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ABSTRACT
The intervertebral disc (IVD) acts as a shock-absorbing unit and effectively contains its lateral and axial defor-
mations while providing the necessary flexibility to the spine. These attributes are due to the stress-stiffening
material (elastic modulus) property of the annulus, caused by the pressure developed in the nucleus pulposus
(NP). Hence, one of the biomechanical roles of the NP in the IVD is to stress the annulus while the IVD is loaded.
In this paper, a closed-form solution of the IVD (with NP, i.e. a healthy IVD, and without NP, i.e. a nucleotomized
IVD) under compressive loading is developed. Based on the analysis, it is observed that the deformations of the
IVD do not increase in proportion to the load. Rather, the rate of increase in deformation decreases as the load
increases. This is a key optimal feature because it means that deformations are contained and therefore stability
is maintained. Further, it is shown that the nucleotomized IVD deforms more than the healthy IVD. This means
that the nucleotomized IVD will have higher chances of collapse than the healthy IVD for the same level of
loading. This result is a contra-indication for nucleotomy. Our proposal is to place a biocompatible gel-filled
balloon to simulate the beneficial effects of the NP.
Keywords: deformation, internal pressure, intervertebral disc, nucleotomy, nucleus pulposus, stress analysis,
stress stiffening solid, thick-walled cylinder, uniaxial compression.

1 CONCEPT OF THE INTERVERTEBRAL DISC AS AN OPTIMAL STRUCTURE
The human spine is made up of alternating vertebral body (VB) and intervertebral disc (IVD). In our
earlier paper [1], we have shown how the VB is designed as an optimal lightweight structure because
of its hyperboloid shape.An additional feature of the spine as a structure is its ‘S’shaped configuration.
This configuration has evolved to enable a human being to stand and move in an upright configuration
while supporting the internal organs and providing rigidity for the functional role of sitting and
squatting. However, the ‘S’ shaped configuration also acts as a shock absorber. In this function of the
spine to act as a flexible shock-absorbing and protective structure, the IVD has an important role.

The IVD, as the principal component of the intervertebral joint (shown in Fig. 1a), sustains and
transmits compressional, bending and torsional loadings. It is centrally pressurized by the nucleus
pulposus (NP) and surrounded by the annulus (Fig. 1b). The annulus fibres are oriented helically, at
almost 30◦–50◦ [2, 3]. Even under torsion, the torsional shear stresses on a disc element will result
in diagonally oriented tensile and compressive stresses. It is revealing that these tensile stresses due
to torsion of the disc can thus be directly absorbed by these angled fibres of the annulus. Thus, the
IVD is ideally designed for compression and bending as well as for torsion [4–12].

The IVD functions as the shock-absorbing component of the spinal unit, comprising two adjacent
VBs on either side of the IVD. Additionally, the central portion of the VB end-plate functions as a
diaphragm, through which (under compressive loading) NP fluid moves out of the disc into the VB,
thereby helping to draw nutrition (as shown in Fig. 2a and b) into the disc upon removal of the loading.
However, under rapidly applied loading, the VB end-plate offers resistance to the intrusion of fluid
into the VB blood compartment, thereby lending a shock-absorbing property to the disc. Indeed, the
IVD can be regarded as an effective viscoelastic shock-absorbing structure [13].

From a biomechanical viewpoint, the NP has another very important role, namely to contain the
disc axial and radial deformations. The causative mechanism is that when the disc is loaded in axial

© 2007 WIT Press, www.witpress.com
ISSN: 1744-3687 (paper format), ISSN: 1744-3679 (online), http://journals.witpress.com
DOI: 10.2495/D&N-V1-N2-146-160



D.N. Ghista et al., Int. Journal of Design & Nature. Vol. 1, No. 2 (2007) 147

(a) (b)

vertebra

Disc

Figure 1: (a) The location of the IVD within the spinal column. (b) Schematic representation of the
disc structure. The NP is surrounded by annulus fibrosus. This outer layer has a lamellar
structure with highly ordered collagen fibres [4].
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Figure 2: Nutrition mechanism of the disc (a) during loading, the NP enters the cancellous VB, and
(b) during unloading, the NP draws nutrition into the disc [13].

compression (or bending or torsion), the NP fluid gets pressurized and stresses the surrounding
annulus. The annulus is a stress-stiffening solid, such that its elastic modulus (E) increases with the
increase in stress (its stress–strain property is shown in Fig. 3b) [14, 15]. Hence, under increased
loadings, its elastic modulus value also increases, so that the deformations are thereby contained.

