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Smart cities mark the shift from the traditional model of urban construction to the planned 

construction of a composite system between smartness and energy. Considering the defects 

of renewable energies, e.g., intermittency, randomness, and low dispatchability, it is 

imperative to explore the digital and unified management of urban renewable energies. 

Therefore, this paper presents a multi-objective optimization algorithm for digital 

management, which can quantify the multiple energy models of smart cities. Firstly, the 

dimensions of renewable energy construction in smart cities were detailed, and the 

functions, hierarchy, and data flows of the digital management system for renewable 

energies were plotted in turn. After that, the output probability models of typical renewable 

energy power generation systems were established, plus the objective functions of digital 

management for renewable energies. Finally, particle swarm optimization (PSO) was 

combined with genetic algorithm (GA) for multi-objective optimization of the digital 

management for renewable energies in smart cities. The proposed models and algorithm 

were proved effective through experiments.  
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1. INTRODUCTION

Urbanization is picking up speed in China, posing multiple 

challenges to urban environment, energy, and transportation. 

In 2019, the cities accounted for more than 75% of energy 

consumed across China. This proportion is expected to surpass 

80% in 2029 [1-6]. To balance urban development with 

environment protection and energy consumption, it is 

necessary to complete the shift from the traditional model of 

urban construction to the planned construction of a composite 

system between smartness and energy, along with the rise of 

smart cities. This helps to reduce environmental pollution and 

energy consumption, and realize the harmonious and 

sustainable development of man and nature. There are four 

defining features of smart cities: comprehensive and thorough 

perception, ubiquitous broadband interconnection, 

intelligently fused applications, and people-oriented 

sustainable innovation [7-11].  

The traditional thermal power generation goes against 

China’s pursuit of energy conservation and emission reduction. 

As a pollution-free and sustainable strategy of power 

generation, renewable energy power generation has gradually 

won the recognition by the public [12-16]. However, 

renewable energies face such defects as intermittency, 

randomness, and low dispatchability. Therefore, the 

reasonable management of urban renewable energies has 

become a research focus. Further research is needed to solve 

the digitization and unified management of various 

information on energy consumption. 

Many scholars have conducted fruitful research into energy 

management of smart cities [17-20]. Hussain et al. [21] 

reviewed the status quo of the digital transform of China’s oil 

and gas industry, summarized the problems in the 

development of the traditional energy industry, i.e., limited 

capability of research and development (R&D), uneven levels 

of informatization, information redundancy and resource 

waste, and emphasis on development over operation and 

maintenance, and suggested promoting the digital transform of 

modern energy industry chain through Internet of Things (IoT) 

Platform Plus and Energy Business Type Plus. Conrads [22] 

highlighted the importance of modern digital information 

processing technology in the construction of smart cities, and 

hailed the technology as the primary means to monitor, 

analyze, and integrate the data on the supply and consumption 

of public resources, and to make intelligent response across the 

entire city. To realize the real-time transmission and 

interconnection of various types of energy data, Palasciano et 

al. [23] proposed to plan and construct the infrastructure and 

service system of smart cities in five aspects: economy, 

environment, transportation, residents, and government.  

In addition, Tehrani et al. [24] pointed out that the digital 

energy management system can analyze the energy supply and 

consumption of industrial automation equipment, and 

optimize the plan for energy distribution and dispatch, thereby 

reducing the energy consumption and emissions in discrete 

and process manufacturing. Rizoug et al. [25] explained the 

concept of the energy Internet, and stressed that the smart grid 

can promote the deep integration between energy and 

information through horizontal and vertical adjustments, 

namely, multi-source complementation and source-network-

load-storage coordination. Gholami et al. [26] applied 

narrowband-IoT (NB-IoT) to urban smart energy management, 
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and integrated the levels of smart energy applications under 

the cloud-management-terminal architecture; the integration 

strategy breaks through the conventional metering and service 

model of various energy industries, such as water, electricity, 

gas, and heating, and realizes real-time monitoring of 

consumption and timely processing of state and control 

information. Zemlick et al. [27] introduced the goal of 

integrated cost management, i.e., minimizing the 

comprehensive cost of renewable energy enterprises, based on 

the overall design of construction cost, production and 

operation cost, and environmental and social cost, and detailed 

the cost control measures centering on digitalization, 

intelligence, and networking in the construction phase. 

