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The intelligent manufacturing (IM) supply chain (SC) involves multiple distributed agents. 

The mobile supply chain (MSC) technology supports the real-time management of key 

information resources in the supply chain of IM products. This paper explores the 

influencing factors and evaluation model of quality risks in IM MSC, trying to make 

realistic evaluation of the actual quality risks of the enterprise. Firstly, the authors 

constructed a quality risk identification framework for IM MSC, and a hierarchical 

evaluation index system (EIS) based on the factors affecting quality risks. Besides, the 

features and attributes of four dimensions of quality risks were specified, and the 

corresponding intuitive triangular fuzzy numbers were given. Next, an evaluation model 

was established for the quality risks of IM MSC based on backpropagation neural network 

(BPNN). After the evaluation of quality risks, a contract model was designed for the 

quality risk control in IM MSC. The proposed EIS and models were proved effective 

through experiments. 
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1. INTRODUCTION

Intelligence is the future trend of manufacturing automation. 

In modern industry, artificial intelligence (AI) can be applied 

in almost every link in the manufacturing process. This gives 

birth to intelligent manufacturing (IM) system and related 

techniques [1-4]. The IM system is defined by the autonomy 

of manufacturing units and the self-organization of the system. 

The supply chain (SC) system is also composed of multiple 

distributed agents [5-9]. Considering the environment of the 

Internet-based global manufacturing network, the mobile 

supply chain (SC) technology, which supports real-time 

management of key information resources of IM products, 

could be introduced to the basic framework of the distributed 

networked information management system of small and 

medium-sized enterprises (SMEs) [10-13]. 

According to the definition of SC quality risk by Rishelin, 

and Ardi [14], it can be inferred that the quality risks of IM SC 

are the uncertain factors that affect the product quality from 

parts procurement to the output of finished products. The 

existing studies on SC quality risks mainly focus on two 

aspects: risk identification methods, and risk evaluation 

models [15-17]. Bicer and Hagspiel [18] developed a product 

quality inspection and visibility evaluation framework for 

process control stages, such as product development, 

manufacturing, mass production, logistics, and sales, and 

associated the quality supervision mechanism and risk control 

strategy with the identification of SC quality risk factors. 

Troche-Escobar and Freires [19] analyzed the causes of 

frequent recalls of smart electronic products, and identified the 

main quality problems of recalled products: substandard 

quality of purchased parts, product damage caused by logistics 

and transportation, omissions in quality inspection in the SC, 

as well as the proficiency in debugging and trial production 

techniques in the development of new products. 

The popular risk methods include expert investigation, 

process analysis, causality analysis, and fault tree analysis. 

Expert investigation predicts risks by summing up expert 

opinions [20]. Process analysis tends to explore the risk factors 

of each link in the manufacturing cycle of the product [21]. 

Casual analysis explores deep into the correlation between 

causes and results of risk events, and applies to simple 

production systems of SMEs [22]. Fault tree analysis reasons 

about the causes of risk events in the form of a tree diagram 

[23]. 

After being accurately identified, the SC quality risks can 

be evaluated reasonably. Klein et al. [24] constructed an 

evaluation index system (EIS) for the risks in prefabricated 

buildings based on fuzzy analytic network process (F-ANP), 

and realized accurate risk evaluation and prediction by 

combining the entropy weight method with neural network. 

Mahajan and Diatha [25] integrated correlation analysis with 

Monte Carlo simulation, set up an EIS for corporate strategic 

risks, and established a fuzzy comprehensive evaluation (FCE) 

model, covering such four aspects as innovation capability, 

corporate culture, external environment, and internal resources. 

Cockx et al. [26] identified and evaluated the quality chain 

risks of each link in the production cycle of manufacturing 

enterprises, and built an evaluation model based on the 

analytic hierarchy process (AHP) and system factor analysis. 

The SC systems of IM enterprises are usually large and 

complex, involving multiple suppliers. If the quality risk 

identification framework is not clear enough, it will be very 

difficult to identify product quality risks. The relevant 

literature mostly tackles quality risk probability and loss 

evaluation, and evaluates quality risks by traditional methods 

like FCE and gray correlation analysis. Therefore, the 

evaluation and sorting of quality risks are not sufficient 
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accurate. 

The sustained cooperation is the prerequisite for long-term 

benefit sharing among manufacturers, suppliers, and retailers. 

