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FUZZY LOGIC IN BIOMECHANICS OF THE HUMAN GAIT
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ABSTRACT
Computerized gait analysis using fuzzy logic has become an integral part of the treatment decision-making
process. The integration of kinetic data, more specifically power joints in combination with fuzzy logic, is a
relatively new addition to the other types of data including temporal and stride parameters. The power joints
of the human leg are an important contribution to the understanding of the cause of certain gait abnormalities.
This utility is not only limited to the surgical decision-making process in persons with spastic diplegia and
myelomingocele but it can also be used in the rehabilitation decision-making process. The modelling of power
joints and fuzzy logic applications in medicine will provide the reader with a detailed introduction to a new
method of analysis of the human gait.
Keywords: biomechanics, fuzzy logic, gait analysis, human gait, myelomingocele, power joints, spastic diplegia.

1 INTRODUCTION
The study of human locomotion has aroused great interest in all periods of time from a mechanistic
and heuristic point of view. Gait analysis and diagnosis still face some problems of application
and knowledge of human locomotion is far from being complete. In carrying out a recent overview
of the literature, one is struck by the importance of this problem today. In many clinical settings,
computerized gait analysis has become an integral part of the clinical decision-making process of
classifying human gait into different groups of pathology and of the treatment of gait abnormalities.
The majority of clinical decisions derived from computerized gait analysis have been directed by
kinematic and kinetic data in combination with fuzzy logic. The precise assessment of these types of
information has been invaluable in contributing to the clinicians’ understanding of the mechanisms
in normal gait as well as in the pathological gait of persons with complex neuromuscular disorders
such as spastic diplegia and myelomingocele. More recently, joint moments, joint powers and fuzzy
logic have been available as additional tools in the assessment of normal and pathological gait. Joint
kinetics provides an opportunity to better appreciate the role of trunk positioning and the relationship
between joints and limbs during gait. The two primary avenues of classification and treatment of
gait abnormalities in patients with spastic diplegia and myelomingocele are surgical treatment and
rehabilitation. The purpose of this paper is to present the method of computation and examining the
coefficients of the power’s model of human gait in the classification and treatment decision-making
process for persons with spastic diplegia and myelomingocele.

2 MATERIALS AND METHODS
Functional evaluation was carried out on 30 healthy subjects (average age 26 years), 40 patients
with spastic diplegia (age ranging between 5 and 21 years) and 45 patients with myelomingocele
(average age 10 years) after clinical evaluation. Patients were recruited into the Center of Bioingineeria
in Milan (79 subjects) and into Glenrose Rehabilitation Hospital in Edmonton (36 subjects). The
average height and weight of the subjects are listed in Table 1. The standard deviation values for
the anthropometric data of each group are also given in Table 1. The difficulties that the patients
most commonly complained about were: climbing stairs, walking uphill and bending down. Gait
abnormalities of these persons are usually treated with a combination of rehabilitation, orthosis and
surgery.
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Table 1: The anthropometric data (±SD) of subjects.

Subjects Height (cm) Weight (kg)

Healthy 168 ± 18 69 ± 10
Spastic diplegia 147 ± 27 46 ± 20
Myelomingocele 146 ± 21 57 ± 15

The optoelectronic systems—Elite-3D and Motion Analysis System—were used for the measure-
ments. The systems are based on an online data processing of signals from a number of TV cameras.
In the field of view of each TV camera it is possible to recognize those bright areas that are of interest
for motion analysis. The optoelectronic systems have been designed to perform the following
operations [1, 2]:

• recognize the shape of the marker placed on the subject;
• compute the x and y coordinates of the marker centroids;
• perform the previous operations in real time;
• classify the marker, so as to attribute each marker to the proper point of the basis of a suitable

model of the body;
• perform routine data processing for: distortion correction by calibrating procedures, the reconstruc-

tion of point trajectories by test fitting techniques and three-dimensional analysis by stereometric
techniques.