The multiple objectives, variables, and constraints 

complicate the nonlinear optimization of the renewable energy 

management. The relevant literature on smart cities mostly 

concentrates on the implementation of low-carbon, clean, and 

energy-saving measures. There is little report on the economic 

dispatch models and optimization algorithms of energies in 

smart cities. The lack of relevant research tarnishes the 

smartness of smart cities. To solve the problem, this paper puts 

forward a multi-objective optimization algorithm for digital 

management, which can quantify the multiple energy models 

in smart cities. 

The rest of this paper is arranged as follows: Section 2 

introduces the dimensions of renewable energy construction in 

smart cities, analyzes the functions of the proposed digital 

management system for renewable energies, and plots the 

hierarchy, and data flows of the system; Section 3 constructs 

the output probability models of two typical renewable energy 

power generation systems, including photovoltaic (PV) power 

generation and wind power generation, and sets up the 

objective functions for the digital management of renewable 

energies; Section 4 combines particle swarm optimization 

(PSO)c with genetic algorithm (GA) for multi-objective 

optimization of the digital management for renewable energies 

in smart cities; Section 5 verifies the effectiveness of the 

proposed models, objective functions, and algorithm through 

experiments; Section 6 puts forward the conclusions. 

 

 

2. DIMENSIONS AND DIGITAL MANAGEMENT OF 

RENEWABLE ENERGIES IN SMART CITIES 

 

In smart cities, the renewable energy construction covers 

the development and utilization, production and consumption, 

as well as recovery of renewable energies. To ease the pressure 

on energy supply and environmental pollution, the 

fundamental strategy is to make rational use of renewable 

clean energies, and construct a novel digital management 

system for renewable energies, which supports sustainable 

development of environment, society, and economy. These 

efforts could elevate energy efficiency, rationalize 

consumption structure, and promote the harmonious 

development of smart cities. The renewable energy 

construction of smart cities mainly covers four aspects, namely, 

the utilization of renewable energies, the management of 

energy demand, the promotion of electric vehicles, and the on-

demand transform of heating supply. Among them, the key 

aspects are the utilization of renewable energies, and the 

management of energy demand. 

 

 

 
 

Figure 1. The functions of the digital management system of renewable energies for smart cities 
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PV power generation and wind power generation are the 

main sources of renewable energies for smart cities. The 

distributed power generation of renewable energies breaks 

through the various limitations on traditional ground-based 

power stations, and makes full use of the geographical 

advantages in the collection of solar power and wind power. 

In smart cities, the households that install renewable energy 

power generation systems are self-sufficient in household 

power. The surplus electricity could be sold to the State Grid 

to increase household income. To balance the energy supply 

and demand in smart cities, it is necessary to innovate and 

apply digital and information technologies, improve the 

quality of demand-side business and service, and support the 

unified management of supply-demand balance for electrical 

and thermal energies, on the basis of a sound demand response 

and management system for such energies. 

This paper proposes a digital management system of 

renewable energies for smart cities. In the system, the data on 

energy consumption and supply are collected by smart meters 

and sensor networks. The collected data are transmitted and 

stored by network switches, GPRS (General Packet Radio 

Service) access points, and network servers. Based on the 

management system software, the user terminal realizes the 

query of energy consumption and supply, as well as the control, 

operation, and monitoring of related devices. 

As shown in Figure 1, the proposed system has five main 

functions, namely, authority management, data collection, 

statistical analysis, energy-saving management, and 

evaluation of rationality in energy consumption and dispatch. 

Specifically, authority management involves the management 

of the authorities of management personnel, statistical 

personnel, ordinary users, and maintenance personnel. Data 

collection and statistical analysis aim to gather and analyze the 

regional consumption and supply of energies, including 

renewable energies, in real time. Energy-saving management 

covers such aspects as supply and demand forecast and 

analysis, abnormal supply and demand warning, energy-

saving state assessment, and energy-saving decision-making 

and implementation. Evaluation of rationality in energy 

consumption and dispatch evaluates the rationality of regional 

energy consumption and dispatch based on a scientific 

evaluation index system in a comprehensive manner. 

 

 
 

Figure 2. The hierarchy of the digital management system of 

renewable energies for smart cities 
 

As shown in Figure 2, the proposed system consists of four 

layers: data collection layer, data layer, application layer, and 

software interface layer. The data flows in the system are 

illustrated in Figure 3. 

 

 
 

Figure 3. The data flows of the digital management system of renewable energies for smart cities 

 

 

3. RENEWABLE ENERGY OUTPUT MODELS AND 

DIGITAL MANAGEMENT OBJECTIVES 

 

3.1 Probabilistic models of renewable energy output 

 

The stochasticity of energy demand should be modeled to 

reveal how the randomness of the energy demand side of smart 

cities affects the digital management of renewable energy 

supply systems. Based on the probability distribution of 

environmental conditions, this paper constructs the 

probabilistic output models of the power generation by two 

typical renewable energies: PV and wind power. 

