
  

  

Novel Features Extraction for Fault Detection Using Thermography Characteristics and IV 

Measurements of CIGS Thin-Film Module 

 

 

Reham A. Eltuhamy1,5*, Mohamed Rady2, Khaled H. Ibrahim3, Haitham A. Mahmoud1,4 

 

 

1 Mechanical Engineering Department, Faculty of Engineering, Helwan University, Cairo 11795, Egypt  
2 Mechanical Engineering Department, Faculty of Engineering at Rabigh, King Abdulaziz University, Rabigh 21911, Saudi 

Arabia 
3 Electrical Power Department, Faculty of Engineering, Fayoum University, El-Fayoum 63514, Egypt 
4 Industrial Engineering Department, College of Engineering, King Saud University, P. O. Box 800, Riyadh 11421, Saudi 

Arabia 
5 Manufacturing Engineering and Production Technology Department, Modern Academy for Engineering and Technology, 

Cairo 11571, Egypt 

 

Corresponding Author Email: RIHAM.AHMED@eng.modern-academy.edu.eg 

 

https://doi.org/10.18280/i2m.190501 

  

ABSTRACT 

   

Received: 28 July 2020 

Accepted: 11 October 2020 

 Regarding the fault diagnosis of Copper Indium Gallium Selenide (CIGS) PV modules, 

previously published articles focused on employing statistical analysis of thermography 

images. This approach failed in many cases to distinguish among fault types. This article 

presents a novel methodology to diagnose and predict faults of thin-film CIGS PV modules 

using infrared thermography analysis combined with measurements of I-V characteristics. 

The proposed methodology encompasses a comprehensive site work to capture images 

that cover many fault types of the PV module under study. The novelty of the technique 

depends on utilizing processing and analysis of the captured images using new proposed 

mathematical parameters to extract different faults’ features. Using I-V measurements 

combined with thermography analysis, the differences between different types of faults 

are detected. Then, a general classification matrix of CIGS fault detection and diagnosis, 

using features based on mathematical parameters and IV measurements has been 

established. Results show that the analysis of the temperature distribution is proved to be 

insufficient to identify specific modes of different faults. In addition, the proposed 

procedure for fault detection and classification, which depends on the pattern of faults, can 

be used for any type of PV module. This results in more reliance on the proposed technique 

to increase the confidence level of fault detection. 
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1. INTRODUCTION 

 

Power generation from solar PV is continuously increasing 

all over the world. In 2018, a 30% increase in PV energy 

production corresponding to 570 TWh has been recorded. In 

2018, the increase in solar PV capacity additions globally 

reached 97 gigawatts (GW) corresponding to around half of 

total net renewable capacity growth. Solar PV capacity 

additions have been doubled from 2016 to 2017 [1]. The 

common photovoltaic module (PVM) technologies include; 

Monocrystalline silicon PV modules, Polycrystalline silicon 

PV modules, Amorphous silicon PV modules, and Thin-film 

PV modules. Even though monocrystalline silicon PV and 

polycrystalline silicon PV are used more than other 

technologies, the thin-film module production grows at the 

rate of 24% from 2009 to reach 22,214 MW production by 

2020. One type of thin-film technology is CIGS which is 

getting more popular than different thin-film technologies 

because of its higher efficiency and reduced manufacturing 

costs. The success of CIGS cells is supported by continuous 

improvement in efficiency, faster and cheaper manufacturing 

processes, and favorable payback time.  

The rapid development of solar energy applications in 

residential, commercial, and industrial sectors is making 

photovoltaic energy an integral component of new green 

facilities. To achieve high performance, efficiency, and 

reliability of photovoltaic plants, the early detection of PV 

faults is recommended. One of the most effective techniques 

is the infrared thermography method (IRT), as it provides fast, 

contactless, nondestructive, and real-time fault detection and 

diagnosis (FDD). The early studies that investigate the 

detection of photovoltaic faults using IRT are addressed in the 

studies [2-4]. 

The factors that should be carefully considered while using 

thermography measurements for photovoltaic modules in the 

outdoor conditions include qualified personnel, emissivity 

adjustment, distance of the object being inspected, angle of 

capturing, and ambient meteorological conditions [5-9]. Field 

IR imaging of PV modules provides a useful tool to identify 

different PV faults via the analysis of their thermal effects. The 

infrared image of the faulty module has thermal signatures that 

appear as regions with different temperatures in the captured 

image. However, these effects are difficult to interpret without 

careful anslysis of the interconnection between thermal 

anomalies and electrical operation behavior. The analysis of 
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IR images can determine the faults typology and power loss of 

PV modules [10-12]. 

Differences in temperatures between the faulty module and 

the healthy one of some faults such as bypassed substring, cell 

fracture, soldering, and shunted cell faults are addressed in the 

research [13]. Defects of photovoltaic modules heat up during 

operating conditions. Infrared thermography, IV 

measurements, and electroluminescence are used under 

operating conditions to detect defects of Polycrystalline 

silicon PVM [14-16].  

Image processing algorithms are used to extract useful 

features with meaning information for fault detection. Most of 

these algorithms rely on image segmentations utilizing 

thresholding techniques extracted from color images. 

Thresholding is implemented to separate the background from 

the required object to detect it. The value of thresholding can 

be determined using different methods. The thresholding value 

can be determined using different histograms or alternative 

criteria [17]. Among the many methods used to find threshold 

values, the Otsu threshold technique is one of the most used 

and preferred methods, due to its simplicity and capability in 

separating 2D images [18]. The Otsu method is used for the 

segmentation process that can be applied to a separate region 

of interest (ROIs) in the gray level of thermal images [19]. The 

two-step algorithm is introduced by Maldague et al. [20] to 

locate all defects and then the region-growing method is 

applied using proper thresholding value. 

It has been demonstrated that the use of thermal image 

analysis tools, such as temperature line profile and histogram-

based statistical analysis of ROI, for both outdoor and indoor 

IRT measurements, can be easily and efficiently implemented 

for qualitative analysis of hotspots under short-circuit 

conditions in case of c-Si PV modules [21, 22]. Simple 

subtraction techniques, such as spatial reference and temporal 

reference techniques are implemented to remove unwanted 

effects present in cases of non-uniform heating as well as 

smoothing operators, high-pass filtering, and Sobel operators 

for edge extraction are presented by Ibarra-Castanedo et al. 

