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 Groundwater level in wells, i.e., well water level (WWL) is an important index in 

hydrological monitoring during earthquakes. Due to the complex dynamics of 

groundwater, the WWL might change under seismic actions. This paper attempts to 

identify the long-term correlation between WWL and earthquakes, and disclose the 

topological features of groundwater dynamics. Taking Nanxi Well as an example, the 

authors conducted state space analysis on the raw series and trend of WWL to eliminate 

interferences like barometric pressure, rainfall, and solid tide, creating the trend time 

series. Then, the raw series and trend time series were converted into the raw visible 

graph (VG) network and trend VG network, respectively. Further, the global period was 

divided into five local time windows, and the two VG networks were compared by global 

aspect, local aspect, and topological properties of complex networks. The results show 

that the nodes of high degrees are closely related to the seismic response of the WWL in 

Nanxi Well; all VG networks are scale free and hierarchical; the seismic response of the 

WWL in the well is reflected by degree correlation; the community division of raw VG 

network was basically the same as that of trend VG network. The research findings 

provide insights to the seismic response of WWL and the dynamic fluctuation of 

groundwater level.  
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1. INTRODUCTION 

 

Earthquake is a dangerous natural disaster that releases a 

huge amount of energy from the earth’s crust in a short period. 

Despite the difficulty in earthquake prediction, seismologists 

have discovered some pre-seismic abnormalities that help to 

forecast earthquakes. The abrupt variation in groundwater 

level in wells, i.e., well water level (WWL), is one of these 

abnormal phenomena [1-3]. The WWL, which reflects the 

stress fluctuations in the well-aquifer system, has been 

successfully used to predict earthquakes [4]. The abnormal 

variation in the WWL can be captured through the research of 

co-seismic groundwater level. In fact, it is very meaningful to 

study the co-seismic WWL, for the seismic-induced variation 

in the WWL affects the groundwater supply [5], alters the 

chemical composition of water, and triggers eruption of mud 

volcanos [6] and even secondary earthquakes [7]. 

The existing studies on the seismic-induced variation in the 

WWL mainly focus on the variation mechanism. Most of them 

ascribe the variation to the static stress and seismic wave 

generated by the seismic energy. The static stress of 

earthquakes could consolidate the aquifer, and change the 

static pore strains, making the aquifer more fractured [8]. 

Meanwhile, the seismic wave might dredge or block the 

aquifer, regulate pore pressure, and intensify aquifer fracturing, 

thereby leading to permeability changes. The possible 

mechanism of seismic-induced variation in the WWL has been 

analyzed based on different earthquake magnitudes and 

epicentral distances. In near-field earthquakes, the variation 

occurs as the pore pressure changes with the static stress of 

large earthquakes, or as the seismic wave transforms the 

permeability; In intermediate- and far-field earthquakes, the 

variation is mainly the result of the permeability changes 

caused by seismic wave [9]. 

The variation of groundwater level is a complex issue. Apart 

from earthquakes, the WWL could be affected by nontectonic 

factors like barometric pressure, precipitation, solid tide, and 

human activities. To pinpoint seismic signals, some scholars 

have separated the response of barometric pressure, rainfall, 

and solid tide from that of groundwater [10-13]. In addition, it 

is possible to acquire possible seismic signals, and even pre-

seismic signals, from the groundwater. However, there is little 

report on the features of seismic-induced WWL variation from 

the perspective of system dynamics. Therefore, this paper aims 

to develop a new method to measure the seismic-induced 

WWL variation. 

Complex network analysis has been widely used in many 

fields. This statistical tool describes the elements and relations 

of the target system as nodes and edges. After all, the dynamic 

change of every complex network is reflected by its specific 

topological features. In recent years, Lacasa et al. [14] 

proposed the visibility graph (VG) complex network analysis, 

which maps each time series into a complex network, and 

obtains the properties of the network through time series 

analysis. Since then, this analysis approach has been 

implemented in various fields, such as finance [15-20], heart 
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rate monitoring [21, 22], oceanic tide, and earthquakes. For 

instance, Telesca et al. [23] analyzed the time series of oceanic 

tide level, and summed up the laws of degree distribution of 

the series: the range degree k<20 is related to local tide effects, 

and the range degree k>100 is related to global tide effects. 

Aguilar-San Juan, and Guzman-Vargas [24] transformed 

earthquake magnitude series into VG networks, and obtained 

the properties for main-shocks by altering the observation 

window. 

