s-max, δi

c-max)T were taken as the negative samples for 

SVM. 

2) Training set TS was constructed according to the positive 

and negative samples, and used to train the SVM. 

3) Positive and negative samples were collected again to 

obtain the test sample set, and the trained SVM was used to 

perform classified test on the data signals collected by the core 

sensors. 

Nc and Nf were assumed to be the numbers of samples that 

are classified correctly and incorrectly, the correct rate of 

detection of data collected by the core sensors can be 

expressed by Formula 9: 

 

c

c

c f

N

N N
 =

+
 (9) 

 

 

4. TEMPO-SPATIAL CORRELATION ANALYSIS OF 

MULTI-SENSOR MONITORING DATA 

 

 
 

Figure 5. Steps to generate wireless sensor construction 

safety monitoring network 

 

Figure 5 gives the steps to generate the wireless sensor 

construction safety monitoring network. The sensors in the 

sensor cluster within the region have certain correlations. For 

a same sensor at a same monitoring point, the monitoring data 

obtained within a consecutive time period has certain temporal 

correlations. As for the multiple monitoring points in a region, 

the morning data obtained by sensors that are relatively close 

in the sensor cluster has certain spatial correlations.  

In the safety monitoring process of construction projects, 

since the time interval of data sampling points was the same, 

the monitoring signals of each sensor in the unit sampling time 

period containing N sampling points can be regarded as a time 

series, which can be expressed as r(1), r(2),…, r(N). In the 

time series, if the covariance between any two adjacent 

monitoring data elements r(t) and r(t-n) is equal to zero, it 

indicates that the time series has no temporal correlation; if the 

said covariance is not equal to zero, the time series has 

temporal correlation. The n-order lag autocorrelation 

coefficient characterizing the degree of temporal correlation 

between r(t) and r(t-n) can be expressed by Formula 10: 
 

1 1 1
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N N
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t t
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N N
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−
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= =

  
− −  

  
=

 
− 

 

  

 

 (10) 

 

Since n is smaller than N, the value range of Rn was [0,1]. 

Under normal conditions, the basic characteristics of the 

sample data time series could be accurately obtained by 

calculating the autocorrelation coefficients of N/4 sampling 

points. If the autocorrelation coefficients of the entire time 

series are all approximately equal to 0, it can be considered 

that the sampling of the sensors within this time period is a 

random process, and the sample data sequence within this time 

period is a stationary time series. If Rn gradually decreases 
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with the increase of n, and most of R1, R2,..., Rn are not 

approximately equal to 0, it can be considered that the 

sampling data of the sensors within this time period has 

obvious correlations, and the sample data sequence within this 

time period is a non-stationary time series. 

For a given time series r(t-1), r(t-2),…, r(t-n-1), the degree 

of conditional correlation between r(t) and r(t-n) can be 

characterized by the partial correlation coefficient. 

Assume Δn is the order of the lag of Rn, and total amount of 

sample data is N'. The LBQ statistics in the statistical tool 

Eviews can be expressed by Formula 11: 

 

( )
2

1

2
n

n

n

R
LBQ N N

N n



=

 = +
 −

  (11) 

 

Taking monitoring points m1-m10 as examples, the temporal 

correlations of monitoring data at the same monitoring point 

in the construction project were analyzed. Table 1 shows the 

calculation of the time autocorrelation coefficients. According 

to the table, the 1-12 order autocorrelation coefficients of each 

monitoring point among m1-m10 all exceed 0 for a certain range, 

and it decreased gradually with the increase of n, which 

satisfied the condition of temporal correlations, and it can be 

proved that all 10 monitoring data time series had 12 order 

temporal correlations.  

In terms of the spatial correlations of monitoring data, it is 

defined that as long as the sensors in the sensor cluster are 

close in space, then the monitoring data in a consecutive time 

period has spatial correlations, and it can be calculated by the 

Pearson formula shown as Formula 12: 
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(12) 

 

The value range of S is [-1,1]. The closer its value is to -1 or 

1, the stronger the spatial correlations between the monitoring 

data of monitoring points mi and mj. When the value of S is 

closer to 0, the monitoring data of monitoring points mi and mj 

does not have spatial correlation. Taking monitoring points 

m1-m10 as examples, the spatial correlations of these 

monitoring points in the same area of a construction project 

were analyzed. Table 2 shows the calculation of the spatial 

autocorrelation coefficients. According to the table, the spatial 

correlation coefficient between each of the monitoring point 

m1-m10 and itself is 1, and the spatial correlation coefficients 

between each monitoring point with other monitoring points 

were about 0.9, which can prove that there are strong spatial 

correlations among the monitoring data of the 10 monitoring 

points. 