The IVD’s stress-deformation characteristics have been effectively analysed by finite element
analysis [14]. Herein, an elasticity model of the disc as a closed thick-walled fluid-filled cylin-
der is employed to determine its stress and deformations under uniaxial compressive loading and
demonstrates the role of the NP in containing the disc deformations. It is also demonstrated that
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the nucleotomized disc will undergo larger deformations than the normal disc, for the same levels of
loading, thereby drawing attention to the efficacy of nucleotomy to treat a ruptured disc and associated
back pain.

The stress-dependent Young’s modulus of the disc annulus can be represented as [14]

E = E0 + 375.3σ 0.473, (1)

where E0 (the residual Young’s modulus) = 4.2 MPa and the stress σ is expressed in MPa. This
constitutive equation is employed to determine the E value for the uniaxially compressed disc. This
constitution of the spinal disc, wherein the stress-dependentYoung’s modulus of its annulus encloses
the NP, gives it a key self-reinforcing design property. The closest man-made self-reinforcing structure
is a car tyre, which makes it lighter as well as lends it a shock-absorbing property.

The disc annulus is assumed to be isotropic, so that Ez = Er = Eθ = E. As the disc gets com-
pressed (by increasing the applied compressive force F), the annulus stresses (σz, σr and σθ ) keep
increasing. For each updated value of E for the enhanced stress state (in response to increasing
values of the compression force F on the disc), σ (in eqn (1)) is taken to be equal to the maxi-
mum value of the principal stress (which happens to be the axial stress σz). For this relationship, as
the disc is loaded, the annulus stress state σ = (σz) increases. Correspondingly, its E increases, to
thereby contain the disc deformations.

In this paper, the mechanism of disc deformation containment for vertical loading is delineated.
Compressive loading (F) on the disc causes compressive axial stress (σz) in the annulus and also
pressurizes NP fluid, which then exerts hydrostatic pressure (pi) and hence compressive radial stress
σr on the annulus. This radial pressure or stress (σr) in turn causes circumferential tensile stress (σθ )
in the annulus. These stresses in turn influence the strain state in the disc through the elastic modulus
and, hence, the axial and radial deformations of the disc by virtue of eqn (1). Hence, the effect of
the NP hydrostatic pressure is to stress the disc annulus and enhance the value of its E. This in turn
stiffens the disc (according to eqn (1)) and enables it to bear heavy loads without large axial and
lateral deformations.

2 ANALYSIS: DISC STRESSES, DISPLACEMENTS AND DEFORMED GEOMETRY
The disc is considered to be a thick-walled isotropic cylinder whose geometry and deformations are
depicted in Fig. 3a. In this analysis, linear elasticity formulations of stress–strain constitutive relations
have been employed. Under compressive loading of the order of 2000 N, the deformations are of the
order of 1 mm. This result has been obtained by Fagan et al. [6, 16] and is shown in Fig. 3b. Hence,
in order to compute the disc deformations under compressive loading, small incremental loadings
are adopted so that the resulting strains are infinitesimal. Likewise, for each incremental load state,
(1) the NP pressure is determined, (2) the incremental stresses and the total stress state are computed,
(3) the disc material modulus value is revised as per eqn (1) and (4) the disc deformations are
determined and its geometry is updated.