This paper provides a new research perspective to the 

features of seismic-induced WWL variation, and the 

topological properties of WWL time series. Specifically, the 

VG complex network analysis was adopted to convert the 

WWL time series into complex networks, investigate the 

relationship between the degrees of complex network, WWL 

time series, and earthquakes. Furthermore, the interference of 

rainfall, barometric pressure, and solid tide on the WWL time 

series were eliminated through state space analysis. With the 

aid of the trend time series, the processed data was built into a 

VG complex network. In different time windows, the authors 

analyzed the degree correlation series and WWL responses to 

multiple earthquakes, and investigated various properties of 

VG complex networks, namely, degree distribution, 

assortative mixing, hierarchy, and community structure. 

 

 

2. METHODOLOGY 

 

2.1 Data description 

 

Located near the Huaying Mountains fault zone, Nanxi well 

(N: 28.9ºN; E: 104.9º) is a seismic monitoring well in 

southwestern China’s Sichuan Province. The fault zone lies 

between the main body of Sichuan Basin and the East Sichuan 

barrier fold belt, and develops along the axis of Huaying 

Mountains anticline. Consisting of 2-3 main faults, it is one of 

the most important fault zones in Sichuan Basin.  

With the total depth of 101.5m, Nanxi Well has an 

observation range of 57.5-101.5m and a resolution of 1mm. 

The WWLs per minute of Nanxi Well (September 1st, 2007-

September 1st, 2017) were collected from China Earthquake 

Data Center (CEDC). Due to its sheer size, the observation 

data were converted from minutes to days. However, the data 

contain some missing entries and outliers, owing to the fault 

of monitoring instruments or the transmission problem. The 

outliers were corrected by the authors, but the missing entries 

of 218 days were not filled mathematically. To further explore 

the seismic response of the WWL, the daily rainfall and 

barometric pressure of the well were also gathered from the 

CEDC (Figure 1). 

 

 
 

Figure 1. The WWL, soil tide, rainfall, and barometric 

pressure of Nanxi Well (September 1st, 2007-September 1st, 

2017) 

2.2 State space model 

 

The state space model was introduced to eliminate the 

interference from barometric pressure, rainfall, solid tide in the 

seismic response of the WWL, and extract the trend of co-

seismic WWL: 
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where, 𝑦𝑛 is the observation data on the WWL; 𝑋𝑛, 𝑃𝑛, 𝑅𝑛, 𝑇𝑛, 

and 𝜀𝑛 are the trend, barometric pressure, rainfall, solid tide, 

and observational noise, respectively; 𝜛𝑛 is a random 

disturbance. 𝑃𝑛, 𝑅𝑛, and 𝑇𝑛 can be resented by liner regression 

models: 
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where, 𝑝𝑛, 𝑟𝑛, and 𝑡𝑛 are the barometric pressure, rainfall, and 

solid tide on the n-th day, respectively; ai, bi and ci are the 

unknown coefficients to be estimated; l, m and n are the lag 

times by day. 

 

2.3 VG 

 

Proposed by Lacasa, the VG complex network analysis can 

convert time series into complex network, and analyze the 

properties of the original time series. The concept of VG can 

be summarized as follows: For a time series 𝑌 = {𝑦(𝑡𝑖)|𝑖 =
1,2, ⋯ , 𝑁}, any data value (𝑡𝑖 , 𝑦(𝑡𝑖)) can be expressed as a 

node in the VG; any two nodes (𝑡𝑖 , 𝑦(𝑡𝑖)) and (𝑡𝑗, 𝑦(𝑡𝑗)) are 

connected by an edge, if any other node (𝑡𝑘, 𝑦(𝑡𝑘)) between 

them satisfies: 

 

( ) ( ) ( ( ) ( ))
j k

k j i j

j i

t t
y t y t y t y t

t t

−
 + −

−
 

(4) 

 

Then, the VG can be transformed into an adjacency matrix. 

If two nodes are connected by edge, the corresponding element 

of the matrix is 1; otherwise, the element is 0. 

In the VG, each node stands for a value in the WWL time 

series (except missing entries), each node is connected to the 

two nearest nodes (left and right), and every two random nodes 

are connected if they satisfy the condition (4). The VG is an 

undirected and unweighted graph. The main properties of the 

VG include degree distribution, degree correlation, hierarchy, 

and community. 