 

Table 1. Temporal autocorrelation coefficients 

 
 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 

m1 0.921 0.882 0.795 0.621 0.676 0.587 0.577 0.476 0.384 0.321 0.253 0.196 

m2 0.876 0.775 0.615 0.657 0.550 0.554 0.458 0.430 0.419 0.354 0.243 0.211 

m3 0.911 0.890 0.765 0.666 0.680 0.511 0.594 0.521 0.432 0.435 0.361 0.210 

m4 0.843 0.772 0.659 0.652 0.614 0.524 0.465 0.485 0.342 0.312 0.233 0.210 

m5 0.878 0.798 0.698 0.598 0.576 0.584 0.498 0.435 0.324 0.310 0.300 0.278 

m6 0.906 0.826 0.734 0.675 0.611 0.528 0.528 0.427 0.486 0.392 0.252 0.210 

m7 0.842 0.719 0.677 0.523 0.487 0.498 0.346 0.387 0.375 0.254 0.222 0.201 

m8 0.954 0.843 0.746 0.614 0.614 0.599 0.507 0.412 0.401 0.398 0.201 0.195 

m9 0.897 0.775 0.645 0.523 0.476 0.423 0.332 0.350 0.329 0.289 0.268 0.241 

m10 0.965 0.816 0.789 0.635 0.539 0.558 0.524 0.447 0.435 0.394 0.271 0.251 

 

Table 2. Spatial autocorrelation coefficients 

 
 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 

m1 1.0000 0.9421 0.9579 0.9341 0.9261 0.9977 0.9425 0.9398 0.9574 0.9355 

m2 0.9024 1.0000 0.9364 0.8954 0.8914 0.9216 0.9021 0.8936 0.8732 0.8321 

m3 0.9498 0.9315 1.0000 0.9145 0.9874 0.9621 0.9456 0.9844 0.9574 0.9577 

m4 0.9117 0.8975 0.9031 1.0000 0.8213 0.9458 0.8945 0.9271 0.9276 0.9227 

m5 0.9217 0.8264 0.9147 0.8953 1.0000 0.9074 0.9402 0.9910 0.9225 0.9241 

m6 0.9509 0.9401 0.9210 0.9459 0.9601 1.0000 0.9508 0.9677 0.9677 0.9907 

m7 0.9147 0.8965 0.9245 0.9463 0.9745 0.9145 1.0000 0.9450 0.9211 0.9176 

m8 0.9415 0.8456 0.9487 0.9951 0.9014 0.9166 0.9476 1.0000 0.9356 0.9546 

m9 0.9750 0.8772 0.9493 0.9476 0.9257 0.9345 0.9210 0.8423 1.0000 0.9123 

m10 0.9410 0.8560 0.9416 0.9744 0.9598 0.9750 0.9451 1.0000 0.8562 1.0000 

 

 

5. MSMN-JS MODEL CONSTRUCTION AND MISSING 

DATA RECONSTRUCTION 

 

Due to the complexity of the natural and artificial 

environment of construction projects and the various ever-

changing risk factors, some important monitoring points 

cannot install sensors, thus resulting in missing monitoring 

data. According to previous analysis, the monitoring signals 

within the construction area have strong tempo-spatial 

correlations, and they are sparsified under the discrete cosine 

basis. Therefore, based on this tempo-spatial correlation, it is 

possible to use distributed compressed sensing method to 

reconstruct the missing items of the monitoring data. Still, with 

monitoring points m1-m10 as examples, the sparse model was 
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constructed; ξ represented the discrete cosine basis, then the 

monitoring data yi(g) of the i-th monitoring point at sampling 

time t can be expressed by Formula 13: 

 

( )
 

00

1,2, ,10
,

i p i

p p i i

y
i

g g

  =  =  +
 

 =  =

 (13) 

 