The products of most IM enterprises often encompass various 

parts. To effectively improve the SC efficiency of IM 

enterprises, the supply-demand information from each 

production line to suppliers at all levels could be shared 

through the mobile supply chain (MSC). 

To evaluate the quality risks of enterprises in a highly 

operable, suitable, and effective manner, this paper analyzes 

the factors affecting the quality risks of IM MSC, and 

establishes the relevant evaluation model. Based on the basic 

natural environment and resource conditions, Section 2 

presents an identification framework for IM MSC quality risks, 

from the perspective of the quality chain, constructs a 

hierarchical EIS for quality risks based on the influencing 

factors, and describes the features of quality risks with 

intuitive triangular fuzzy numbers. Section 3 creates a quality 

risk evaluation model for IM MSC based on backpropagation 

neural network (BPNN). After accurate evaluation of quality 

risks, Section 4 designs a contract model for quality risk 

control in IM MSC, according to the contract theory and the 

features of MSC. Finally, the proposed EIS and models were 

proved effective through experiments. 

 

 

2. IDENTIFICATION AND EVALUATION OF IM MSC 

QUALITY RISKS 

 

2.1 Identification Framework and EIS 

 

In IM enterprises, the production cycle lasts long, and the 

manufacturing process has a high complexity, involving many 

quality formation links. With the development of the Internet 

and the Internet of Things (IoT), the traditional mode of 

individual IM production has gradually shifted towards the 

collaborative production mode of SC. Meanwhile, the focus of 

its product quality monitoring and management has moved 

from the internal of the enterprise to the SC parties. In other 

words, the product quality of an IM enterprise that adopts the 

MSC depends on the internal quality supervision of the 

enterprise, as well as the quality supervision by MSC parties. 

The natural environment and resources are the foundation and 

support for the operation of IM MSC, which constrain and 

pressurize MSC parties. Therefore, this paper sets up a quality 

risk identification framework for IM MSC based on natural 

environment and resource conditions, from the perspective of 

quality chain (see Figure 1). 

IM MSC quality risks are transferrable, poorly recognizable, 

and harmful, with a certain time lag. Through the MSC 

operation, the quality risks of IM enterprise products will be 

transmitted, transformed, concealed, accumulated, and 

interactive. 

Therefore, it is crucial to identify the factors affecting the 

quality risks in a scientific and reasonable manner. Otherwise, 

the quality risks cannot be identified or evaluated accurately. 

This paper designs a scientific, systematic, comprehensive, 

and hierarchical EIS for quality risks based on the influencing 

factors. The EIS divides quality risks into four dimensions: 

natural environment and resource conditions, SC parties 

involved in quality formation, quality formation process, and 

MSC financial risks: 

Layer 1 (dimensions of quality risks) 

QR={QR1, QR2, QR3, QR4}={natural environment and 

resource conditions, SC parties involved in quality formation, 

quality formation process, MSC financial risks} 

Specifically, QR1 and QR4 reflect the basic environment and 

economic background of MSC, respectively; QR2 and QR3 

correspond to the quality chain of MSC. The four dimensions 

jointly characterize how much different enterprises on the 

quality chain, and different quality formation processes 

influence the quality risks of final IM products. Under each 

dimensions, detailed risk items were designed as follows: 

Layer 2 (quality risks) 

QR1={QR11, QR12, QR13, QR14}={support resources risk, 

social environment risk, supply and processing technology 

risk, legal regulation risk} 

QR2={QR21, QR22, QR23, QR24}={supplier risk, logistics 

company risk, retailer risk, final product risk} 

QR3={QR31, QR32, QR33, QR34, QR35, QR36}={market 

research risk, R&D and trial production risk, procurement risk, 

manufacturing and assembly risk, distribution and after-sales 

risk, optimization and maintenance risk} 

QR4={QR41, QR42, QR43}={MSC platform technology risk, 

MSC platform payment risk, MSC platform supervision risk} 

 

 
 

Figure 1. The identification framework for IM MSC quality risks 
Note: R&D is short for research and development. 
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For each risk item, several driving factors were designed as 

the metrics of quality risk identification and evaluation: 

Layer 3 (influencing factors of quality risks) 