The subjects were analysed while walking barefoot along a straight pathway 10 m long. The
quantization of the biomechanical variables and the spatio-temporal parameters of walking was
performed by means of a computerized system for automatic acquisition of kinematics and ground
reaction forces. A working volume 3 m long, 2.5 m high and 1.2 m wide was calibrated by a precision
grid, which was displaced in three different parallel planes. The resulting accuracy was assessed
by measuring the movement of a special stick with three retroreflective markers placed on it. In
these conditions, the only errors that can appreciably affect the kinematic measurements are skin
motion artefacts and deformation of the anatomical structure. Pre-processing of raw data involved
a tracking procedure, three-dimensional reconstruction of the marker’s coordinates, correction for
optoelectronic distortion and filtering. The frequency of acquisition was set at 50 Hz. All the subjects
were analysed with the same protocol (SAFLo) of gait analysis in the SAFLo laboratory in Milan and
in the Syncrude Centre for Motion & Balance in Edmonton. The markers were placed at the following
locations on each subject: two on the posterior superior iliac spines, one on the sacrum bone, two on
the lateral femoral condyles, two on the lateral malleoli and one on the wrist. The inertial parameters
were also derived using the measurement and some kinematic data from the optimization, according
to the adjustments of the Zatsiorsky–Seluyanov’s parameters [1]. In this work, ground reaction data
were collected using AMTI and KISTLER platforms placed in these labs. Three forces and three
moments relative to each force plate were recorded. Force plates were also calibrated by leaving the
special eight marker devices on each force plate one at a time. The mean distance computed between
the two spheres on the stick differed, in general, from the actual distance (400 mm) by less than
0.3 mm. Using data from the ground reaction platform, the kinematic data (trajectories, joint angles,
acceleration, etc.) have been combined with ground reaction forces and inertial parameters in order
to compute the joint moments and powers. All the variables were time-normalized taking the whole
stride duration as 100%. Moments, powers and ground reaction forces were expressed as percentages
of the individual body weight to make them comparable between different subjects.
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2.1 The power’s model of human gait using regression functions

Current technology does not allow the direct measurement of power joint. The power joint must
be estimated through the combination of kinematic data associated with body segment locations
and spatial orientations with force platform data. The calculation of power joint over the gait cycle
requires the following data sets:

• the location of the hip, the knee and the ankle joints;
• the location of the centre of mass (CM) of the thigh, the shank and the foot;
• the linear acceleration of the CM of the thigh, the shank and the foot;
• the angular velocity and the acceleration of the thigh, the shank and the foot;
• the ground reaction forces and the vertical torque;
• the location of the point of application of the ground reactions.

These data are then incorporated into equations of motion along with estimates of the mass and
the mass of inertia of each lower extremity segment. The computation of power joint is a relatively
straightforward application of Newtonian mechanics. The mechanical power associated with joint
rotation is computed from the combination of the joint moment and the joint angular velocity (the
rotational velocity of one segment relative to another) [1, 2]. The formula for power joint is facilitated
by the use of eqn (1):

Pi = �Mi · �ωi, (1)

where P is the joint power, M is the joint moment and ω is the angular velocity. The computation of
the joint moment is faciliated by the use of eqn (2) of rotational motion:

Mi = F · r, (2)

where M is the join moment, F is the joint force and r is the vector from the joint centre to the CM
of the segment.

The external forces considered were: ground reaction components and gravitational and inertial
forces applied at the barycentre of each body segment. Mass, moments of inertia and positions of
centres of gravity of each body segment were obtained from anthropometric tables [1].

The power’s model proposed by the author is based on the instantaneous power joints of the lower
limbs. The procedure of identification in the power’s model of human gait, using regression functions,
is presented in Fig. 1.

In this paper, a new method for the diagnosis of human gait is proposed. The method is based on
regression functions. The human gait model using regression functions is determined by eqn (3) [3, 4]:

Ŷn = un · a, n = 1, 2, . . . , N , (3)
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Figure 1: The identification model of human gait.
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where Ŷ is the model’s output (power joints in the n instant), un is the model’s input (power joints in
the n instants before), a represents the unknown parameters of human gait and N is the sample size.
The unknown vector a is determined by eqns (4) and (5):

a = (UT · U)−1 · UT · Y , (4)

where U is the matrix of the input data and Y is the vector of the output data,

a = [a1 a2 . . . ak]T, k = 1, 2, . . . , K , (5)

where K is the coefficient size.
The power’s model coefficients determined using regression functions are presented in Table 2.