Stress equilibrium equations: Let u be the radial displacement and w be the axial displacement,
as shown in Fig. 3. Because of the axial symmetry of the disc geometry and loading conditions, the
shear stresses and the circumferential displacement are identically equal to zero. Thus, the stress-
equilibrium equations are

Radial direction
dσr

dr
+ σr − σθ

r
= 0 (2)

Axial direction
dσz

dz
= 0. (3)
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Figure 3: (a) Geometry and deformation variables of the spinal disc loaded in compressive force F.
Note that u is depicted as expansive radial deformation while w is depicted as shortening
axial deformation. (b) Comparison of the effects of including linear and non-linear material
(M) and geometry (G) solution options on the compressive behaviour of the disc [6].

The strain-displacement relations are

Radial strain εr = σr

E
− ν(σθ + σz)

E
= du

dr
, (4a)

Circumferential strain εθ = σθ

E
− ν(σz + σr)

E
= u

r
(4b)

Axial strain εz = σZ

E
− ν(σr + σθ )

E
= dw

dz
, (4c)

wherein the annulus material modulus (E) is adopted to be isotropic.
The disc material’s constitutive stress–strain relations in terms of the disc material’s Young’s

modulus (E) and Poisson’s ratio (v) are hence given in the radial direction as

σr = E

1 + ν

(
ν

(1 − 2ν)

(
du

dr
+ u

r
+ dw

dz

)
+ du

dr

)
, (5a)

in the circumferential direction as

σθ = E

1 + ν

(
ν

(1 − 2ν)

(
du

dr
+ u

r
+ dw

dz

)
+ u

r

)
(5b)

and in the axial direction as

σz = E

1 + ν

(
ν

(1 − 2ν)

(
du

dr
+ u

r
+ dw

dz

)
+ dw

dz

)
. (5c)

Note that σθ , σr , σz are adopted to be positive for tensile stress.
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Now, by substituting the constitutive relations in eqn (5a–c) into the equilibrium equations (2) and
(3), two partial differential equations in displacements u and w are obtained, as follows

d

dr

(
ν

1 − 2ν

(
du

dr
+ u

r
+ dw

dz

)
+ du

dr

)
+ 1

r

(
du

dr
− u

r

)
= 0, (6a)

d

dz

(
ν

1 − 2ν

(
du

dr
+ u

r
+ dw

dz

)
+ dw

dz

)
= 0. (6b)

The solutions of eqn (6a) and (6b) can be expressed as

u = A

r
+ Br, (7)

w = Cz + D, (8)

where, A, B, C and D are the constants of integrations. These constants can be determined by applying
appropriate boundary conditions.

As the NP is incompressible [2], its volume after deformation is unchanged, so that

πa2h = π (a + ua)2(h − wh).

This can be simplified by neglecting higher-order terms (uawh and u2
awh), to yield

2πahua − πa2wh = 0 or ua =
( a

2h

)
wh, (9)

It is to be noted that according to deformation as per Fig. 3a, wh is the shortening deformation at
z = h, while ua is the radial expansion deformation at r = a.

The appropriate boundary conditions for solving eqns (7) and (8) are

ur=a = ua = A

a
+ Ba, (10a)

σr = 0 at r = b, (10b)

w = 0 at z = 0, (10c)

w = −wh at z = h. (10d)

Using the boundary conditions from eqn (10) and utilizing eqns (5), (7) and (8), the constants in eqns
(7) and (8) are obtained as

A = (1 − 2ν) uaab2

b2 + a2 (1 − 2ν)
, (11a)

B = ua

(
a2 (1 − 2ν) + 2νb2

ab2 + a3 (1 − 2ν)

)
, (11b)

C = −wh

h
= −2ua

a
, (11c)

D = 0. (11d)
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Using the constants A, B, C and D, the stresses in eqn (5) can be represented by

σr = E

1 + ν

(
ν (2B + C)

(1 − 2ν)
+ B − A

r2

)

= − E

1 + ν

(
uaa (1 − 2ν)

a2 (1 − 2ν) + b2

) (
b2

r2
− 1

)
, (12a)