(1) Degree distribution 

Let k be the node degree in a network, i.e., the number of 

edges connecting a node. Then, the degree distribution of the 

network can be denoted as 𝑃(𝑘) [25]. By the VG complex 

network analysis, a periodic time series can be converted into 

a regular network. For a completely stochastic network, the 

degree distribution is a Poisson distribution. For a scale-free 

network, the degree distribution follows the power-law, 
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(2) Degree correlation 
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Degree correlation is an important measuring tool in 

network analysis. Each edge connects up two nodes, which 

have two node degrees. From all the edges in a network, two 

series of degrees could be obtained. The degree correlation 

falls in the range of -1 to 1. If 𝑟 < 0 , the network is 

disassortative, i.e., high degree nodes attach to low degree 

nodes; if 𝑟 > 0, the network is assortative, i.e., high degree 

nodes attach to high degree nodes; if 𝑟 = 0, the network is 

irrelevant. The degree correlation r can be expressed as: 
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where, M is the total number of edges in the network; 𝑘𝑖 ,  𝑘𝑗 

are the degrees of the two nodes linked up by edge 𝑒𝑖𝑗 , 

respectively. 

(3) Hierarchy 

Hierarchy describes the correlation between clustering and 

degree in the network. The clustering coefficient 𝐶  is an 

important property of complex network. The mean of local 

clustering coefficient 𝐶𝑖 of the node whose degree is k can be 

calculated by: 
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where, 𝑘𝑖 is the number of neighbors of node 𝑖; 
1

2
𝑘𝑖(𝑘𝑖 − 1) is 

the maximum possible number of edges produced by the 

neighbors of node 𝑖; 𝑙𝑖 is the number of edges produced by the 

neighbors of node 𝑖. 
If mean clustering coefficient 𝐶(𝑘) and degree 𝑘 satisfy: 

 

𝐶(𝑘) ∝ 𝑘−𝜎  (8) 

 

Then, the nodes with high degree have low clustering 

coefficient. The inverse is also true. 

(4) Community 

In real networks, some nodes with high similarity converge 

into a community. Each complex network is composed of 

multiple communities. The intra-community nodes are much 

denser than inter-community nodes. The community structure 

is mainly divided by modularity [26]: 
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where, 𝑚 is the total number of edges; 𝐴𝑖,𝑗 is an indicator that 

node 𝑖 is connected to node 𝑗; 𝑘𝑖 and 𝑘𝑗 are degrees of nodes 𝑖 

and 𝑗, respectively;𝛿(𝑐𝑖 , 𝑐𝑗) is a Kronecker symbol (if nodes i 

and j belong to the same community, 𝛿(𝑐𝑖 , 𝑐𝑗) =1; otherwise, 

𝛿(𝑐𝑖 , 𝑐𝑗) =0). The division of community structure manifests 

the dynamic evolution of the network. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Extraction of WWL trend 

 

By the state space model, the raw data of WWL was 

decomposed into series of trend, barometric pressure, rainfall, 

and solid tide. Then, the disturbances were all removed to 

leave the trend series. Considering the lag of response to 

barometric pressure, rainfall, and soil tide, the orders of the 

regression models for barometric pressure, rainfall, and soil 

tide were set to 0 ≤ 𝑙 ≤ 1 , 0 ≤ 𝑚 ≤ 1 , and 0 ≤ 𝑛 ≤ 1 , 

respectively [12, 13]. The values of l, m, and n were calculated 

by Akaike’s information criterion (AIC). As shown in Table 1, 

l=1, m=1, and n=0 when the AIC value is minimized. The lag 

time of atmospheric pressure, and rainfall responses is about 1 

day, but that of soil tide response is less than 1 day. 

Table 1. The orders of state space model 

 
 Model orders and AIC values 

l 0 0 0 0 1 1 1 1 

m 0 0 1 1 0 0 1 1 

n 0 1 0 1 0 1 0 1 

AIC -3.491 -3.491 -3.506 -3.506 -3.499 -3.499 -3.514 -3.513 

 

3.2 Topological properties of VG 

 

The time series of the raw data on the WWL, and the time 

series of the WWL trend, which is extracted from the raw time 

series by the state space model, were transformed into VG 

complex networks, and separately called the raw VG network 

and the trend VG network. The information related to the 

seismic-induced WWL variation of Nanxi Well is summarized 

in Table 2. 

On the whole sample period, the degree correlation series 

and WWL of the two VG networks were separately analyzed. 