They were calculated for the hip, the knee and the ankle joints in two phases: in the stance phase and
in the swing phase. The standard deviation values of the model’s coefficients for each group are also
given in Table 2.

Statistical analysis was performed on the whole population of healthy subjects and those with
spastic diplegia and myelomingocele.A characterization of the difference was obtained by computing
the following parameters: the standard deviation, correlation, variance and confidence intervals. The
average value of coefficients a1 for the hip joint is the highest for patients with myelomingocele in the
stance phase and for patients with spastic diplegia in the swing phase. The average value of coefficients
a2 is the highest for patients with spastic diplegia in the stance phase and for healthy subjects in the
swing phase. There are no significant differences between the values of coefficients a3 for each group.
The analysis of the model’s coefficients for the knee joint shows that the average value of coefficients
a1 is the highest for healthy subjects in the stance phase. There are no significant differences between
coefficients a1 for each group in the swing phase. The average value of coefficients a2 is the highest
for patients with spastic diplegia in the stance phase and in the swing phase. The average value of
coefficients a3 is the highest for patients with spastic diplegia and myelomingocele in the stance phase
and for healthy subjects in the swing phase. The analysis of the ankle joint shows, that the average
value of coefficients a1 is the highest for patients with spastic diplegia in the stance and in the swing
phase. There are no significant differences between coefficients a2 for each group in the swing phase.
The average value of coefficients a2 is the highest for patients with myelomingocele in the swing
phase. In the stance phase, the coefficients a3 do not change the value a lot for each group and it is
the highest for healthy subjects in the swing phase.

Table 3 presents the power’s model coefficients in seven phases of human gait: the initial contact
(IC), the loading response (LR), the midstance (MSt), the terminal stance (TSt), the initial swing
(ISw), the midswing (MSw) and the terminal swing (TSw), obtained using regression functions. The
standard deviation values of the model’s coefficients for each group are also given in Table 3.

The analysis of the model’s coefficients in the initial contact shows that the average value of coef-
ficients a2 is the lowest for patients with myelomingocele, but the average value of coefficients a3

is the highest for healthy subjects. In the loading response, the average value of coefficients a2 is
the lowest for healthy subjects. In the midstance, the average value of coefficients a1 is the lowest
for patients with spastic diplegia and the average value of coefficients a3 is the highest for patients
with myelomingocele. Moreover, in the terminal stance, the average value of coefficients a1 is the
highest for patients with spastic diplegia, a2 is the lowest for healthy subjects and a3 is the highest for
patients with myelomingocele. In the initial swing, there are no significant differences between the
values of the model’s coefficients for each group. In the midswing, we can see that the coefficients
a2 are the lowest and a3 are the highest for patients with spastic diplegia. Finally, in the terminal
swing the coefficients a2 are the lowest for patients with spastic diplegia and a3 are the lowest for
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Table 2: The power’s model coefficients (±SD) for healthy subjects and for patients with spastic
diplegia and myelomingocele in the stance and the swing phases.

Joint Coefficient Stance phase Swing phase

Healthy subjects
Hip a1 1.964 ± 0.570 1.562 ± 0.491

a2 −1.252 ± 1.067 0.904 ± 0.591
a3 0.203 ± 0.186 0.180 ± 0.090

Knee a1 2.033 ± 0.545 1.834 ± 0.447
a2 −1.501 ± 0.798 −1.187 ± 0.574
a3 0.464 ± 0.223 0.290 ± 0.203

Ankle a1 1.759 ± 0.530 1.001 ± 0.363
a2 −1.168 ± 0.640 −0.212 ± 0.160
a3 0.288 ± 0.106 −0.039 ± 0.015