σθ = E

1 + ν

[
ν (2B + C)

(1 − 2ν)
+ B + A

r2

]

= E

1 + ν

(
uaa (1 − 2ν)

a2 (1 − 2ν) + b2

) (
b2

r2
+ 1

)
, (12b)

σz = E

(1 + ν)

(
ν (2B + C)

(1 − 2ν)
+ C

)
= − 2uaE

a (1 + ν)

[
a2 (1 − 2ν) + b2 (1 + ν)

a2 (1 − 2ν) + b2

]

= − whE

(1 + ν)

[
a2 (1 − 2ν) + b2 (1 + ν)

a2 (1 − 2ν) + b2

]
. (12c)

Then, from eqns (7), (11a) and (11b), the radial displacement is given by

ur = A

r
+ Br = ua

ar

(
a2b2 (1 − 2ν) + r2

[
a2 (1 − 2ν) + 2νb2

]
a2 (1 − 2ν) + b2

)
(13a)

and hence ub (at r = b) is given by

ub = 2bua

a

(
a2(1 − 2ν) + νb2

a2(1 − 2ν) + b2

)
. (13b)

It is to be noted (from eqn (12c)) that σz is uniform throughout the disc and the minus sign implies
that σz is compressive.

3 STRESS ANALYSIS OF THE HEALTHY DISC UNDER COMPRESSION
For an axially applied force F (as illustrated in Fig. 4), the equilibrium equation is

F = πa2σf − π
(
b2 − a2

)
σz, (14)

where σf is the hydrostatic pressure in the fluid and σz is the axial stress in the annulus (as shown in
Fig. 4). Its sign is taken to be negative in eqn (14), because positive σz is considered as tensile.

Because the disc height (h) is small, σf is approximately constant, and hence:

σf = −σr |r=a = pi (the pressure in the NP). (15)

Based on eqns (15) and (12a),

pi = E (1 − 2ν)

(1 + ν)

(ua

a

) (
b2 − a2

a2 (1 − 2ν) + b2

)
. (16)
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Figure 4: Normal stresses σf and σz under the applied compressive force F.

Then, substuting for ua from eqn (16) into eqn (12c), we obtain

pi = −1 − 2ν

2

(
b2 − a2

a2 (1 − 2ν) + b2 (1 + ν)

)
σz. (17)

The axial stress in the annulus is obtained by substituting the expression for pi from eqn (17) into
eqn (14) as

σz = − 2

π

(
F

b2 − a2

) (
a2 (1 − 2ν) + b2 (1 + ν)

2b2 (1 + ν) + a2 (3 − 6ν)

)
. (18)

Then, from eqns (17) and (18), the NP pressure is expressed in terms of the applied compressive force
F as

pi = 1 − 2ν

π

(
F

3a2 (1 − 2ν) + 2b2 (1 + ν)

)
. (19)

From eqns (18) and (12c), by equating the expressions for F, we get the radial deformation at the
inner surface as

ua = 1

π

1

E

(
F

b2 − a2

) (
a3 (1 − 2ν) + ab2

2b2 (1 + ν) + a2 (3 − 6ν)

)
. (20)

From eqns (20) and (9), we get the axial deformation as

wh = 2

π

1

E

(
F

b2 − a2

) (
h

(
a2 (1 − 2ν) + b2

)
2b2 (1 + ν) + a2 (3 − 6ν)

)
. (21)



D.N. Ghista et al., Int. Journal of Design & Nature. Vol. 1, No. 2 (2007) 153

By substituting eqn (20) into eqn (13b), the expression for ub (the radial deformation at the outer
surface of the annulus) is obtained as

ub = 2

π

1

E

(
F

b2 − a2

) (
a2b (1 − 2ν) + b3

2b2 (1 + ν) + a2 (3 − 6ν)

)
. (22)

Finally, from eqns (12a, b) and (20), we obtain the expressions for σr and σθ in terms of applied load
F as