QR11={QR111, QR112, QR113, QR114}={talent quality risk, 

infrastructure risk, working condition risk, natural resource 

utilization rate} 

QR12={QR121, QR122, QR123}={industrial policy adjustment 

risk, market operation mechanism risk, public opinion risk} 

QR13={QR131, QR132, QR133, QR134}={technology 

introduction risk, technology adaptation and conversion risk, 

technology maturity risk, technology proficiency risk} 

QR14={QR141, QR142, QR143, QR144}={legal supervision risk, 

quality inspector risk, quality standard level risk, penalty 

intensity risk} 

QR21={QR211, QR212, QR213}={raw materials or parts risk, 

delayed delivery risk, out of stock risk} 

QR22={QR221, QR222}={untimely transportation risk, in-

transit damage risk} 

QR23={QR231, QR232}={after-sales quality risk, sales 

strategy risk} 

QR24={QR241, QR242}={utilization method risk, user 

maintenance risk} 

QR31={QR311, QR312, QR313, QR314}={survey scope risk, 

survey information accuracy risk, market analysis accuracy 

risk, demand analysis accuracy risk} 

QR32={QR321, QR322, QR323, QR324}={R&D and trial 

production planning risk, R&D and trial production input risk, 

R&D and trial production output risk, R&D and trial 

production review risk} 

QR33={QR331, QR332, QR333, QR334}={procurement plan 

risk, supplier selection risk, procurement contract formulation 

risk, product acceptance risk} 

QR34={QR341, QR342, QR343, QR344}={manufacturing and 

assembly preparation risk, manufacturing and assembly 

capability risk, manufacturing and assembly process risk, 

manufacturing and assembly environment risk} 

QR35={QR351, QR352, QR353}={packaging risk, after-sales 

risk, after-sales response and feedback risk} 

QR36={QR341, QR362, QR363}={product quality control risk, 

product repair risk and customer relationship maintenance risk, 

product continuous optimization risk} 

QR41={QR411, QR412, QR413}={platform operational 

capability risk, software and hardware security risk, data 

transmission security risk} 

QR42={QR421, QR422, QR423}={payment information 

security risk, participating enterprise privacy security risk, 

payment method security risk} 

QR43={QR431, QR432, QR433}={supervision system risk, 

supervision personnel risk} 

 

2.1 Features of quality risks 

 

During the identification and evaluation of IM MSC quality 

risks, it is difficult to quantify the risk features, owing to the 

multiple dimensions of the influencing factors. Figure 2 

presents the causality between multiple dimensions of quality 

risks. To eliminate the effect of subjectivity of the evaluators, 

this paper converts the descriptions of risk features into 

intuitive triangular fuzzy numbers: ITF=([x,y,z];μITF,γITF), 

where μITF is the membership, and γITF is the non-membership. 

The membership function and non-membership function can 

be respectively expressed as: 
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Figure 2. The causality between multiple dimensions of quality risks 
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Specifically, μITF and γITF mean the evaluator agrees or 

disagrees with the evaluation result; 1-μITF-γITF reflects the 

degree of hesitation θITF of the evaluator in giving the 

evaluation result. The greater the θITF value, the more 

uncertain the evaluator is about his/her evaluation result. The 

triangular fuzzy number [x,y,z] that characterizes the 

eigenvalue of quality risks can be converted from the level of 

quality risk features. The natural language describing the 

evaluation level of quality risk features can be transformed 

into the following triangular fuzzy number [xk,yk,zk]:  
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When k takes different values, the transformation equation 

of triangular fuzzy number can be obtained for quality risk 

features on each evaluation level. Here, the quality risk 

features of IM MSC were divided into 7 levels. The levels, 

attributes, and triangular fuzzy numbers of the four dimensions 

of quality risks are listed in Table 1. 

This paper combines the entropy method and the 

intuitionistic fuzzy entropy to determine the weight of each 

quality risk feature. By the entropy method, the evaluation 

result of quality risk q under influencing factor p, and the 

corresponding expected triangular fuzzy number can be solved 

by: 
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The entropy of the feature μp of quality risk p can be 

expressed as:  
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Table 1. The levels and attributes of quality risk features 

 
Fuzzy 

level 

Natural language 

description 

Risk 

probability 

Risk  

loss 

Predictability and 

controllability 

Triangular fuzzy 

numbers 

1 Strongly low risk Strongly small Strongly small Predictable and controllable (0,0,0.18) 

2 Moderately low risk 
Moderately 

small 

Moderately 

small 

Easy to predict and control 
(0,0.18,0.34) 