The output of PV power generation changes randomly with 

sunlight intensity. Let I*(t) be the maximum sunlight intensity 

in period t. Drawing on the law of massive statistics, the 

sunlight intensity It in period t can be approximated as the beta 

895



 

probability distribution: 

 

𝐵(𝐼(𝑡)) =
𝛷(𝑎 + 𝑏)

𝛷(𝑎)𝛷(𝑏)
(
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𝐼∗(𝑡)
)

𝑎−1

(1 −
𝐼(𝑡)

𝐼∗(𝑡)
)

𝑏−1

 (1) 

 

where, a and b characterize the shape of beta probability 

distribution. The values of a and b can be calculated as the 

mean and variance of It, respectively: 
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The output PP(t) of PV power generation equals the product 

of photoelectric conversion efficiency and PV array area. The 

probability density can be derived from the distribution of 

sunlight intensity: 
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The expectation and variance of the output of PV power 

generation can be respectively calculated by:  
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The output power of wind power generation changes 

randomly with wind speed. Suppose the wind speed s at time 

t satisfies the Rayleigh distribution:  
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The output PW(t) of wind power generation can be 

approximated by a first-order model. Its probability density 

can be calculated from the distribution of wind speed. Let sci, 

sco, and sr be the cut-in wind speed, cut-out wind speed, and 

rated wind speed of the turbine, respectively; Pwr be the rated 

power of the turbine. Then, the expectation of the output of 

wind power generation can be calculated by: 
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(7) 

 

where, Γ(*) is the Gaussian distribution function. The values 

of parameters in (7) can be obtained empirically based on 

massive statistics. 

 

 
 

Figure 4. The optimization system for the hybrid energy network in smart cities 
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3.2 Objective functions of the digital management of 

renewable energies 

 

During the digital management of renewable energies for 

smart cities, there might be exchanges between renewable and 

non-renewable energies. Figure 4 illustrates the optimization 

system for the hybrid energy network in smart cities. 

Specifically, PV power generation and wind power generation 

both consume renewable clean energies; the battery that 

stabilizes and stores the electricity outputted by the renewable 

energies does not consume any energy. Hence, the above three 

units do not incur fuel cost, depreciation cost, maintenance 

cost, or environmental cost during energy dispatch and 

management. On the contrary, gas turbines and fuel cells 

consume a certain amount of fuel, and produce waste gas that 

pollutes the environment, during the generation of electricity 

and heat. As a result, the energy dispatch and management of 

these two units involve fuel cost, depreciation cost, 

maintenance cost, and environmental cost. Considering the 

environment of smart cities, economic benefits, and the 

operating cost of the hybrid energy network, the digital 

management objectives of renewable energies for smart cities 

can be established as follows. 

(1) Minimizing the operating cost of the hybrid energy 

network 

The minimum cost can be calculated by:  
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𝑁𝐶

𝑡=1

+ 𝜆𝑄𝐼(𝑡) − 𝑄𝐻(𝑡)) 

(8) 

 

where, QG is the operating cost of the hybrid energy network; 

NC is the number of cycles of energy dispatch; λ is the 

operating cost coefficient generated when the network uses 

renewable energies. If the renewable energy power generation 

unit supplies power to the AC grid (i.e., in the grid-connected 

state), λ=1; if the unit is self-sufficient (i.e., in the isolated 

state), λ=0. In the t-th dispatch cycle, the fuel cost of the hybrid 

energy network can be calculated by: 
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where, i and NU are the serial number and total number of the 

units being managed; cF(t) is the unit price of fuel; NV is the 

net calorific value of the fuel; Pi(t) and τi(t) are the output 

power and fuel utilization of the i-th unit in the t-th dispatch 

cycle, respectively. The operation and maintenance cost QM(t) 

of the network can be calculated by: 
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where, ρi is the operation and maintenance coefficient, when 

the i-th unit is working normally. In the t-th dispatch cycle, the 

depreciation cost QD(t) of the i-th unit can be calculated by: 
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(11) 

where, Pri, ζi, and cI are the rated power, capacity factor, and 

installation cost of the i-th unit, respectively; y is the number 

of years of network operation; γ is the interest rate of the 

depreciation cost. In the t-th dispatch cycle, the compensation 

cost QC(t) generated by the load shedding of the hybrid energy 

network can be calculated by: 
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where, cL is the loss cost that the hybrid energy network needs 

to pay to the user in the event of a power outage; L(t) is the 

size of the load shedding in the t-th dispatch cycle. When the 

renewable energy power generation unit is in the grid-

connected state, the interaction cost QI(t) of energy exchanges 

can be calculated by: 
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(13) 