σr = 1 − 2ν

π

(
F

b2 − a2

) (
a2

2b2 (1 + ν) + a2 (3 − 6ν)

) (
1 − b2

r2

)
, (23)

σθ = 1 − 2ν

π

(
F

b2 − a2

) (
a2

2b2 (1 + ν) + a2 (3 − 6ν)

) (
1 + b2

r2

)
. (24)

It is seen that as the disc gets loaded in compression (by the force F), (1) both σz and pi increase, by
virtue of eqns (18) and (19); (2) the increased pi (which is a function of F, as per eqn (19)) causes σr ,
σθ and ub to increase by virtue of eqns (22)–(24); (3) the axial (shortening) deformation wh increases
by the virtue of eqn (21). Finally, the stresses (σr , σθ and σz) are expressed in terms of F by eqns
(18), (23) and (24), while the deformations (ua, ub and wh) are expressed in terms of F by means of
eqns (20)–(22).

4 MECHANISM AND COMPUTATION OF DISC DEFORMATION
The NP gets pressurized when the load F acts on it, as per eqn (19). All the stresses increase with
loading as per eqns (18), (23) and (24), and so does E according to eqn (1). Now E (the elastic
modulus corresponding to the deformed state of the disc under load F) will be greater than its value
in the unloaded state of the disc, as per eqn (1). Hence, as per eqns (21) and (22), both the axial and
the radial deformations will be contained.

This is attributed to the disc design, wherein the annulus contains the NP. This dependency of E on
pi, and hence on F and the disc annulus stress state represented by σz was also reported by Shirazi-Adl
[14] and Ranu [17, 18], based on the experimental and finite element analysis of the annulus. The
following procedure is followed to determine the disc deformation in response to compressive load.

Step 1
Starting from the unloaded state, σz0 = 0, for which E = E0 as per eqn (1).

1. Now an incremental compressive force of �F1 = 1 N is applied on the unstressed disc of dimen-
sions (a0, b0 and h0), and the incremental stresses (�σr1, �σθ1 and �σz1) are computed based
on eqns (18), (23) and (24).

2. Next,the maximum value of these three stresses (�σz1, �σr1 and �σθ1), which happens to be
�σz1, is noted. Then, based on �σZ1, E = EI is computed according to the relation (based on
eqn (1)): E1 = E0 (= 4.2) + 373.3{|�σz1|}0.473.

3. The disc deformations (wh1, ua1 and ub1), corresponding to the incremental stresses, are also
computed from eqns (20)–(22), based on the above calculated value of E = E1.

4. The disc geometry is now updated to h1 = h0 − wh1, a1 = a0 + ua1, b1 = b0 + ub1.

Step 2
1. Again, an incremental �F2 = 1 N is applied on the deformed geometry of the disc (a1, b1 and

h1), and incremental stresses (�σr2, �σθ2 and �σz2) are evaluated.
2. Next, the maximum value of these three stresses (�σz2, �σr2 and �σθ2) is noted, which happens

to be �σZ2.
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3. The stress state is upgraded by adding �σz2 to �σz1, and E2 is computed based on eqn (1) as:
E2 = E0 (= 4.2) + 373.3{|[�σz1 + �σz2]|}0.473.

4. Then the incremental disc deformations (wh2, ua2 and ub2) are determined corresponding to (�σz2,
�σr2 and �σθ2), with E2 as the updated annulus modulus. The total disc deformation is now:
wh1 + wh2, ua1 + ua2, ub1 + ub2.

5. The deformed disc geometry is now updated to: h2 = h1 − (wh1 + wh2), a2 = a1 + (ua1 + ua2),
b2 = b1 + (ub1 + ub2).

Step 3
Step 2 is repeated until the total compressive force reaches 2000 N in order to obtain the final deformed
geometry at the desired applied load.