After that, the raw time series and the trend time series were 

separately divided into five 2-year-long windows (Tables 3 

and 4). On this basis, the degree distribution, assortative 

mixing, and hierarchy were examined under each time window. 

Finally, the communities of two global VG complex networks 

were discussed in details. The division of time windows aims 

to compare local variation with global variation, and reveal 

dynamic changes. 

 

3.2.1 Degree correlation series and seismic-induced WWL 

variation 

As shown in Table 2, eleven earthquakes with obvious 

WWL variations were compared. Judging by the distance of 

Nanxi Well to epicenter, Wenchuan earthquake and Lushan 

earthquake are near-field earthquakes, while other earthquakes 

are intermediate- and far-field earthquakes. Nanxi Well is 

located in the dilation strain zone of Wenchuan earthquake and 

Lushan earthquake. The location leads to the drop in the WWL 

[27, 28]. The decline in the WWL occurred, for the well 

permeability was increased by the seismic waves. As 

mentioned before, the raw time series of the WWL was 

converted into the raw VG networks, and the trend time series 

into the trend VG networks. The analysis on degree series 

shows that the earthquakes are closely related with the VG 

networks with high degrees.
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Table 2. The information related to the seismic-induced WWL variation of Nanxi Well 

 

ID Date Location 
Longitude 

(º) 

Latitude 

(º) 

Magnitude 

(Ms) 

Depth 

(km) 

Distance 

(km) 

WWL 

variation (m) 
R1 R2 

1 2008/5/12 Wenchuan, China 103.4 31 8 14 267.7 0.76 3-160 3-194 

2 2011/3/11 
East coast of 

Honshu, Japan 
142.6 38.1 9 20 3607.6 0.035 3-160 3-169 

3 2011/3/24 Myanmar 99.8 20.8 7.2 20 1047 -0.006 6-70 5-81 

4 2012/4/11 Sumatra, Indonesia 92.4 0.8 8.6 20 3404.7 0.02 4-108 5-131 

5 2012/11/11 Myanmar 96 22.8 7 20 1126.9 0.099 8-119 9-90 

6 2013/4/20 Lushan, China 103 30.3 7 13 236.6 0.255 11-343 11-418 

7 2014/5/24 Yingjiang, China 97.8 25 5.6 12 833.9 0.015 6-94 9-107 

8 2014/10/7 Jinggu, China 100.5 23.4 6.6 5 762.5 0.01 4-62 5-80 

9 2015/4/25 Nepal 84.7 28.2 8.1 20 1974.6 0.047 4-90 5-110 

10 2015/5/12 Nepal 86.1 27.8 7.5 10 1844.6 -0.02 3-117 4-75 

11 2016/4/13 Myanmar 94.87 23.14 7.2 130 1196.1 -0.142 4-303 5-496 
Note: R1 and R2 are the ranges of degree change in the raw VG network and the trend VG networks, respectively. 

 

Table 3. The basic topological properties of the raw VG networks in different time windows 

 
Time N D L K <k> <kd> �̅� α r σ 

2007.09-2009.09 621 12 5.0892 160 16.4831 18.8438 0.6752 1.2722 -0.2023 0.66 

2009.09-2011.09 690 11 4.7163 112 10.087 9.5611 0.7325 1.6344 0.1346 0.56 

2011.09-2013.09 705 7 3.6518 145 13.8355 15.5482 0.7124 1.4257 -0.0457 0.58 

2013.09-2015.09 706 7 3.7947 84 12.8754 13.3121 0.7088 1.5914 0.2898 0.46 

2015.09-2017.09 714 7 3.5069 201 11.4818 14.6884 0.7266 1.4277 -0.0747 0.67 

2007.09-2017.09 3436 10 4.3694 343 15.8964 22.6211 0.7001 1.7097 0.0265 0.65 
Note: N is the network size; D is the network diameter; L is the path length; K is the maximum degree; <k> is the mean degree of networks; <kd> is the standard 

deviation degree of networks; 𝐶̅ is the mean clustering coefficient; α is the exponent of degree distribution; σ is hierarchy; r is assortative mixing. 