 

where, cb(t), and qb(t) are the purchase price and purchase 

quantity of the renewable energy power generation unit from 

the AC grid in the t-th dispatch cycle, respectively; cs(t), and 

qs(t) are the selling price and sold quantity of the renewable 

energy power generation unit from the AC grid in the t-th 

dispatch cycle, respectively. In the t-th dispatch cycle, the heat 

production revenue QH(t) of the gas turbine can be calculated 

by: 

 

𝑄𝐻(𝑡) = 𝐻𝐿 ⋅ 𝑐ℎ (14) 

 

where, HL, and ch are the heat load demand, and the unit 

selling price of heat in that cycle, respectively. 

(2) Maximizing the environmental benefits of the hybrid 

energy network  
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where, QP is the environmental protection cost of the hybrid 

energy network; ε is the environmental protection cost 

coefficient (if the renewable energy power generation unit is 

in the isolated state, ε=0; if the unit is in the grid-connected 

state, ε=1; in the latter case, the unit might exchange and 

transfer energy with the AC grid, and the environmental 

protection cost of each unit in the hybrid energy network needs 

to be calculated separately); v is the serial number of 

environmental protection projects; cv is the cost of the v-th 

environmental protection project; βiv is the cumulative cost 

coefficient of the v-th environmental protection project in the 

power generated by the i-th unit; βGv is the cumulative cost 

coefficient of the v-th environmental protection project in the 

power generated in the hybrid energy network. 

A total of six constraints were designed for the above 

objectives. The power balance of the hybrid energy network 

was constrained by: 
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It can be seen from (16) that, in the t-th dispatch cycle, the 

sum of the total output power of each unit, the energy 

exchange power PG(t) between the renewable energy 

generating unit and the AC grid, and the power PB(t) of the 
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battery equals the difference between the load power demand 

PL(t) of the hybrid energy network and the load shedding 

power L(t). The upper and lower output powers of each unit 

were constrained by: 

 

𝑃𝑚𝑖𝑛 𝑖 ≤ 𝑃𝑖(𝑡) ≤ 𝑃𝑚𝑎𝑥 𝑖 (17) 

 

where, Pmini, and Pmaxi are the upper and lower limits on the i-

th unit respectively. The ramp rate of the output power of each 

unit was constrained by: 
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where, LVUi, and LVDi are the upper limits on the increase and 

decrease of the output power of the i-th unit between adjacent 

dispatch cycles, respectively. The energy exchange power 

between the renewable energy power generation unit and the 

AC grid was constrained by: 

 

GGG PtPP maxmin )( 
 

(19) 

 

where, PminG, and PmaxG are the upper and lower limits on the 

allowable exchange power between the renewable energy 

power generation unit and the AC grid. The operation of the 

battery was constrained by: 
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where, PminB, and PmaxB are the lower and upper limits on the 

charging power of the battery per unit time, respectively; SminB, 

and SmaxB are the limit and upper limits of the state of charge 

(SOC) of the battery, respectively; ϕB(t) is the state of the 

battery in the t-th dispatch cycle (if the battery is in the 

charging state, ϕB(t)=0; if the battery is in the discharging state, 

ϕB(t)=1); LVB is the upper limit on the number of 

charging/discharging of the battery in NC dispatch cycles. 

To protect the normal operation of the hybrid energy 

network against the instability of the output power of the 

renewable energy power generation unit, the spinning reserve 

capacity was constrained by: 
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where, d%, and ξPW% are the demand coefficients of the 

electrical load and the renewable energy power generation unit 

for reserve capacity, respectively; PΣr(t) is the sum of the rated 

capacities of the PV power generation unit and the wind power 

generation unit in the t-th dispatch cycle. 

 

 

4. MULTI-OBJECTIVE OPTIMIZATION OF DIGITAL 

MANAGEMENT OF RENEWABLE ENERGIES FOR 

SMART CITIES 

 

It is a complex problem to realize the digital management 

of renewable energies for smart cities. Here, the PSO is 

combined with GA to optimize the multiple objectives of the 

problem. The workflow of the hybrid algorithm is explained 

in Figure 5. 