The resulting graphs of disc deformations wh, ua and ub vs. force (F) are depicted in Fig. 5. The
deformed geometry of the disc for F = 500 N, 1000 N, 1500 N and 2000 N are shown in Fig. 6, so as
to depict the ‘disc-hardening’ effect whereby the disc deformations do not increase linearly with F.
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Figure 5: (a) Disc vertical deformation vs. compressive force on the annulus. (b) Radial bulge at
r = a vs. compressive force on the annulus. (c) Disc radial bulge at r = b vs. compres-
sive force. (d) Disc ub − ua vs. F. The initial disc geometrical parameters adopted are
a = 11 mm, b = 25 mm and h = 11 mm, and the annulus residual modulus E0 is taken to
be 4.2 MPa.
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Figure 6: Graphical representation of disc deformation from the unloaded state until the compressive
load of 2000 N is reached. represents the unloaded state; disc geometry parameters
are a = 11 mm, b = 25 mm, h = 11 mm. corresponds to the disc deformed state
after 500 N; the deformed disc geometry parameters are a = 11.009 mm, b = 25.02 mm,
h = 10.99 mm. corresponds to the deformed state after 1000 N; disc geometry
parameters are a = 11.014 mm, b = 25.029 mm, h = 10.975 mm. represents
the state after 1500 N; disc geometry parameters are a = 11.018 mm, b = 25.037 mm,
h = 10.965 mm. represents the final disc deformed state when loaded by 2000 N;
the corresponding final disc geometry parameters are a = 11.02 mm, b = 25.044 mm,
h = 10.96 mm.

5 DISC HERNIATION, BACK PAIN AND NUCLEOTOMY
If the load F becomes very large, σθ would exceed the sustainable value and cause the annulus to
develop radial cracks. Then the NP breaks through the annulus. A herniated disc occurs most often
in the lumbar region of the spine, especially at the L4–L5 (L = lumbar). This is because the lumbar
spine carries most of the body’s weight. People between the ages of 30 and 50 years appear to be more
vulnerable because the elasticity and water content of the NP decreases with age. The pain resulting
from herniation may be combined with radiculopathy (neurological deficit). The deficit may include
numbness, weakness and reflex loss. These changes are caused by nerve compression, created by
pressure from interior disc material. Percutaneous nucleotomy is carried out in order to remove the
NP from the sequestered disc and thereby alleviate the back pain [19]. A probe is inserted into the
centre of the herniated disc under fluoroscope monitoring and the NP is removed through the probe.
The analysis for (1) volume aspiration of the NP fluid with respect to the time for different external
suction pressures and (2) the pressure drop in the NP fluid with respect to the time was reported by
Ghista et al. [13].

6 THE NUCLEOTOMIZED DISC: GEOMETRY, STRESSES AND DISPLACEMENTS
For the nucleotomized disc, only the axial equilibrium needs to be satisfied as there is no internal
pressure, as given in eqn (3). Note that the radial and circumferential hoop stresses are identically
equal to zero. Hence, the solution of eqn (3), with the boundary conditions w = wh,nu at h = z and
w = 0 at h = 0, is given by

w = wnu = −wh,nu
z

h
. (25)
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The circumferential strain is related to the axial strain (by the Poisson’s ratio) as

εθ = unu

r
= −νεz = −ν

dwnu

dz
= ν

wh,nu

h
. (26)

Hence, the radial displacements at r = a and r = b for the nucleotomized disc are given by

ua,nu = ν
wh,nu

h
a and ub,nu = ν

wh,nu

h
b. (27)

6.1 Stress analysis for a vertical loading on the nucleotomised disc

For a vertically applied force F, the equilibrium of the disc is shown in Fig. 7; the minus sign is
employed because the axial stress σz,nu (assumed to be tensile) acts on the vertebral end-plate and the
axial stress σz,nu in the annulus is hence given by

σz,nu = − 1

π

(
F

b2 − a2

)
. (28)

Using Hooke’s law, the axial deformation is related to σz,nu and hence to the applied force F, so that
the decrease in disc height

wh,nu = 1

π

1

E

(
Fh

b2 − a2

)
. (29)