 

Table 4. The basic topological properties of the trend VG networks in different time windows 

 
Time N D L  K <k> <kd> �̄� α r σ 

2007.09-2009.09 621 11 4.6358 173 18.6860 20.8855 0.6632 1.2399 -0.2112 0.62 

2009.09-2011.09 690 11 4.3691 124 13.2493 12.1171 0.7025 1.5318 0.1011 0.52 

2011.09-2013.09 705 8 3.5892 204 18.9475 19.7230 0.6774 1.2015 -0.0773 0.54 

2013.09-2015.09 706 7 3.6055 127 20.5751 21.5278 0.6449 1.2428 0.2927 0.43 

2015.09-2017.09 714 7 2.8208 344 14.7619 22.1066 0.7119 1.2245 -0.1328 0.66 

2007.09-2017.09 3436 10 4.1461 496 22.2590 31.0925 0.6592 1.5790 -0.0220 0.67 
Note: The signs have the same meanings as in Table 3. 

 

Tables 3 and 4 illustrate the range of node degree of the raw 

VG network and the trend VG network for each earthquake. 

Comparing the two VG networks, some interesting results 

were obtained about node degree (Figure 2): 

(1) In intermediate- or far-field earthquakes [29-32] (except 

2016-04-13 Myanmar earthquake), the WWL recovered in a 

few days after the seismic waves changed the well 

permeability. Thus, only a few node degrees increased in the 

VG networks. By contrast, the recovery periods of Wenchuan 

and Lushan earthquakes lasted over 2 years. Many nodes in 

the two VG networks of the two earthquakes had high degrees, 

because the WWL variation comes from static stress and 

seismic wave of co-seismic or aftershocks. 

(2) During the 11 earthquakes, the nodes in the trend VG 

network had higher degrees than those at the same positions in 

the raw VG network.  

(3) By Pajek’s robbery algorithm [33], the centers of the two 

VG networks were identified. The two centers of the raw VG 

network were 2008-05-13, and 2013-04-21, while one of the 

two centers of the trend VG network was different (2016-4-

13). The Myanmar earthquake (2016-4-13) happened in the 

recovery period of hydrological system after Wenchuan and 

Lushan earthquakes. During the earthquake, the WWL in 

Nanxi Well changed frequently. The centers of the two VG 

networks indicate the approximate time points of the 

earthquakes, which greatly affect the WWL variation. 

Comparatively, the trend VG network were more sensitive to 

seismic-induced WWL variation than the raw VG network. 

 

 
 

Figure 2. The node degrees of raw and trend VG networks 
Note: Blue stands for the global raw time series of the WWL in Nanxi Well; 

green stands for the node degrees; red stands for the earthquakes. 

 

3.2.2 Degree distribution 

Figure 3 presents the degree distributions of the raw and 

trend VG networks (2007.9.1-2017.9.1). It can be seen that the 

degree distributions of both networks obeyed power-law 

distribution.  
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As shown in Tables 3 and 4, the degree distributions of the 

two scale-free networks also obeyed the power law under the 

five time windows. For both networks, the power-law values 

were smaller in three windows (2007.9.1-2009.9.1; 2011.9.1-

2013.9.1; 2015.9.1-2017.9.1) than in other windows. This is 

because Wenchuan and Lushan earthquakes and their 

aftershocks, as near-field earthquakes, release a great deal of 

energy, inducing great and frequent fluctuations to the WWL 

in Nanxi Well. In addition, the node degree of the VG with 

relative large degree, as well as the mean degree of networks 

<k>, were both on the rise. 

The power-law value of the period (2015.9.1-2017.9.1) was 

small. The WWL variation is not only caused by the Myanmar 

earthquake, but also the recovery mechanism of the 

underground system. Overall, the greater the seismic impact 

on groundwater level, the smaller the power-law values of the 

VG networks in the time windows. The maximum power-law 

values appeared in the global VG networks. This means that 

the seismic impact on the groundwater in global period is not 

as obvious as that in local periods. 

 

 

 
 

Figure 3. The degree distributions of raw VG network (left) 

and trend VG network (right) 

 

3.2.3 Assortative mixing 

The degree correlations in different time windows can be 

obtained from Tables 3 and 4. There were three time windows 

with negative correlations in the raw and trend VG networks: 

(2007.9.1-2009.9.1; 2011.9.1-2013.9.1; 2015.9.1-2017.9.1). 

The relevant networks are weak disassortative networks, in 

which the high degree nodes attach to low degree nodes. 

During these time windows, Wenchuan earthquake, Lushan 

earthquake, and Myanmar earthquake took place. The seismic 

stress of these earthquakes affected the WWL of Nanxi Well. 

Meanwhile, the number of large degree nodes increased, and 

the mean and standard deviation of degree were relatively 

large. 