[23]. Automated localization of defects in thermal images 

based on an efficient edge detection technique is addressed in 

[24, 25]. Several aspects of thermal image processing are 

described in the studies [26-28]. For example, image 

enhancement includes the determination of frequency/spatial 

domains. Spatial domain is used to define the actual spatial 

coordinates of pixels within an image. In the frequency 

domain, it is possible to work on the spectrum itself. Defect 

detection algorithms requires the utilization of images 

thresholding and region of interest techniques. Statistical 

methods, such as mean, standard deviatios, skeweness and 

kutosis, wavelets, image fusion/subtraction, segmentation and 

pattern recognition, are employed for extraction of faults 

features. Neural network systems can be also used for 

classification and prediction of faults. 

Solar panels are categorized into (defective and non-

defective panels) using texture features extraction (TFE) 

which includes contrast, correlation, energy, entropy, and 

homogeneity [29]. The classification using n Bayes a binary 

class density-based classifier of c-Si PV module using 

thermography assessment showed a mean recognition rate of 

98.4% for a set of 260 test samples. While in the research [30], 

the fault classification of PV module using texture feature 

extraction (TFE) and artificial neural network classifier 

depicted 93.4% training efficiency and 91.7% testing 

efficiency. However, these features could not detect the type 

of fault and consequently the type of maintenance action 

required. Image segmentation and canny edge detection were 

implemented by Tsanakas et al. [31] with a good capability to 

detect the defective cells. The limitations of the proposed 

algorithm [31] include the lack of defect classification ability. 

Also, the presence of undesirable grey-level is induced by any 

specular object in the background of the thermal image that 

may be conflicting with the actual variations. Automatic 

diagnostic method combined with edge detection method 

could have been a better complement. Image processing 

techniques based on edge detection and Hough transform have 

been adapted to effectively identify faults utilizing artificial 

neural networks [30]. The experimental results of the training 

and testing accuracy are around 94 and 93.1% respectively. 

The aforementioned studies focused on the investigations of 

crystalline silicon (c-Si) PV systems. There are very few 

articles on using IRT measurements on thin-film PV modules 

[7, 32-34]. The study [35] shows the different temperature 

distribution of different PV technologies, which include 

polycrystalline silicon (pc-Si), copper indium gallium selenide 

(CIGS), and cadmium telluride (CdTe). Limitations of 

previous studies include the focus on detection of hot spots 

with little attention to other fault types. There is a lack of 

information regarding the thermal patterns of other CIGS 

faults and their effect on the power efficiency of the module. 

Also, most of the proposed diagnosis systems are carried out 

during offline conditions which is not convenient for 

maintenance planning and automation. The present study 

reports a novel methodology to diagnose and predict faults of 

thin-film CIGS PV modules using infrared thermography 

analysis combined with measurements of I-V characteristics. 

In a previous study, the conventional features based on a 

statistical analysis of thermography images which include 

mean, standard deviation, skewness, and kurtosis were shown 

to have limited ability to distinguish between faults and to 

detect faults for modules containing more than one type of 

fault [36]. The novelty of the proposed technique is based on 

utilizing image processing and analysis using new proposed 

mathematical parameters to extract different faults features. 

The proposed features are extracted from 2D matrix of the 

thermal image. They are independent of variation in 

temperature that may result from the use of different infrared 

cameras sensors. The capability and robustness of the new 

proposed methodology to distinguish between different fault 

types and defective modules with more than one fault type is 

demonstrated. A general faults classification matrix, useful for 

maintenance planning, is established. The present article is 

organized as follows. Section 2 presents the experimental 

measurements. Section 3 discusses the failure cause and effect 

of thin-film PV modules. Section 4 presents the proposed 

methodology for fault detection using IRT and IV 

measurements. The analysis of results is presented in Section 

5. 

 

 

2. EXPERIMENTAL MEASUREMENTS 

 

In this study, 85 modules of CIGS thin films were tested and 

analyzed. The CIGS module is TW-SF-W100, TianWei Solar 

Films Co., Ltd manufacture. The PV power plant is located in 

the governorate of El-Minia, Bani Mazar, in Egypt. PV plants 

consist of four rows, each row is named with an alphabetical 

letter (a, b, c, and d), each module inside the row has a 

numbering starting from the number 1. For example, a1 means 
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module number 1 in a row (a) and so on. The defective 

modules in the plant are known previously. The reported 

measurements were taken on 22 March 2019 at 9 am. During 

measurements, the solar irradiance (E) was approximately 900 

W/m², the ambient temperatures Tamb was 19℃, the wind 

speed was 18 Km/hr, and there were some fleecy clouds. The 

infrared camera of Fluke Ti32 (thermal imager with fluke 

smart view software) was used for IRT imaging of PV 

modules. The guidelines of thermography testing of PV panels 

reported in IEC62446 [37] have been followed. These include 

solar irradiance levels exceeding the 400 W/m2, clear 

environmental conditions, avoiding cloud shading during 

shooting, low wind speed, stable ambient temperature, 

checking junction boxes and all electrical connections, 

considering emissivity of PV panels. The infrared camera 

image should be taken as perpendicular to the surface of the 

PV module as possible. The emissivity value is selected to be 

0.85. The specifications of the PV module and the IR camera 

are shown in Table 1. I-V measurements of the PV modules 

were performed using a variable resistor of. The values of 

current and voltage vary in progressive steps from zero to 

infinite resistance. By observing these values, the features of 

the I-V curve are extracted. To reduce uncertainly in 

measurements, IR image capturing and I-V measurements 

have been repeated three times for each measurement. 