Patients with spastic diplegia
Hip a1 2.005 ± 0.508 1.952 ± 0.488

a2 −0.955 ± 0.350 −0.849 ± 0.344
a3 0.378 ± 0.210 0.351 ± 0.173

Knee a1 1.865 ± 0.590 1.788 ± 0.648
a2 −0.901 ± 0.317 −0.859 ± 0.425
a3 0.275 ± 0.169 0.408 ± 0.208

Ankle a1 1.997 ± 0.334 1.340 ± 0.605
a2 −1.002 ± 1.427 −0.561 ± 0.388
a3 0.371 ± 0.213 0.045 ± 0.024

Patients with myelomingocele
Hip a1 2.084 ± 0.386 1.743 ± 0.234

a2 −1.501 ± 0.676 −1.154 ± 0.168
a3 0.386 ± 0.312 0.285 ± 0.091

Knee a1 1.801 ± 0.328 1.909 ± 0.343
a2 −1.114 ± 0.557 −1.369 ± 0.585
a3 0.241 ± 0.127 0.422 ± 0.249

Ankle a1 1.848 ± 0.464 1.145 ± 0.306
a2 −1.275 ± 0.768 −0.435 ± 0.286
a3 0.299 ± 0.198 0.044 ± 0.021

healthy subjects. The Kolmogorow–Smirnow statistical test with p < 0.05 was used to compare the
average values of the coefficients in each group [5]. The hypothesis regarding the same coefficient’s
distribution in three groups was rejected.

2.1.1 The system of supported clinical decision-making in medicine
Since the 1980s new techniques using fuzzy logic have appeared in medical systems. Many of these
intelligent systems are based on fuzzy control strategies with the description of complex systems
of mathematical models in terms of linguistic rules. Fuzzy logic needs a full description of the
rules of relations between the inputs and the outputs that can occur in a considered engineering
context. When complexity increases, the list of rules becomes extremely large and needs a great deal
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of expert information. Fuzzy logic resembles the way of thinking of actors left with an agreed
set of decision options, a list of rules of behaviour and of instructions how to use them so as to
solve a specific problem. Fuzzy logic, as any other type of logic, cannot transcend its own limits as
a tool of inference and thus cannot be used as a holistic criterion of reality. Fuzzy logic provides a
means for encapsulating the subjective decision-making process in an algorithm suitable for computer
implementation. As such, it appears to be eminently suited to aspects of medical decision-making.
Furthermore, the principles behind fuzzy logic are straightforward and its implementation in software
is relatively easy. Nevertheless, the applications of fuzzy logic in medicine are few [6–8].

This section will illustrate the application of fuzzy logic into the system of supported clinical
decision-making in biomechanics of the human gait. MATLAB 6.5 as well the Borland C++ Builder
and the fuzzy Dempster-Shafer (FDS) classifier were used to build this system [9–11]. The FDS
fuzzy logic has a particular advantage in areas where precise mathematical description of the control
process is impossible and is thus especially suited to support medical decision-making. The knowledge
base is managed in the Center of Bioingineeria in Milan (Italy) and in the Glenrose Rehabilitation
Hospital in Edmonton (Canada). The subjects’ data were divided into two sets: the teaching set and
the testing set. The teaching set included subjects’ data from the Center of Bioingineeria in Milan,
while the testing set included subjects’ data from the Glenrose Rehabilitation Hospital in Edmonton.
The numbers of subjects in both sets are presented in Table 4.

The first step in implementing a fuzzy logic control algorithm is to ‘fuzzify’ the measured variables.
In the proposed system, the rules were generated using the power’s model coefficients presented in
Tables 2 and 3. The patient’s state in terms of diagnosis was a fuzzy set with the following square
membership function given by eqn (6) [12]:

y = (X − xi)2

(xi − xi+1)
, (6)

where y is the membership function and X is a variable. The operator’s adjustment is presented by
eqn (7):

max(0, x · p), (7)

where x is the new rule and p is the rule of the operator’s adjustment.
The maximum of the operator’s adjustment was defined as follows:

1. The value of the operator’s adjustment was tested at the borders 〈0, 1〉. The threshold value
was 0.75. If the threshold value was crossed, the number of well-chosen rules was increased
(the addition of the rule to the report required 50% + 1 attribute with the threshold value). In a
different case, point 2 was carried out.