The other two time windows had positive correlations in the 

raw and trend VG networks: (2009.9.1-2011.9.1; 2013.9.1-

2015.9.1). The relevant networks are assertive networks. The 

seismic waves of the earthquakes that occurred in these 

periods had relatively limited impact on the WWL of Nanxi 

Well. 

On the global scale (2007.9.1-2017.9.1), the raw VG 

network was assortative, while the trend VG network was 

disassortative. This is because the trend time series, which 

does not contain the interference from barometric pressure, 

rainfall, and solid tide, amplifies the influence of seismic wave 

and static stress on WWL fluctuations. The positive and 

negative degree correlations of different time windows depend 

on the occurrence of large earthquakes in the response period. 

 

3.2.4 Hierarchy 

Figure 4 presents the relationship between mean clustering 

coefficient and node degree in the raw and trend VG networks, 

separately. The clustering coefficient and degree correlation of 

each VG network were tested in different time windows. It can 

be seen that the WWL time series of Nanxi Well were 

hierarchical networks on both local and global time scales. The 

hierarchy values are available in Tables 3 and 4. In all the VG 

networks, low degree cluster centers belonged to small 

modules with connectivity, while high degree cluster centers 

linked up different modules into largescale topology modules. 

 

 

 
 

Figure 4. The relationship between mean clustering 

coefficient and node degree in the raw VG network (left) and 

the trend VG network (right) 

 

3.2.5 Community 

Community is an important measure of the node 

aggregation in complex networks. Here, the Louvain approach 

[34] is applied to divide the raw and trend VG networks into 

multiple communities. Specifically, each network node was 

treated as an independent community; then, each community 
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moved into another community, only if the move can increase 

the modularity value; the movement was repeated until no 

more node moved to other communities. In this way, the raw 

VG network was divided into 15 communities with the 

modularity value of 0.7973, and the trend VG network was 

divided into 17 communities with the modularity value of 

0.7627 (Figure 5). 

It can be seen from Figure 5 that the communities of the raw 

VG network were basically the same as those of the trend VG 

network. There were four relatively large communities related 

to the recovery period after Wenchuan earthquake, the early 

stage of Lushan earthquake, the recovery period after Lushan 

earthquake, and the late stage of Myanmar earthquake, 

respectively. In the VG network about the WWL time series 

of Nanxi Well, the community structure depends on the 

tectonic stress caused by earthquakes. The seismic waves from 

intermediate- and far-field earthquakes increased the node 

degree, but did not affect the community division. Similarly, 

the division of communities was not greatly affected by 

barometric pressure, rainfall, or soil tide. 

Figure 5. The communities of the raw VG network (upper) 

and the trend VG network (lower) 

4. CONCLUSIONS

This paper obtains the trend time series of the WWL by state 

space model, and applies the VG complex network method to 

analyze and compare the trend times series and raw time series 

of the WWL variation induced by 11 earthquakes. The main 

conclusions are as follows: 

(1) In intermediate-field or far-field earthquakes, the WWL

recovered in a few days after the seismic waves changed the 

well permeability. Thus, only a few node degrees increased in 

the VG networks. By contrast, Wenchuan and Lushan 

earthquakes pushed up the degrees of many nodes in the raw 

and trend VG networks. The cluster centers of raw and trend 

global VG networks are related to the two earthquakes. 

(2) All VG networks are scale free. Overall, the greater the

seismic impact on groundwater level, the smaller the power-

law values of the VG networks in the time windows. The 

maximum power-law values appeared in the global VG 

networks. This means that the seismic impact on the 

groundwater in global period is not as obvious as that in local 

periods. 

(3) The positive and negative degree correlations of

different time windows depend on the occurrence of large 

earthquakes in the response period. 

(4) All VG networks are hierarchical. In all the VG

networks, low degree cluster centers belonged to small 

modules with connectivity, while high degree cluster centers 

linked up different modules into largescale topology modules. 

(5) In the VG network about the WWL time series of Nanxi

Well, the community structure depends on the tectonic stress 

caused by earthquakes. The seismic waves from intermediate- 

and far-field earthquakes increased the node degree, but did 

not affect the community division. Similarly, the division of 

communities was not greatly affected by barometric pressure, 

rainfall, or soil tide. 

To sum up, there are close correlations between the large 

degrees of VG networks, groundwater level variation, and 

earthquakes. The research findings provide new insights into 

the WWL response to earthquakes, and the dynamic system of 

groundwater level fluctuations. 
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