 

Table 1. Equipment specifications 

 
Item Parameter Value 

PV Module 

Module type 

Open-circuit voltage 

Short-circuit current 

Power output 

Manufacturing date 

CIGS 

136 V 

1.17 Am 

102 W 

01/04/2014 

Thermal 

Camera 

Type 

IR resolution 

Thermal sensitivity 

Spatial resolution 

Image frequency 

Accuracy 

Fluke Ti32 

320 X 240 pixels 

≤ 0.045℃/ 45 mK 

7.5 μm to 14 μm 

9 Hz 

±2℃ or 2% 

 

 

3. FAILURES CAUSE AND EFFECT OF THIN-FILM 

PV MODULES 

 

The most common faults that can found in PV plants in the 

site used for this study include delamination, cell crack, burn 

marks, potential induced degradation (PID), soiling effect, 

open string (Hot module), and junction box failure. IR images 

and I-V characteristics measured in the present study 

corresponding to each of the above faults are presented and 

discussed in Table 2. I-V measurements are used to calculate 

the module degradation factor (MDF) given by Eq. (1). The 

percentage (MDF) can be used for any types of affected 

modules at different times and different scales [36]. 

 

%MDF = (1-ISC (degraded) / ISC (Ideal) ) × 100 (1) 

 

 

 

 

4. PROPOSED ALGORITHM 

 

By using the IR camera, the images of modules are captured 

and image processing has been done. Image processing 

includes image filtering and panels reshape using pixel-

shifting techniques. In our methodology, moving average filter 

and multidimensional filter are used. The geometric 

transformations are used to correct distortions caused by 

viewing geometry using pixel-shifting techniques to reshape 

that panel into a rectangular shape, as shown in Figure 1. The 

destination image is filled by regular scan lines, taking the 

values from the source image by bi-cubic interpolation. This 

has been done by applying geometric transformations to 

images. After getting the rectangular shape the cropping 

process can easily be done to remove unwanted segments. The 

next step is feature extraction methods. The feature extractions 

proposed in the present study are based on two types of feature 

extraction, namely, mathematical parameters-based feature 

extraction and on-line IV measurement-based feature 

extraction. The present adopted procedure for the fault 

detection and diagnosis using IRT and IV measurements is 

shown in Figure 2. 

 

 
 

Figure 1. Reshaping and cropping of PV images 

 

 
 

Figure 2. The present adopted procedure for the fault 

detection and diagnosis using IRT and IV measurements 
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Table 2. Failure cause and effect of CIGS thin-films 

 
CIGS thin-

film fault type 
Failure Cause Failure Effect 

(a) Crack 

- The difference in thermal expansion and contraction of 

cell components. 

- Vibration during shipment (poor packaging). 

- Wind/snow load. 

- The shape and length of cell cracks affect the output of power 

and result in power loss causing a hot region. 

- The power can drop in beyond acceptable/warranty limits as it 

can reach to zero. 

- When the electrically isolated fragments do not transport 

charge carriers and therefore do not heat up, they stay cold. 

Cell crack causing a hot region 

 

MDF = 46.15% 

 
Cell cracks causing zero power output 

 

I=0 

V=0 

Cracks causing a cold area 

 

MDF = 56.4% 

 

(b) Junction 

box failure 

- Poor fixing of the junction box to the backsheet. 

- Due to poor manufacturing processes, j-boxes may 

open or badly closed. 

- Corrosion in both the connections and the string 

interconnects in the j-box due to Moisture. 

- Internal arcing in the j-box as a result of Bad wiring. 

- Arcing (inside junction box) 

- Ground fault 

- Corrosion 

Power drop beyond warranty limit due to a severe increase in 

series resistance 

(c) Soiling - Low tilt angle of modules in locations exposed to 

pollution with irregular rainfall. 

- As a result of the lack of a bypass diode, the thin -films 

solar cells are subject to degradation due to the effects of 

shading. 

- Irregular cleaning of the surfaces of the modules. 

 

- The power loss where the max peak point is reduced. The 

Shadow effect may be soft or hard which affects the current 

and voltage of the PV module [37]. MDF = 39.32% 
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CIGS thin-

film fault type 

Failure Cause Failure Effect 

(b) Junction 

box failure 

- Poor fixing of the junction box to the backsheet. 

- Due to poor manufacturing processes, j-boxes may open or 

badly closed. 

- Corrosion in both the connections and the string interconnects 

in the j-box due to Moisture. 

- Internal arcing in the j-box as a result of Bad wiring. 

- Arcing (inside junction box) 

- Ground fault 

- Corrosion 

Power drop beyond warranty limit due to a severe 

increase in series resistance 

(d) Burn 

marks 

- Thermal expansion and contraction 

- No stress relief for interconnects 

- Use of non-softer ribbon 

- Poor quality of solder bonds (alloy/process) 

 

- Power drop beyond warranty limit due to severe series 

resistance. MDF = 64.95% 

 

(e) PID - It occurs at high temperatures, in high humidity, and at high 

voltages approximately to the end of long strings 

- Significant degradation of the series resistance and 

therefore the power of the modules 

MDFC23= 40.17%, MDFC24=38.46%, MDFC25 = 

31.62% 

 

 

(f) Open 

String 

- when the module string is not connected to the converter or 

the electric connection has lost the modules operating in the 

open circuit which means no electric energy is generated, as the 

energy converted to heat. 

- The electric power output is zero. 

 
 

4.1 Mathematical parameters-based feature extraction for 

thermal images 

 

Our feature extraction depends on the mathematical 

relationships of temperature distributions and diffusions, 

which could be used for fault detection. These features deal 

with the temperature of thermal image or pixels, it includes the 

following: 
 

− Peak to peak feature (PP). 

− Flatness density measure (FDM) 

− Flatness continuity measure (𝐹𝐶𝑀). 

− Global form factor (GFF). 

− Maximum form factor measure (𝐹𝐹𝑚𝑎𝑥). 

− Mean form factor measure(𝐹𝐹𝑚𝑛). 

− The 1st order zero temperature change rate (ω). 

− The 2nd order zero temperature change rate (ώ). 

− Cold area percentages measure (CPM). 

− Percentage factor measure (PFM). 

 

4.1.1 Peak to peak value (PP) 

It is a measure of the range of temperature variation overall 

the panel regardless of how this variation occurs. For the 

temperature of the thermal image of PV module, PP is equal 

to: 

 

PP = Tmax – Tmin (2) 

 

where, Tmax is the maximum pixel temperature, and Tmin is the 

minimum pixel temperature. 