Then, from eqns (27) and (29), the radial expansion of the disc at r = a,

ua,nu = 1

π

ν

E

(
Fa

b2 − a2

)
. (30)

b

-sz,nu

h
a 

sz,nu 

Vertebral end-
plateF

Figure 7: Normal stress σz,nu equilibrating the applied force F in a nucleotomized disc.
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Similarly, the radial expansion of the disc at r = b is given by

ub,nu = 1

π

ν

E

(
Fb

b2 − a2

)
or ub,nu = bua,nu

a
. (31)

7 MECHANISM OF DISC DEFORMATION IN THE NUCLEOTOMIZED DISC
The same procedure as outlined in Section 4 is used to determine the incremental and final deforma-
tions of the nucleotomized disc under a uniaxial compressive load of 2000 N. The resulting graphs
of disc deformations wh,nu, ua,nu, ub,nu vs. F and (ub,nu − ua,nu) vs. F are plotted in Fig. 8 alongside
the deformations of the normal disc in order to provide a comparison. Also shown in Fig. 9 are the
deformed disc geometries for F = 0, F = 500 N, F = 1000 N, F = 1500 N and F = 2000 N.

It is seen that the nucleotomized disc has considerably greater deformations than the normal disc.
These deformations can result in compression of the nerve structures as well as the facet joints. Thus,
the removal of the NP has adverse effects like disc collapse and excessive radial bulging. This trend
is experimentally demonstrated by Meakin et al. [20] and Judith et al. [21].
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Figure 8: (a) Disc vertical deformation vs. compressive force on the annulus with and without NP.
(b) Disc ua,nu vs. F with and without NP. (c) Disc ub,nu vs. F with and without NP. (d) Disc
(ub,nu − ua,nu) vs. F with and without NP. The initial disc geometric parameters adopted are
a = 11 mm, b = 25 mm and h = 11 mm and the residual modulus E0 is 4.2 MPa.
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Figure 9: Graphical representation of the nucleotomized disc deformation from the unloaded state
till the compressive load of 2000 N. represents the unloaded state; disc geometry
parameters are a = 11 mm, b = 25 mm, h = 11 mm. corresponds to the disc
deformed state after 500 N; geometry parameters are a = 11.014 mm, b = 25.029 mm,
h = 10.972 mm. corresponds to the deformed state after 1000 N; geometry parameters
are a = 11.018 mm, b = 25.041 mm, h = 10.959 mm. represents the state after 1500
N; geometry parameters are a = 11.023 mm, b = 25.051 mm, h = 10.949 mm.
represents the final disc deformed state when loaded by 2000 N; the corresponding final
disc geometry parameters are a = 11.026 mm, b = 25.061 mm, h = 10.94 mm.

8 CONCLUSION: THE IVD AS AN OPTIMAL STRUCTURE
Based on these results, in order to retain the stress-stiffening characteristic of the disc and mimic
the normal disc load-deformation behaviour, it is not advisable to carry out nucleotomy on herniated
discs. Instead, it is advisable to replace the NP with a gel-filled balloon [22] in the case of disc
herniation.

This paper clearly illustrates the natural anatomical–physiological design of the IVD as an optimal
load-bearing and deformation-containing structure. This is because of the composite design of the
IVD, in which the NP is enclosed by the annulus. Thus, when the IVD is loaded, the NP gets
pressurized, its annulus stress increases, the annulus (stress-dependent) modulus increases and, hence,
the annulus deformation is contained. This is the salient feature of the IVD as an optimal structure,
namely its ability to contain its axial and radial deformations under increased loading.

NOMENCLATURE
b outer radius of the annulus
a inner radius of the annulus
h height of the annulus
pi pressure of the NP
F compressive load
σf induced fluid pressure
σz compressive stress induced in the annulus
σθ circumferential stress induced in the annulus
σr radial stress induced in the annulus,
ν Poisson’s ratio
E Young’s modulus
ε strain
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