3 Slightly low risk Slightly small Slightly small Easy to predict and control (0.18,0.34,0.5) 

4 Neutral Neutral Neutral General (0.34,0.5,0.68) 

5 Slightly high risk Slightly large Slightly large 
Not easy to predict and 

control 
(0.5,0.68,0.84) 

6 Moderately high risk 
Moderately 

large 

Moderately 

large 

Not easy to predict and 

control 
(0.68,0.84,1) 

7 Strongly high risk Strongly large Strongly large Unpredictable, uncontrollable (0.84,1,1) 

 

The corresponding entropy weight ωp can be expressed as:  
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When the quality risk feature is weighed by intuitionistic 

fuzzy entropy, the intuitionistic fuzzy entropy of μp can be 

expressed as: 
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The larger the Ep
*, the greater the fuzziness of the evaluation 

results on μp under influencing factor p, and the larger the 

weight of the corresponding quality risk feature. The 

corresponding entropy weight ωp
* can be expressed as: 
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Combining ωp and ωp
* with geometric mean, the final 

weight can be obtained as:  
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Figure 3. The workflow of the comprehensive evaluation 

process 
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The proposed IM MSC quality risk evaluation model was 

designed based on three multi-attribute decision-making 

methods, namely, AHP, technique for order preference by 

similarity to ideal solution (TOPSIS), and data envelopment 

analysis (DEA). The quality risk evaluation results obtained 

by the three methods were converted into intuitive triangular 

fuzzy numbers. After passing the consistency test of Kendall’s 

Concordance (W) Coefficient, the three quality risk evaluation 

results were comprehensively evaluated by fuzzy Borda 

method. Figure 3 shows the workflow of the comprehensive 

evaluation process of the proposed model. 

 

 

3. BPNN-BASED EVALUATION MODEL FOR IM MSC 

QUALITY RISKS 

 

 
 

Figure 4. The structure of the BPNN-based evaluation model 

 

This paper constructs a three-layer BPNN-based evaluation 

model. As shown in Figure 4, the model consists of an input 

layer, a hidden layer, and an output layer. The number N1 of 

input layer nodes depends on the number of evaluation indices 

for IM MSC quality risks. Since there are 55 tertiary indices 

(influencing factors), the N1 value was set to 55. The number 

of output layer nodes N3 depends on the form of evaluation 

results. As mentioned before, the evaluation result on IM MSC 

quality risks falls on one of the 7 levels. Thus, the output layer 

only needs to have 1 node. The number N2 of hidden layer 

nodes should be configured based on learning rate and network 

complexity, without sacrificing the fitting accuracy. The 

empirical formula of N2 can be expressed as: 
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where, ε is a constant between 0 and 10. The hidden layer 

adopts the sigmoid function as the activation function:  
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The linear transfer function purelin was chosen as the 

connection function between hidden and output layers: 
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where, bj is the hidden layer bias that adjusts the function. The 

output of the output layer can be expressed as: 
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where, b is the output layer bias. The network error can be 

calculated by:  
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where, O' is the expected error of quality risk evaluation. 

Through the iteration of weights, the network error can be 

minimized to meet the requirement on the desired evaluation 

result on quality risks. The BPNN was trained iteratively with 

the trainlim function in the Levenberg-Marquardt (L-M) 

algorithm, which features fast convergence and few steps. 

Figure 5 presents the workflow of the proposed BPNN-based 

evaluation model. 

 

 
 

Figure 5. The workflow of the proposed BPNN-based 

evaluation model 

 

 

4. CONTRACT MODEL FOR IM MSC QUALITY RISK 

CONTROL 

 

IM MSC quality risks may arise in various links, ranging 

from the supply of raw materials and parts, manufacturing, 

transportation, warehousing, mobile marketing to after-sales. 