 

4.1.2 Flatness density measure (FDM)  

It is a measure of the flatness of portions having the peak 

value, in other words, it is the number of pixels having the peak 

value simplicity the peak points are considered to be within the 

range ≥0.95 of the peak value, Flatness measure [FM] is equal 

to: 
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FDM =((∑𝑝𝑒𝑎𝑘 𝑝𝑖𝑥𝑒𝑙𝑠 )/( 𝑡𝑜𝑡𝑙𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠)) (3) 

 

In Figure 3, the defective PV modules have different 

temperatures, the high temperature indicates the peak value, 

the thermal image consists of the number of pixels having 

different temperatures, the pixel that points to high 

temperature is called the peak, so each module has its specific 

FDM value. 

 

 
 

Figure 3. PV modules with different flatness density measure 

 

4.1.3 Flatness continuity measure (FCM)  

It is defined as a measure of the maximum flatness of defect 

portion/s in PV module.  

 

𝐹𝐶𝑀 =
∑ 𝑝𝑒𝑎𝑘 𝑝𝑖𝑥𝑒𝑙𝑠

𝑁𝑜 𝑜𝑓 𝑓𝑙𝑎𝑡 𝑃𝑜𝑟𝑡𝑖𝑜𝑛𝑠
 (4) 

 

In the case, if the defective modules have the same flatness 

density measure, the flatness continuity measure can 

distinguish between them and therefore detect the type of 

defects as shown in Figure 4. 

 

 
 

Figure 4. PV difference between flatness density measure 

and flatness continuity measure 
 

4.1.4 Global form factor (GFF) 

It is defined using Eq. (5); to consider how the temperature 

of pixels varies and to measure the closeness of pixels 

temperature values to each other. 
 

𝐺𝐹𝐹 =
𝑁 × 𝑝𝑒𝑎𝑘𝑣𝑎𝑙𝑢𝑒

∑ ∑ 𝑇𝑖,𝑗
𝑁𝑤

𝑖=1

𝑁𝑙

𝑗=𝑖

 
(5) 

 

where, 𝑁 is the total number of pixels, 𝑁𝑤 is the number of 

rows, 𝑁𝑙  is the number of columns and 𝑇𝑖,𝑗  is the pixel 

temperature at (i, j). 
 

4.1.5 Maximum form factor measure (𝐹𝐹𝑚𝑎𝑥 ) 

In the maximum form factor, each column or row pixels are 

replaced by the maximum value for both horizontal and 

vertical views. It is defined as shown in Eq. (6, 7). 
 

Maximum form factor in the width direction (vertical). 
 

𝐹𝐹𝑚𝑎𝑥𝑣 =
𝑁𝑙 × 𝑚𝑎𝑥{𝑚𝑎𝑥𝑗𝑇𝑖,𝑗}

∑ {𝑚𝑎𝑥𝑗𝑇𝑖,𝑗}
𝑁𝐿

𝑖=1

 (6) 

 

Maximum form factor in the length direction (horizontal). 

𝐹𝐹𝑚𝑎𝑥ℎ =
𝑁𝑤 × 𝑚𝑎𝑥 {𝑚𝑎𝑥𝑖{𝑇𝑖,𝑗}}

∑ {𝑚𝑎𝑥𝑖𝑇𝑖,𝑗}
𝑁𝑤

𝑗=1

 (7) 

 

4.1.6 Mean form factor measure (𝐹𝐹𝑚𝑛) 

In the mean form factor, each row or column pixels are seen 

as a single pixel, having their mean value. Then the form factor 

is calculated from the resultant mean values for both horizontal 

and vertical views. It is clear that the mean form factor is less 

than the maximum form factor since the max value is greater 

than or equal to the mean value. It is defined in Eq. (8, 9). 
 

The mean form factor in the width direction (vertical). 

 

𝐹𝐹𝑚𝑛𝑣 =
𝑁𝑙 × 𝑚𝑎𝑥 {∑ 𝑇𝑖,𝑗

𝑁𝑤

𝑖=1
}

𝑁𝑤 × ∑ ∑ 𝑇𝑖,𝑗
𝑁𝑤

𝑖=1

𝑁𝑖

𝑗=1

 (8) 

 

The mean form factor in the length direction (horizontal). 

 

𝐹𝐹𝑚𝑛ℎ =
𝑁𝑤 × 𝑚𝑎𝑥 {∑ 𝑇𝑖,𝑗

𝑁𝑙

𝑗=1
}

𝑁𝑙 × ∑ ∑ 𝑇𝑖,𝑗
𝑁𝑙

𝑗=1

𝑁𝑤

𝑖=1

 (9) 

 

4.1.7 The 1st order zero temperature change rate (ω) 

It is related to; how many pixels are zero and their 

temperature < peak value. It’s a measure of how heat diffusion 

and extended. It is defined by the following equations. 

 

𝑑𝑇𝑉𝑖,𝑘 = 𝑇𝑖,𝑘+1 − 𝑇𝑖,𝑘 

∀ 1 ≤ 𝑘 ≤ 𝑁𝑙−1

1 ≤ 𝑖 ≤ 𝑁𝑤
 

(10) 

 

where, 𝑑𝑇𝑉  is the first order derivative of temperature in 

vertical direction and K is the column order. 

 

𝑑𝑇𝐻𝑍,𝑗 = 𝑇𝑍+1,𝑗 − 𝑇𝑍,𝐽 

∀ 1 ≤ 𝑍 ≤ 𝑁𝑊−1

1 ≤ 𝑍 ≤ 𝑁𝑙
 

(11) 

 

where, 𝑑𝑇𝐻 is the first order derivative of temperature in the 

horizontal direction and Z is the row order. 

Then 

 

𝜔𝑣 =
𝑁𝑜. 𝑜𝑓 {𝑑𝑇𝑉 < 𝜀}

𝑁
 (12) 

 

𝜔ℎ =
𝑁𝑜. 𝑜𝑓 {𝐷𝑇𝐻 < 𝜀}

𝑁
 (13) 

 

where, 𝜔𝑣 is the 1st order zero temperature change rate in the 

vertical direction, ɛ is the very low value ≈.01 and 𝜔ℎ is the 

1st order zero temperature change rate in the horizontal 

direction. 