In the formula, each yi containing two parts of valid 

monitoring data information ξΛp and invalid monitoring data 

information ξΛi could be expressed in sparse forms, gp and gi 

are the corresponding sparse coefficients. yi was sorted, since 

the valid monitoring data information ξΛp was public 

information, its sequence was the same with the original data 

sequence of yi, denoted as Γp. Then the missing data 

reconstruction problem can be equivalent to accurately 

recovering ξΛi according to existing Γp. Then equations were 

constructed for the complete monitoring data yi, as shown in 

Formula 14: 
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Its matrix form can be expressed by Formula 15: 
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The discrete cosine basis ξ was divided into two parts αi and 

βi respectively corresponding to the valid and invalid 

monitoring data information. The positions of elements of Γp 

in yi corresponded the positions of each row vector of αi in ξ 

one by one, then yi can be expressed as: 
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The valid monitoring data information Γp can be expressed 

by Formula 17: 
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Simultaneous equations of Γp were constructed, as shown in 

Formula 18: 
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Its matrix form can be expressed by Formula 19: 
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then, Formula 19 can be converted to: 

 

0
G

 = 

 =

 
(20) 

 

The initial problem of missing data reconstruction can be 

transformed into:  

 

0
min . .s t y A =  (21) 

 

The problem is a NP-hard problem that solves the number 

of non-zero elements in Λ, and using the L0 norm method to 

solve it will be too slow, therefore it was converted into the L1 

norm convex programming problem shown in Formula 22: 

 

1
min . .s t y A =  (22) 

 

The above L1 norm problem is usually transformed into: 

 
2

2 1
min y A


  − +  (23) 

 

If the solution of Λ is obtained, then Λp and Λi can be 

obtained, and the complete monitoring data yi can be obtained 

by Formula 24: 

 

( )i p iy =  +  (24) 

 

 

6. EXPERIMENTAL RESULTS AND ANALYSIS 

 

In order to verify the correctness and reliability of the 

proposed algorithm for spectrum sensing of sensor signals in 

the complex natural and artificial environment of the 

construction area, this study designed simulation experiments 

for the two modulation signals: phase shift keying signals and 

frequency shift keying signals. In the simulation, the value 

range of the SNR was [-15, 5]. 1000 and 500 sets of data 

samples were randomly selected from the sensor monitoring 

database to construct the training set and test set, and the SVM 

and ANN models were trained and tested separately under 13 

SNRs. Table 3 gives the correct rate of modulation signal 

spectrum sensing classification of the two algorithms and the 

proposed algorithm under two SNRs of -15dB and 5dB. 

According to the table, the correct rates of the three algorithms 

under 5dB SNR were all higher than those under -15dB SNR. 

Under the two SNRs, the correct rate of modulation signal 

spectrum sensing classification of the proposed algorithm was 

higher than those of the other two algorithms. 
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Table 3. Correct rate of regional sensor signal spectrum sensing of each algorithm 
 

Modulation signal type 
Correct rate (SNR = -5dB) Correct rate (SNR =5dB) 

ANN SVM The proposed algorithm ANN SVM The proposed algorithm 

Phase shift keying signal 57.61 72.45 86.47 81.40 89.40 90.31 

Frequency shift keying signal 54.74 77.10 88.19 82.47 88.43 91.63 

 
(a) 

 
(b) 

 

Figure 6. Spectrum sensing effects of regional sensor signals 

of each algorithm under different modulation signals 

 

 
(a) 

 
(b) 

 

Figure 7. CPU running time and NMSE of random signals 

Figure 6 gives the regional sensor signal spectrum sensing 

effects of the three algorithms in the case of two modulation 

signals. Figure 6(a) corresponds to the phase shift keying 

signals, and Figure 6(b) corresponds to the frequency shift 

keying signals. It can be seen from the figures that, for the 

three algorithms, the correct rates were higher when SNR was 

greater than 0dB; when SNR was reduced, the correct rate of 

ANN greatly reduced; when the SNR was reduced to -15dB, 

the correct rate of ANN was only 21%, while for SVM and the 

proposed algorithm, this number was about 70% and 80.4%, 

respectively, the correct rate of the proposed algorithm was 

much higher than the other two algorithms.  
 

 
a) 

 
b) 

 