2. The method of gold division was used for determining the operator’s adjustment.

Table 4: The number of subjects in the teaching set and the
testing set.

Subjects Teaching set Testing set

Healthy 15 15
Spastic diplegia 26 14
Myelomingocele 26 19
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During the system’s teaching three relations were used: healthy subjects—15 rules; patients with
spastic diplegia—26 rules; patients with myelomingocele—26 rules. The coefficient’s ranges, which
allow the classification of human gait into different groups of pathology, are presented in Table 5.
The use of power joints in the treatment decision-making process is relatively new. Choosing the best
method of improvement of human gait for these particular diseases may not be easy. Certain points
have to be taken into consideration—the side effects of the method of improvement, the effect of
the treatment on the patient, whether the patient is taking any other treatment, and the effect of the
combination of the treatments, whether the patient is infected with some other disease and so on.
Hence, determining an appropriate method of improvement of human gait becomes important as well
as complicated. Here, fuzzy decision-making plays a major role [12, 13].

It has been noticed that more information can be obtained from the proportion between the power’s
model coefficients. The proportions between coefficients are determined by eqn (8):

[
aI

aII

]
=




a1
a3

a2
a3


 , (8)

where a1, a2 and a3 are the power’s model coefficients of human gait.
The coefficient’s ranges, which allow choosing the method of improvement of human gait (surgical

treatment or rehabilitation), are presented in Table 6. The ranges are presented together for both spastic
diplegia and myelomingocele.

Table 5: The rules for healthy subjects and for patients with spastic diplegia and myelomingocele.

Joint Phases of the human gait Coefficient Value of the coefficient

Healthy subjects
Hip Stance a1 1.395 ÷ 2.534

a2 −2.319 ÷ −0.185
a3 0.017 ÷ 0.389

Swing a1 1.071 ÷ 2.053
a2 −0.313 ÷ 1.495
a3 0.090 ÷ 0.270

Knee Stance a1 1.489 ÷ 2.578
a2 −2.299 ÷ −0.703
a3 0.241 ÷ 0.687

Swing a1 1.387 ÷ 2.281
a2 −1.761 ÷ −0.613
a3 0.087 ÷ 0.493

Ankle Stance a1 1.229 ÷ 2.289
a2 −1.808 ÷ −0.528
a3 0.182 ÷ 0.470

Swing a1 0.639 ÷ 1.364
a2 −0.372 ÷ 0.052
a3 −0.054 ÷ 0.177

(Continued)
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Table 5: Continued