 

4.1.8 The 2nd order zero temperature change rate (ώ) 

It is considered for the second change rate of temperature 

also, it’s a measure of how heat diffusion and extended. It is 

defined in the following equations. 

 

𝑑2𝑇𝑉𝑖,𝑘 = 𝑑𝑇𝑉𝑖,𝑘+1 − 𝑑𝑇𝑉𝑖, 
∀ 1 ≤ 𝐾 ≤ 𝑁𝑙−1

1 ≤ 𝑘 ≤ 𝑁𝑤
 

(14) 

316



 

here 𝑑2𝑇𝑉 is the second order derivative of temperature in the 

vertical direction and K is the column order.  

 

𝑑2𝑇𝐻𝑍,𝐽 = 𝑑𝑇𝐻𝑍+1,𝑗 − 𝑑𝑇𝐻𝑍,𝑗 

∀ 1 ≤ 𝑍 ≤ 𝑁𝑤−1

1 ≤ 𝑗 ≤ 𝑁𝐿
 

(15) 

 

where, 𝑑2𝑇𝐻 is the second order derivatives of temperature in 

the horizontal direction. 

 

Then  

 

𝜔
−

 𝑉 =
𝑁𝑜. 𝑜𝑓 {𝑑2𝑇𝑉 < 𝜀}

𝑁
 (16) 

 

𝜔
−

 ℎ =
𝑁𝑜. 𝑜𝑓 {𝑑2𝑇𝐻 < 𝜀}

𝑁
 (17) 

 

where, 𝜔
−

 𝑉 is the 2nd order zero temperature change rate the 

vertical direction and 𝜔
−

 ℎ  is the 2nd order zero temperature 

change rate in the horizontal direction. 
 

4.1.9 Cold area percentage measure (CPM) 

Faults like delamination and cracks (in some cases) may 

cause cold area (inactive area) within PV module, this measure 

determines the percentage of the cold area if appear within the 

module. The inactive area makes a shortage in current and 

voltage and consequently in power output. For a high 

percentage of cold areas, the cell considers being dead cell and 

the cell should be replaced. The cold points are considered to 

be within the range ≤0.5 of the cold value, it is defined as 

shown in Eq. (18) 
 

CPM =((∑𝑐𝑜𝑙𝑑𝑝𝑖𝑥𝑒𝑙𝑠 )/
(𝑡𝑜𝑡𝑙𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠)) 

(18) 

 

4.1.10 percentage factor measure (PFM) 

The module is divided into some divisions based on a 

selected percentage (10%) from the bottom of modules, and 

for each division, the above feature extractions are calculated, 

it can measure the variation of these features within modules, 

it can detect many types of faults within modules. For example, 

the use of percentage factor measure with global form factor 

(PGFF), mean calculate the GFF at each division. The symbol 

of percentage factor measure changes with the type of selected 

feature, e.g. the percentage factor measure by using the 

maximum form factor for horizontal is denoted as (P𝐹𝐹𝑚𝑎𝑥ℎ) 

where the letter P is written before the symbol of feature and 

so on. 
 

4.2 On line I-V measurements-based feature extraction 
 

Since the thermal imaging is carried out during normal 

operation of the PV modules, the features based on electrical 

measurements are restricted by the operating voltage, current, 

and power. The features are calculated by comparing the 

operating value to its corresponding healthy one for operating 

voltage, current, and power (Ir, Vr, and Pr) also, efficiency and 

fill factor are calculated [38] where, 
 

Operating current ratio 
 

Ir = Io / Ih (19) 
 

Operating voltage ratio 

Vr = Vo / Vh (20) 

 

Operating power ratio 

 

Pr = Po / Ph (21) 

 

Fill factor 

 

FF = Io × Vo / Isc × Voc (22) 

 

Efficiency 

 

Ƞ= Isc × Voc × FF / Pin × A (23) 

 

where, Io, Vo, and Po are the operating current, voltage, and 

power of the inspected module respectively, Ih, Vh, and Ph are 

the maximum operating current, voltage, and power of the 

healthy module respectively, FF is the fill factor, Isc is the short 

circuit current, Voc is the open circuit voltage, Pin is the input 

power for efficiency calculations is 1 kW/m2 or 100 mW/cm2 

and A is the cell area (cm2). As the healthy values for the 

electric parameters vary with time depending on the solar 

irradiation and electrical load, they could be considered as the 

maximum operating voltage, current, and power of all on-

operations PV modules. Figure 5 represents I-V curves of the 

defective PV module and the standard one and its influence on 

the maximum power. For all faults, Ir, Vr, Pr, efficiency and 

fill factor are evaluated. 

 

 
 

Figure 5. I-V curves of the standard module and faulty 

module (module d11) 
 

 

5. RESULTS 
 

The datasets are generated by utilizing the thermal images 

and IV measurements of inspected modules; also, the 

mathematical parameters-based feature extraction is obtained 

by using the MATLAB platform. For this study most of the 

modules have more than one fault, the faults are categorized 

as illustrated in Table 3. 

A general classification matrix of CIGS faults using features 

of mathematical parameters techniques and IV measurements 

is shown in Table 4. It defines the features required for 

distinguishing among different faults. The first row and 

column of the matrix indicate the fault type. The inner rows 

and columns contain the electrical measurements and the 

mathematical parameters-based features extraction that can be 

used to distinguish between faults. Taking for example fault 

type A, the features that can distinguish between fault type A 

and fault type B are peak to peak (PP), 1st order zero 

temperature change rate (ω), electrical measurements (EM), 

and maximum form factor for horizontal (𝐹𝐹𝑚𝑎𝑥ℎ), and so on 
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for the whole of the table. In the case where the fault type 

contains more than one fault, the percentage of some features 

such as (𝐹𝐹𝑚𝑎𝑥ℎ/𝐹𝐹𝑚𝑎𝑥𝑣) and (𝐹𝐹𝑚𝑛ℎ/𝐹𝐹𝑚𝑛𝑣) can help in the 

detection of this type of faults such as in the case of fault of 

type B and type C. Also, the percentage factor measure using 

the mean form factor for horizontal ( 𝑃𝐹𝐹𝑚𝑛ℎ ) and 

vertical(𝑃𝐹𝐹𝑚𝑛𝑣 ) and the percentage factor measure using 

maximum form factor for horizontal (𝑃𝐹𝐹𝑚𝑎𝑥ℎ) and vertical 

(𝑃𝐹𝐹𝑚𝑎𝑥𝑣) are used in distinguishing between these types of 

faults.  