Figure 8. Comparison of reconstruction effects of sensor 

signal missing data 
 

In order to verify the reconstruction effects of the proposed 

algorithm on the missing data, this paper designed 

comparative experiments to compare the effects of the 

Bayesian algorithm, the gradient projection algorithm and the 

algorithm proposed in this paper. Figure 7 (a) and Figure 7 (b) 

respectively give the CPU running time spent by the three 

algorithms on random signal missing data reconstruction and 

their NMSE. According to the figures, the gradient projection 

algorithm had the fastest computation speed, but its error was 

larger, and the Bayesian algorithm was just the opposite. In 

comparison, the proposed algorithm showed the advantages of 

fast computation speed and small error. In view of the large 

data volume of the safety monitoring data of construction 

projects, and it requires the missing data reconstruction to 

achieve certain characterization, the proposed algorithm was 

an ideal choice for the problem of missing data reconstruction 

of safety monitoring of construction projects. 
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(a) 

 
(b) 

 
c) 

 

Figure 9. Reconstruction effects of the proposed algorithm 

and Ripple consensus algorithm 

In order to verify the advantages of the proposed algorithm 

in the reconstruction of missing monitoring data in actual 

construction projects, Figure 8 (a) gives the prediction results 

of the nonlinear regression model, and Figure 8 (b) gives the 

raw data, the prediction results of the nonlinear regression 

model, and the reconstruction results of the proposed 

algorithm. It can be seen from the figure, compared with the 

prediction curve of the nonlinear regression model, the 

reconstruction curve of the proposed algorithm was closer to 

the curve of raw data, and the degree of coincidence was 

higher. 

The Ripple consensus algorithm is usually used to 

reconstruct low-rank matrices, it can effectively filter sparse 

noise of low-rank matrices containing missing data items. 

Since the signal data collected by the regional safety 

monitoring sensors of construction projects has large tempo-

spatial correlations, therefore, the regional safety monitoring 

signals containing missing data items can be regarded as a 

damaged low-rank matrix, and this paper adopted the Ripple 

consensus algorithm to reconstruct it. Figure 9 shows the 

reconstruction effects of the proposed algorithm and the 

Ripple consensus algorithm. 

According to the figure, the error value of the proposed 

algorithm in missing data reconstruction was much lower and 

that of the Ripple consensus algorithm, the fluctuation trend of 

the error curve of the proposed algorithm was more stable. 

This is because if the safety monitoring data of the 

construction projects contains a lot of Gaussian white noise, 

then it does not meet the requirements of the Ripple consensus 

algorithm for noise filtering conditions. Therefore, compared 

with the Ripple consensus algorithm, the proposed algorithm 

is more suitable for reconstructing the missing data of safety 

monitoring of construction projects. As for other noise types, 

Table 4 gives the calculation results of the errors of missing 

data reconstruction under the condition of sparse noise 

existing in the monitoring data, according to the table, when 

there’s large sparse noise in the monitoring data, the NMSEs 

of the proposed algorithm were all below 0.01, therefore, 

under the condition of different noise types, the reconstruction 

effect of the proposed algorithm was better. In conclusion, the 

reconstructed monitoring data can achieve effective evaluation 

of the safety status of construction projects.  

 

 

Table 4. Missing data reconstruction errors of the proposed algorithm with sparse noise existing in the monitoring data 

 
 m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 

RMSE 1.275 0.837 1.153 1.579 0.698 1.783 0.645 1.854 0.743 0.946 

NMSE 0.0067 0.0038 0.0041 0.0027 0.0011 0.0079 0.0028 0.0054 0.0047 0.0069 

Error value 0.061 0.027 0.019 0.045 0.072 0.079 0.029 0.018 0.049 0.056 

 

 

7. CONCLUSION 

 

This paper proposed a construction safety monitoring and 

evaluation model based on multi-sensor fusion. First, the 

system structure and data flow model of the construction 

safety monitoring system were constructed; then, combining 

with a multi-sensor deep fusion system which was built on 

physical and information systems, this paper designed a 

spectrum sensing algorithm for sensor signals in the 

construction area. By comparing the spectrum sensing effects 

of three algorithms on two modulation signals of phase shift 

keying signals and frequency shift keying signals under 

different SNRs, this paper proved that the proposed algorithm 

had higher correct rate in spectrum sensing classification. 

After that, based on the tempo-spatial correlation analysis of 

the multi-sensor monitoring data, this paper built a MSMN-JS 

model and realized the reconstruction of the missing 

monitoring data. At last, experimental results proved that the 

proposed algorithm had better reconstruction effects than other 

models under different noise conditions, and the research of 

this paper has certain application value for construction safety 

monitoring and evaluation. 
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