The traditional PSO faces two deficiencies: the proneness to 

premature convergence, and the decline in solution diversify 

with the growing number of iterations. Despite a low solving 

efficiency, the GA can greatly diversify the solutions through 

crossover and mutation. Therefore, the two algorithms can be 

combined to make up their respective defects, while improving 

population diversity and convergence quality. 

 

 
 

Figure 5. The workflow of the multi-objective optimization 

algorithm based on PSO and GA 

 

As shown in Figure 5, the particles of the swarm are resorted 

by fitness in each iteration. The position and velocity of the 

last Nn particles are replaced by those of the top-n particles. 

After each iteration, the best-known values of all particles can 

be obtained. Next, the crossover probability of each particle is 

calculated by the crossover theory of the GA. The selected m 

particles are placed in the crossover pool for random pairwise 

crossover. The parent particles are replaced with offspring 

particles. The position of offspring particles can be obtained 

by the crossover of that of parent particles: 

 

)()1()()( 21 pMpMpC −+=   (22) 

 

where, η is a random number in [0, 1]. The velocity of 

offspring particles can be calculated by: 
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Weight method and vector evaluation method are common 

optimization methods for multi-objective problems. However, 

the optimization results of the fixed weight method, a typical 

weight method, relies too much on the preset weights; the 

dynamic weighting method is too complex; the vector 

evaluation method only converges to the local optimums. 

For the multi-objective optimization problem of the digital 

management of renewable energies for smart cities, the key is 

to reasonably evaluate and select the fitness. Here, the Pareto 

dominance between particles is chosen to solve each objective 

function, such that the optimization direction of the Pareto 

optimal set is consistent with that of the swarm. In this way, 

the differences between multiple objectives in the problem can 

be overcome. Suppose each particle p in the external set Ω' 

satisfies: 
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where, Np is the total number of particles in the swarm; Ncover 

is the number of particles in the swarm replaced by particle p 

based on Pareto dominance. The particles p in the current set 

of particles Ω satisfies:  
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where, θq
l is the distance between particle q and the l-th nearest 

neighbor particle. Observation shows that (25) consists of two 

parts: the basic fitness that characterizes the Pareto dominance 

between particles, and the superimposed fitness that 

characterizes the distance between particles. If p is greater than 

q, then p is better than q, and q will be replaced by p. 

After forming the Pareto non-inferior solution set, it is 

necessary to select a global optimal particle that best fits the 

current demand from all non-inferior solutions as the optimal 

solution. The sorting of non-inferior solutions could be 

affected by the demand and management objectives of the 

digital management of renewable energies for smart cities. 

Before computing the Euclidean distance between each non-

inferior solution vector and the optimal solution, the 

dimensions and magnitudes of different objective functions 

must be normalized by: 
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where, Q, and Q' are the true value and normalized value of 

each objective function, respectively; Qmax, and Qmin are the 

upper and lower limits of objective function value, 

respectively. After normalization, the Euclidean distance can 

be calculated by: 

 

𝑑(𝑝𝑜𝑝𝑡) = [(𝑄𝑇𝐶(𝑝𝑜𝑝𝑡)

− 𝑄2 (𝑄𝑂𝐶(𝑝𝑜𝑝𝑡)

− 𝑄𝑂𝐶𝑚𝑖𝑛()
2
𝐼𝐶𝑜𝑝𝑡

1/2𝐼𝐶𝑚𝑖𝑛)
𝑇𝐶𝑚𝑖𝑛

] 

(27) 

 

 

5. EXPERIMENT AND RESULTS ANALYSIS 

 

This paper establishes an optimization model for hybrid 

energy network of smart cities in MATLAB. The rated powers 

of PV power generation and wind power generation were set 

to 60kW and 200kW, respectively; the battery capacity per 

unit area of power supply was configured as half of the peak 

power demand, i.e., 2,300Ah. In addition, the hybrid energy 

network also contains 6 gas turbines with a rated power of 

110kW, 3 fuel cells with a capacity of 40Ah, and 20 

translatable loads with a mean power of 90kW. Table 1 shows 

real-time energy prices. Figure 6 shows the daily load curve of 

the hybrid energy network. The dispatch cycle was set to 0.5h, 

that is, each day has 48 dispatch cycles. 