Table 3. Faults categories 
 

Type A Soiling 

Type B Soiling and crack 

Type C Burn marks, soiling, and crack 

Type D Potential induced degradation (PID) 

Type E PID and crack 

Type F PID, crack, and delamination 

Type G Open string (HM) 

Type H Dead module 

 

Table 4. General failures classification matrix of CIGS thin-film module using features based on mathematical parameters and 

electrical measurements 

 
Fault Type A B C D E F G H 

A  ω 

EM 

pp 

𝐹𝐹𝑚𝑎𝑥ℎ 

𝐹𝐹maxh/𝐹𝐹maxv 

GFF 

EM 

pp 

𝐹𝐹𝑚𝑛ℎ 

𝐹𝐹𝑚𝑛𝑣 

GFF 

PGFF 

𝐹𝐹𝑚𝑎𝑥ℎ 

 

𝐹𝐹𝑚𝑛𝑣 

𝐹𝐹𝑚𝑎𝑥ℎ 

GFF 

𝐹𝐹𝑚𝑎𝑥ℎ 

𝐹𝐹𝑚𝑛ℎ 

𝐹𝐹𝑚𝑎𝑥𝑣 

GFF 

CPM 

𝐹𝐹𝑚𝑎𝑥ℎ 

𝐹𝐹𝑚𝑎𝑥𝑣 

𝐹𝐹𝑚𝑛ℎ 

𝐹𝐹𝑚𝑛𝑣 

GFF 

FDM 

FCM 

EM 

PP 

(𝐹𝐹𝑚𝑎𝑥ℎ/𝐹𝐹𝑚𝑎𝑥𝑣)  

(𝐹𝐹𝑚𝑛ℎ/𝐹𝐹𝑚𝑛𝑣) 

 

 

B   EM 

(𝐹𝐹𝑚𝑎𝑥ℎ/𝐹𝐹𝑚𝑎𝑥𝑣) 

𝑃𝐹𝐹𝑚𝑎𝑥ℎ 

𝑃𝐹𝐹𝑚𝑎𝑥𝑣 

 

 

GFF 

EM 

PGFF 

GFF 𝐹𝐹𝑚𝑛ℎ 

EM 

 

 

CPM 

𝐹𝐹𝑚𝑛𝑣 

𝐹𝐹𝑚𝑛ℎ 

GFF 

𝑃𝐹𝐹𝑚𝑛ℎ 

FDM 

FCM 

EM 

GFF 

𝐹𝐹𝑚𝑎𝑥ℎ 

C   ` 𝐹𝐹𝑚𝑛ℎ 

GFF 

EM 

 

 

𝐹𝐹𝑚𝑛ℎ 

GFF 

EM 

 

 

𝐹𝐹𝑚𝑎𝑥ℎ 

GFF 

𝐹𝐹𝑚𝑎𝑥ℎ 

(𝐹𝐹𝑚𝑎𝑥ℎ/𝐹𝐹𝑚𝑎𝑥𝑣)  

(𝐹𝐹𝑚𝑛ℎ/𝐹𝐹𝑚𝑛𝑣) 
 

 

CPM 

𝐹𝐹𝑚𝑎𝑥ℎ 

𝐹𝐹𝑚𝑎𝑥𝑣 

𝐹𝐹𝑚𝑛ℎ 

𝐹𝐹𝑚𝑛𝑣 

GFF 

FDM 

(𝐹𝐹𝑚𝑎𝑥ℎ/𝐹𝐹𝑚𝑎𝑥𝑣)  

(𝐹𝐹𝑚𝑛ℎ/𝐹𝐹𝑚𝑛𝑣) 

EM 

 

 

D     CPM 

GFF 

𝐹𝐹𝑚𝑛ℎ 

 

PP 

EM 

 

CPM 

𝐹𝐹𝑚𝑛𝑣 

GFF 

EM 

FDM 

PP 

𝐹𝐹𝑚𝑛ℎ  

E      (𝐹𝐹𝑚𝑎𝑥ℎ/𝐹𝐹𝑚𝑎𝑥𝑣)  

(𝐹𝐹𝑚𝑛ℎ/𝐹𝐹𝑚𝑛𝑣) 
 

CPM 

𝐹𝐹𝑚𝑛ℎ 

𝐹𝐹𝑚𝑛𝑣 

GFF 

ω 

EM 

𝐹𝐹𝑚𝑛ℎ 

GFF 

PP 

F       CPM 

𝐹𝐹𝑚𝑛𝑣 

𝐹𝐹𝑚𝑎𝑥𝑣 

GFF 

ω 

EM 

𝐹𝐹𝑚𝑛ℎ 

GFF 

(𝐹𝐹𝑚𝑎𝑥ℎ/𝐹𝐹𝑚𝑎𝑥𝑣)  

(𝐹𝐹𝑚𝑛ℎ/𝐹𝐹𝑚𝑛𝑣) 

G        𝐹𝐹𝑚𝑛ℎ 

FDM 

GFF 

EM 

CPM 

 

Table 5. Failure modes analysis and diagnostic architecture for CIGS thin-film PV 

 
Features Faults PP FDM FCM 𝑭𝑭𝒎𝒂𝒙𝒉 𝑭𝑭𝒎𝒂𝒙𝒗 𝑭𝑭𝒎𝒏𝒉 𝑭𝑭𝒎𝒏𝒗 GFF 𝝎𝒉 ώh CP 

Type A (module a7) 146 0.1168 12872 0.6859 0.9148 0.6859 0.8221 0.5880 0.7403 0.8094 0.1031 