Joint Phases of the human gait Coefficient Value of the coefficient

Patients with spastic diplegia
Hip Stance a1 1.497 ÷ 2.513

a2 −1.345 ÷ −0.605
a3 0.168 ÷ 0.588

Swing a1 1.464 ÷ 2.440
a2 −1.193 ÷ −0.505
a3 0.178 ÷ 0.524

Knee Stance a1 1.275 ÷ 2.455
a2 −1.218 ÷ −0.584
a3 0.106 ÷ 0.444

Swing a1 1.140 ÷ 2.436
a2 −1.284 ÷ −0.434
a3 0.200 ÷ 0.616

Ankle Stance a1 1.663 ÷ 2.331
a2 −2.429 ÷ 0.424
a3 0.158 ÷ 0.584

Swing a1 0.736 ÷ 1.945
a2 −0.949 ÷ −0.173
a3 0.021 ÷ 0.067

Patients with myelomingocele
Hip Stance a1 −11.778 ÷ 23.780

a2 −10.007 ÷ 1.775
a3 −558.000 ÷ 7.491

Swing a1 −21.821 ÷ 1.317
a2 −15.470 ÷ 10.600
a3 −5.353 ÷ 2.222

Knee Stance a1 −40.760 ÷ 19.575
a2 −12.964 ÷ 0.998
a3 −8.634 ÷ 43.002

Swing a1 −13.011 ÷ 16.008
a2 −8.710 ÷ 29.504
a3 −11.845 ÷ 1.282

Ankle Stance a1 −11.832 ÷ 47.579
a2 −17.219 ÷ 3.612
a3 −11.778 ÷ 23.780

Swing a1 −10.007 ÷ 1.775
a2 −558.000 ÷ 7.491
a3 −21.821 ÷ 1.317

The system of supported clinical decision-making in medicine was verified on patients from the
Glenrose Rehabilitation Hospital in Edmonton (15 healthy subjects, 14 patients with spastic diplegia
and 19 patients with myelomingocele). The results of the verification of the system are presented in
Table 7. The verification was based on the comparison of the results obtained from the system with the
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Table 6: The rules for patients with myelomingocele and spastic diplegia—surgical
treatment and rehabilitation.

Phases of the human gait Coefficient Value of the coefficient

Surgical treatment
IC aI −154.004 ÷ 345.011

aII −87.155 ÷ 34.999
LR aI −73.759 ÷ 140.000

aII −86.004 ÷ 9.905
MSt aI −36.004 ÷ 135.341

aII −48.012 ÷ 11.008
TSt aI −607.000 ÷ 95.313

aII −18.020 ÷ 148.009
ISw aI −1347.111 ÷ 24.212

aII −5.425 ÷ 339.016
MSw aI −52.000 ÷ 62.990

aII −8.612 ÷ 5.446
TSw aI −210.004 ÷ 289.994

aII −229.758 ÷ 70.001
Rehabilitation
IC aI −11.778 ÷ 23.780

aII −10.007 ÷ 1.775
LR aI −558.000 ÷ 7.491

aII −21.821 ÷ 1.317
MSt aI −15.470 ÷ 10.600

aII −5.353 ÷ 2.222
TSt aI −40.760 ÷ 19.575

aII −12.964 ÷ 0.998
ISw aI −8.634 ÷ 43.002

aII −13.011 ÷ 16.008
MSw aI −8.710 ÷ 29.504

aII −11.845 ÷ 1.282
TSw aI −11.832 ÷ 47.579

aII −17.219 ÷ 3.612

medical doctor’s diagnosis. The effectiveness of the system in classifying the subjects into different
pathological groups is 91.6 %. The probability of wrong classification is 0% for healthy subjects, 7.1%
for patients with spastic diplegia and 15.8% for patients with myelomingocele. The system properly
determined the method of improvement of human gait in over 90.0% of the cases. The probability of
wrong diagnosis of treatment is about 10.0% for both spastic diplegia and myelomingocele.

3 CONCLUSIONS
It is very likely that applying kinetics data, especially power joints, helps to define gait pathology
and treatment in a large number of patients. A lot of work remains to be done in the modelling area.
Hopefully, the accurate computation and interpretation of power joints in combination with the other
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Table 7: The verification of the system—classification of patients into different groups of pathology
and the method of improvement of human gait.

Correct classification (%)

Classification of patients into different groups of pathology
Healthy 100.0
Spastic diplegia 92.9
Myelomingocele 84.2
The method of improvement of human gait
Surgical treatment (spastic diplegia and
myelomingocele) 91.6
Rehabilitation (spastic diplegia and
myelomingocele) 88.9

components of the computerized analysis system will eventually lead to significant improvements in
treatment decision-making for complex gait abnormalities such as spastic diplegia and myelomingo-
cele. This method of identification represents human movement in a very accurate way during walking
in the sagittal plane. It could be used in bioengineering for the assessment of walking recovery.

The considerations introduce an incomplete analysis of spacious problems concerned with the
classification and the improvement of the apparatus of human gait, which is a result of the limited
amount of the collected data. However, scientific results obtained lead to the conclusion that the
model’s method of identification (regression functions) can be applied to determine the dynamic
properties of human gait, and consequently to diagnose a patient’s apparatus of movement.
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