 

Table 1. The real-time energy prices 

 

Supply period Time 

Electricity price Heat price 

Time-of-use (TOU) 

price [yuan·(kW·h)-1] 

Peak price 

[yuan ·(kW·h/month)] 

Non-residential heating 

[yuan ·(kW·h)-1] 

Area-based charge 

[yuan /m2] 

Peak hours 
10: 00-13: 00 

17: 00-22: 30 
1.06 

36.5 0.11 22 
Normal hours 

7: 00-10: 00 

13: 00-17: 00 
0.58 

Through hours 23: 00-7: 00 0.38 

 

The proposed hybrid optimization algorithm was simulated 

on MATLAB, with the maximum number of iterations of 500, 

swarm size of 300, and dimension of 10. Our algorithm and 

the traditional PSO were separately implemented 50 times to 

search for the optimal solution and Pareto optimal set. Figure 

7 compares the operating costs of the hybrid energy network 

under the two algorithms. It can be seen that the operating cost 

stabilized at 611.51 yuan under our algorithm, lower than that 

(617.47 yuan) under the PSO. Besides, it took fewer iterations 

for the cost to stabilize under our algorithm than under the PSO. 

The results indicate that our algorithm outperforms the 

traditional PSO in convergence speed, operation of hybrid 

energy network, and optimization of renewable energy 

dispatch. Therefore, our algorithm boasts strong applicability 

in the digital management of renewable energies for smart 

cities. 

Furthermore, contrastive experiments were designed to 

verify the effectiveness of the proposed models, objective 

functions, and algorithm. The PV power generation, wind 

power generation, battery energy storage, gas turbine power 

generation, fuel cell power generation, and the exchange 

power between renewable energies and AC grid were 

calculated and forecasted. Figure 8 presents the output curve 

and load curve of renewable energies of the hybrid energy 

network on a certain day. Figure 9 displays the results of 

digital management of renewable energies after multi-
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objective optimization. It can be seen that the optimization 

lowered the peak load and peak electricity price of the network; 

the battery was charged by 132.54kW·h in the through hours, 

and discharged 121.69kW·h in other periods, saving a total of 

85.12 yuan of electricity cost. 

 

 
 

Figure 6. The daily load curve of the hybrid energy network 

 

 
 

Figure 7. The comparison of operating costs of the hybrid 

energy network under the two algorithms 

 

 
 

Figure 8. The output curve and load curve of renewable 

energies of the hybrid energy network 

 

Figure 10 illustrates the output powers of the units in the 

hybrid energy network after multi-objective optimization. The 

energy dispatch situation can be analyzed based on the figure. 

During the heating season in winter, the electricity generated 

by renewable energies and gas turbine will be firstly supplied 

to satisfy the electrical and thermals of users in smart cities. In 

the through hours between 21:00 and 7:00, the renewable 

energies and gas turbine have a high cost in energy supply; the 

fuel cell does not work; the battery purchases electricity from 

the AC grid, and stores the purchased electricity. 

The normal hours of energy supply last from 7: 00 to 10: 00, 

and from 13: 00 to 17: 00. During these hours, the cost of fuel 

cell power generation is slightly higher than the real-time 

electricity price, while the output of gas turbine decreases. In 

this case, the network loads are mainly powered by renewable 

energy power generation. The energy deficit will be made up 

by the fuel cell, and the energy surplus will be sold to the State 

Grid. The other periods belong to the peak hours, where the 

network loads are powered by renewable energy power 

generation, fuel cell discharge, and battery discharge. The 

energy deficit will be satisfied by the AC grid, and the energy 

surplus will be sold to the State Grid. 

 

 
 

Figure 9. The results of digital management of renewable 

energies after multi-objective optimization 

 

 
 

Figure 10. The output powers of the units after optimization 

  

 

6. CONCLUSIONS 

 

This paper proposes a multi-objective optimization 

algorithm for digital management that quantifies the multiple 

energy models for smart cities. Firstly, the dimensions of 

renewable energy construction for smart cities were 

enumerated, and the functions, hierarchy, and data flows were 

illustrated for the digital management system of renewable 

energies for smart cities. Next, the authors established the 

probabilistic output models of the power generation by typical 

renewable energies, and set up the objective functions for the 

digital management of energies. After that, the PSO and GA 

were combined to optimize the multiple objectives of the 
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digital management of renewable energies in smart cities. 

Finally, experiments were carried out to compare our 

algorithm with the traditional PSO. The results show that our 

algorithm outperforms the traditional PSO in convergence 

speed, operation of hybrid energy network, and optimization 

of renewable energy dispatch. Contrastive experiments 

demonstrate the effectiveness of the proposed models, 

objective functions, and the multi-objective optimization 

algorithm. 
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