Type B (module d22) 145 0.2034 1282 0.8878 0.9453 0.8234 0.8544 0.7667 0.8645 0.7964 0.0042 

Type C (module d21) 176 0.0096 1729 0.8029 0.8832 0.6568 0.8182 0.5712 0.8774 0.9315 0.0007 

Type D (module b4) 176 0.0002 26 0.8147 0.8302 0.9715 0.9349 0.7362 0.8809 0.9326 0.0027 

Type E (module c5) 146 0.1264 15313 0.9340 0.9225 0.9047 0.9225 0.8150 0.8503 0.9230 0.0088 

Type F (module b18) 151 0.0309 3704 0.9017 0.9189 0.91111 0.9395 0.8497 0.9026 0.8023 0.0170 

Type G (module a23) 142 0.4140 47706 0.9672 0.9679 0.9378 0.9679 0.9545 0.7599 0.7599 0 

Type H (module a25) 126 0.3567 42138 0.9505 0.9599 0.9143 0.9335 0.9313 0.9238 0.9489 0 
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Table 6. The mean and standard deviation of mathematical parameters-based features extraction of CIGS thin-film PV module 

 
Features 

Faults 

PP FDM FCM 𝑭𝑭𝒎𝒂𝒙𝒉 𝑭𝑭𝒎𝒂𝒙𝒗 

Mean ST. D Mean ST. D Mean ST. D Mean ST. D Mean ST. D 

Type A 145.33 13.064 0.0715 0.0482 7860 5342.6 0.7269 0.1002 0.8826 0.0645 

Type B 170.55 23.964 0.0459 0.0615 3501.6 4409.8 0.8022 0.1545 0.8879 0.0927 

Type C 163.5 10.5987 0.0546 0.0749 2170 441.4 0.7114 0.1303 0.9099 0.0297 

Type D 155 20.15 0.188 0.1485 22236 17691 0.9228 0.0595 0.9233 0.071 

Type E 156.625 16.4572 0.0938 0.0917 11110 10886 0.876 0.0721 0.9249 0.0449 

Type F 177.5 32.9596 0.0706 0.1166 8426.8 13900 0.96 0.0464 0.8306 0.1326 

Type G 146 9.798 0.2249 0.0951 26688 11715 0.9428 0.0155 0.9536 0.01 

Type H 161.77 25.37 0.0718 0.0954 8554 11326 0.8658 0.142 0.8929 0.0895 

Features 

Faults 

𝑭𝑭𝒎𝒏𝒉 𝑭𝑭𝒎𝒏𝒗 GFF 𝝎𝒉 ώh CP 

Mean ST. D Mean ST. D Mean ST. D Mean ST. D Mean ST. D Mean ST. D 

Type A 0.6445 0.1578 0.7876 0.0799 0.5295 0.0503 0.8253 0.0717 0.8461 0.0738 0.0483 0.0489 

Type B 0.6275 0.117 0.7536 0.1599 0.5626 0.1479 0.8677 0.0395 0.8478 0.0652 0.0437 0.071 

Type C 0.6242 0.1158 0.8638 0.0385 0.5769 0.1141 0.8879 0.0097 0.8295 0.0682 0.0417 0.0442 

Type D 0.8598 0.1442 0.8612 0.1537 0.8043 0.161 0.882 0.0405 0.8775 0.081 0.0247 0.0861 

Type E 0.8176 0.128 0.8619 0.1047 0.7619 0.1236 0.8686 0.0267 0.8961 0.0602 0.0183 0.0278 

Type F 0.8139 0.2232 0.7137 0.3052 0.6757 0.2697 0.8734 0.0283 0.8588 0.0782 0.0934 0.1744 

Type G 0.9308 0.0215 0.9598 0.0069 0.9186 0.0212 0.899 0.051 0.8467 0.0659 0 0 

Type H 0.7804 0.1869 0.8169 0.1766 0.6981 0.2132 0.8733 0.044 0.897 0.0585 0.0231 0.0602 

 

During the study, it was observed that the values of the first 

order zero temperature change rate ω, in the case of horizontal 

and vertical are almost equal, so only the horizontal was used 

and takes symbol 𝜔ℎ . The same case is in the second zero 

temperature change rate, the horizontal is used and takes 

symbol (ώh). The vertical is dispensed with to avoid 

duplicating data that will have little value. 

 

5.1 Analysis of mathematical parameters-based features 

extraction 

 

To explain how the mathematical Parameters-based feature 

can distinguish between faults, this can be illustrated in Table 

5. Where it shows the values of mathematical parameters 

obtained from IR image analysis of CIGS PV modules with 

different faults. The process of distinguishing between faults 

is done by comparing the values of features of the faults. For 

further clarification, the fault of module a7 belongs to type A, 

and the fault of module c5 belongs to type E. It can be noticed 

that the peak to peak measure (PP) of the two modules has the 

same value, but features such as maximum form factor 

measure for the horizontal (𝐹𝐹𝑚𝑎𝑥ℎ), means form factor for 

the horizontal (𝐹𝐹𝑚𝑛ℎ), global form factor (𝐺𝐹𝐹), and some 

other features can distinguish between them. The 

interpretation of these values of the features is explained in 

Figure 6. The same steps are done for module d21 (fault type 

C) and module b4 (fault type D), where the values of the peak 

to peak measure (PP) of the two type of faults are the same, 

where the features flatness density measure (FDM), flatness 

continuity measure (FCM) and global form factor (GFF) can 

distinguish between them as shown in Figure 7. The same 

steps are implemented between all types of faults to extract the 

features that can distinguish between faults. 

The temperature distribution analysis of different 

technologies of PV modules using infrared thermography has 

been discussed by Gulkowski et al. [34]. Due to the difference 

in IR technology, each technology has been shown to have a 

specific temperature range for different faults. The main 

advantage of using the present proposed mathematical 

parameters is that it doesn't depend on the temperature 

variation and it is applicable for any technology of PV.  