The traditional mode, which monitors and manages the quality 

of a single IM enterprise or marketing platform, cannot control 
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the quality risks of the entire MSC. Drawing on the contract 

theory, the quality risks were controlled from the angle of 

MSC after they have been accurately evaluated. The relevant 

parameters were configured as follows: 

In the contract model, variable g represents the quality level 

of raw materials and parts provided by MSC; UCSC(g) is the 

unit cost of the MSC to make the quality of raw materials and 

parts reach a certain level; ζ is the probability of defected 

products; UCE(ζ) is the cost of the IM enterprise to ensure the 

level of product quality inspection; z is the level of quality 

control effort of the IM enterprise; UCE(z) is the unit cost of 

the IM enterprise to make product quality reach a certain level; 

cRMi is the unit price of raw materials or parts; cP is the sales 

price of IM enterprise products; L1 is the internal loss induced 

by production delay and selection of new supplier; L2 is the 

additional loss of reputation and claims caused by the sales of 

defected products; λ is the probability of claims; λ[(1-g)(1-

ζ)+g(1-z)] is the probability of additional loss. Then, the 

revenues functions of MSC supplier and IM enterprise can be 

respectively established as: 
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Considering the possibility of the unilateral moral hazard of 

MSC supplier, the supplier must ensure its retained revenue 

under the risk control constraints. To maximize its revenue, 

the IM enterprise needs to control the product quality 

inspection at the optimal level. Then, formula (16) can be 

converted into the Lagrangian form: 
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where, τ is the Lagrangian factor for MSC to obey the risk 

control constraints; υ is the Lagrangian factor for the incentive 

compatible constraint of the IM enterprise. Taking the partial 

derivatives of the loss risk sharing ratios β and ρ of the supplier 

and IM enterprise and making them equal to zero: 
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Then, formulas (18) and (19) were solved, and the solutions 

were substituted into the Lagrangian function. Next, finding 

the first-order partial derivatives of g, ζ, and z and making 

them equal to zero: 

 

1 2

2 1

2

( ) ( )( ) ( ) 0

(1 )[ ( ) ( )] ( ) 0

( ) ( ) 0

P P SC

P P E

P E

c L z c L UC g
g

g c L c L UC

c L g UC z
z

  


 







= + − − + − = 




= − + − + − =



= + − =



  (20) 

 

To maximize the overall benefits of MSC, the risk control 

constraints for the MSC supplier was converted into an 

equation, and combined with the incentive compatible 

constraint of the IM enterprise: 
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Solving ρ, and β: 
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Under the risk control contract, the internal and external 

losses of the MSC are shared by the supplier and the IM 

enterprise. As long as the β value is reasonable, the overall 

benefits of the SC will be optimized, and the IM MSC quality 

risks can be effectively controlled. 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

To verify its effect in comprehensive evaluation, the 

proposed quality risk evaluation model for IM MSC was 

applied to actual enterprises. Table 2 presents the evaluation 
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results by three multi-attribute decision-making methods, 

namely, AHP, TOPSIS, and DEA. The Spearman’s rank 

correlation coefficients of the three methods were 0.891, 0.827, 

and 0.845, respectively. The test statistic was calculated as 

5.347, which is greater than that under the preset significance 

level. Therefore, the evaluation results of comprehensive 

evaluation method agree with those of single multi-attribute 

decision-making methods. This validates the effectiveness of 

the proposed comprehensive evaluation strategy. 

 

Table 2. The quality risk evaluation based on the set of 

multi-attribute decision-making methods 

 
Evaluation of quality risks based on influencing factors 

Dimensions of quality risks QR1 QR2 QR3 QR4 

AHP 
AHP risk 0.237 0.389 0.391 0.254 

Accuracy 0.169 0.424 0.278 0.125 

TOPSIS 

Positive ideal risk 0.422 0.228 0.239 0.365 

Negative ideal risk 0.116 0.257 0.319 0.270 

Hamming distance 0.219 0.552 0.548 0.441 

DEA 

Positive ideal risk 0.423 0.384 0.397 0.414 

Negative ideal risk 0.299 0.321 0.276 0.253 

Malmquist index 0.687 0.542 0.662 0.637 

 

The convergence curve (Figure 6) of the proposed BPNN-

based evaluation model was analyzed to verify its ability to 

process the data on the evaluation indices for IM MSC quality 

risks. As shown in Figure 6, the network error reached the 

preset level after the proposed model had been trained for 140 

iterations. The model achieved fast convergence, while 

satisfying the required output accuracy. 

Table 3 displays the results of our model on 10 sets of data 

on evaluation indices, which serve as the test samples for 

model accuracy and stability. The predicted risk level of each 

set was compared with the expected level. It can be seen that 

the predicted level was consistent with the expected level on 

every set, except for set 6. Then, the evaluated value of quality 

risks was compared with the predicted value. The mean 

relative error on the 10 sets was 5.08%, and the absolute error 

was controlled below 0.01. The results prove that our model 

has high fitness and reliability in risk evaluation, and can be 

directly applied to evaluate quality risks of IM MSC. 

 

 
 

Figure 6. The convergence curve of the BPNN-based 

evaluation model 
Note: MSE is short for mean squared error 

 

Furthermore, the proposed contract model for IM MSC 

quality risk control was analyzed on actual examples. The 

quality control effort of MSC supplier and product quality 

inspection of IM enterprise were subject to sensitivity analysis. 

Figures 7 and 8 show the influence of the quality control effort 

of MSC supplier on the revenues of the supplier, IM enterprise, 

and the MSC; Figure 9 show the influence of product quality 

inspection of IM enterprise the revenues. 

 

Table 3. The output results of BPNN 

 
Set number Expected risk Risk level Training output Predicted level Absolute error Relative error (%) 

1 0.5257 4 0.5225 4 0.0032 6.08% 

2 0.2444 2 0.2459 2 -0.0015 -6.13% 

3 0.3166 2 0.3147 2 0.0019 6.00% 

4 0.4672 4 0.4669 4 0.0003 0.64% 

5 0.1165 1 0.1156 1 0.0090 7.70% 

6 0.7888 6 0.7840 7 0.0048 6.08% 

7 0.2792 3 0.2784 3 0.0008 2.86% 

8 0.6884 6 0.6826 6 0.0058 8.42% 

9 0.2642 3 0.2650 3 -0.0008 -3.02% 

10 0.5621 5 0.5643 5 -0.0022 -3.91% 

 

 
 

Figure 7. The influence of the quality control effort of MSC 

supplier on revenues 

 
 

Figure 8. The influence of the quality control effort of MSC 

supplier on supplier revenue 

959



 

 
 

Figure 9. The influence of product quality inspection of IM 

enterprise on revenues 

 

As shown in Figures 7 and 8, the revenues of IM enterprise, 

MSC supplier, and the MSC increased gradually with the 

growing quality control effort of MSC supplier. The increment 

of the first two revenues was larger than that of the MSC 

revenue. The supplier revenue reached the maximum, when its 

quality control effort fell within 0.6-0.61. Further growth in 

the effort would gradually suppress the supplier revenue. But 

in this effort range, the IM enterprise revenue and MSC 

revenue did not reach the maximum yet. If the MSC supplier 

reduces its quality control effort, all three revenues will 

decline. Thus, the MSC supplier must strive to maintain the 

effort at the level that optimizes the three revenues. These 

results confirm that the proposed contract model, which 

require the supplier and the IM enterprise to share the internal 

and external losses, can effectively control the quality risks of 

the supplier.  

As shown in Figure 9, the revenues of IM enterprise and the 

MSC gradually increased with the product quality inspection 

of that enterprise, while the MSC supplier revenue gradually 

decreased. If the IM enterprise relaxes the product quality 

inspection, the MSC supplier will make more profit, but the 

enterprise and the MSC will witness revenue reduction. Thus, 

the IM enterprise must strive to maintain the inspection at the 

level that optimizes the three revenues. These results confirm 

that the proposed contract model can effectively control the 

quality inspection risk of the IM enterprise. 

 

 

6. CONCLUSIONS 

 

This paper probes deep into the influencing factors and 

evaluation model of IM MSC quality risks. Firstly, the authors 

constructed an identification framework for IM MSC quality 

risks, and a hierarchical EIS for quality risks based on the 

influencing factors. Meanwhile, the quality risk features were 

divided into four dimensions, and the attributes and triangular 

fuzzy numbers of each dimension were specified. Then, a 

comprehensive evaluation strategy was designed based on a 

set of three multi-attribute decision-making methods, and 

proved valid through experiments. On this basis, a BPNN-

based evaluation model was established for IM MSC quality 

risks. Through experiments, the model was proved to have 

high fitness and reliability in risk evaluation, and can be 

directly applied to evaluate quality risks of IM MSC. After 

completing the evaluation of IM MSC quality risks, the 

authors designed a contact model to control IM MSC quality 

risks, which requires MSC supplier and IM enterprise to share 

the internal and external losses of the MSC. Experimental 

results show that the contract model can effectively control the 

risks in supplier’s product quality and the IM enterprise’s 

quality inspection. 
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