The data set is classified into each type of fault as 

represented in Table 3. The mean and standard deviation for 

each type of fault, based on the mathematical parameters, are 

illustrated in Table 6. The standard deviations of some features 

are large and that of other features is low. For example, for 

fault type F, the feature peak to peak (PP) has a high mean and 

standard deviation values. To explain the reason, Figure 8 

shows two modules of type F, the hot region of module b18 is 

more than in module b7 and there is variation in temperature 

which results in a high standard deviation. Also, Figure 9 

indicates the reason that the mean and standard deviation of 

feature flatness continuity measure (FDM) for fault type B is 

low. The fault of type G has high mean values for the features, 

flatness density measure (0.2249), flatness continuity measure 

(26688), maximum form factor measure for the vertical 

(0.9536), mean form factor measure for the horizontal and 

vertical respectively (0.9308, 0.9598), and The 1st order zero 

temperature change rate (0.899) and the standard deviations of 

this type of faults are small. The fault of type G represents the 

hot modules (open string), as shown in Table 2(f), which mean 

that most of the cell is hot, the values of this features show that 

it has the ability of identification as its values are high, while 

the Cold area percentages measure should be equal to zero.  

Peak to peak measure (PP), the flatness density measure 

(FDM), the flatness continuity measure (FCM), and the global 

form factor (GFF) for the fault of type D is higher than the 

fault of type A as shown in Table 6. The fault of type D is 

related to PID. When the module is subjected to PID, part of 

the modules, or may all the module be hot, the temperature of 

modules subjected to PID is higher than that subjected to 

soiling as in the case of type A. For more identification, a 

histogram for some of the suggested features between types A 

and D is illustrated in Figure 10 (a), the Figures indicate the 

features that can distinguish between the type A and D and the 

overlap features. 

Histograms of some faults can indicate the effect of features 

in the classification as shown in Figure 10. In the case of type, 

A and type B faults, the percentage of maximum form factor 

for horizontal to maximum form factor for vertical 

(𝐹𝐹𝑚𝑎𝑥ℎ /𝐹𝐹𝑚𝑎𝑥𝑣) has effect value in the classification. The 

most effective feature that can distinguish between type B and 
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type E is the Global form factor feature. Also, some features 

that effect in classification between type A and C is illustrated. 

 

 
 

Figure 6. IR images of faulty modules represent type A 

(module a7) and type E (module a5) 

 

 
 

Figure 7. IR images of faulty modules represent type C 

(module d21) and type D (module b4) 

 

 
 

Figure 8. The hot region of two faulty modules of type F 

 

 
 

Figure 9. Two modules represent the fault of type B 

 

The percentage factor measure (PFM) is implemented as the 

following; first detect the type of feature which required to 

measure, second for each type of fault, select the modules. 

Table 5 shows each module belongs to its fault; these modules 

are examined by using the percentage factor measure. Some 

features such as flatness density measure (FDM), global form 

factor (GFF), and mean form factor for vertical (FFmnv) are 

selected to calculate percentage factor measure (PFM) as 

illustrated in Figure 11. The name of these features will be 

(PFDM), (PGFF) and (P𝐹𝐹𝑚𝑛𝑣), where the symbol P refers to 

the percentage factor measure. Figure 11(a) represents flatness 

density measure using percentage factor measure (P𝐺𝐹𝐹)for 

selected modules, it shows there is variation between all 

modules except the modules related to the fault of type C and 

fault of type H. For feature (PGFF) in Figure 11(b) shows the 

variation between faults except the modules related to the fault 

of type G and fault of type H, and so on as for Figure 11(c). 

The percent factor measure shows its capability to distinguish 

between faults. 

 

5.2 Analysis of online I-V measurements-based feature 

extraction 

 

The electrical measurements (EM) include a current 

operating ratio (Ir), voltage operating ratio (Vr), power 

operating ratio (Pr), efficiency (Ƞ), and fill factor (FF). The 

type of fault and its area affect the production of power and, 

consequently, the efficiency, and the fill factor. The histogram 

of Power ratio and efficiency of CIGS faults are shown in 

Figure 12(a). The power ratio output can distinguish between 

faults of type A and C and also between faults of type C and 

D, but it can't distinguish between the type of faults A and D, 

the same in the case of efficiency in Figure 12(b). The 

classification between faults using the electrical measurements 

is shown in the general classification matrix in Table 4.  

 

 

6. CONCLUSION 

 

This work presents a novel technique for faults diagnosis of 

CIGS PV modules by extracting features based on 

mathematical parameters of thermal images and electrical 

measurements. Common faults of CIGS thin-film PV modules 

are classified and corresponding I-V measurements and IRT 

images are obtained in outdoor conditions following standard 

guidelines. The proposed mathematical parameters-based 

features are extracted from 2D matrix of the thermal image. 

The capability and robustness of the new proposed 

methodology to distinguish between different fault types and 

defective modules with more than one fault type is 

demonstrated. This capability is very essential for 

maintenance planning in identifying and avoiding occurrence 

and determining the proper maintenance action. Previous 

studies were limited by the detection hotspots or defective 

modules regardless of the fault type. 

The global form factor feature (GFF) is found to be the most 

effective feature in the diagnosis process as it measures the 

temperature variation of pixels based on the type of fault. The 

module temperature is a function of fault type and gradually 

increases from relatively low values for soiled modules, 

moderate values for PID, and high values for the hot modules. 

For soiled modules, the existence of additional faults increases 

the average value of (GFF). Accuracy in dealing with the 

detection of faults is improved by analyzing the maximum and 

mean variation of temperature in both the horizontal and 

vertical directions. The proposed features do not deal directly 

with pixel temperatures or pixel values and are therefore 

shown to be independent of variation in temperature that may 

result from the use of different infrared cameras sensors. Also, 

they can describe the shape of faults patterns for cold and hot 

areas. A general classification matrix is established that 

summarizes the correlations between fault type and associated 

features. This matrix is very useful for maintenance planning 

and automation. 
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Figure 10. Histograms of some faults to indicate the effect of features in the classification (a) histogram between fault type A and 

D, (b) histogram between fault type A and B, (c) histogram between fault type B and E and (d) histogram between fault type A 

and C 
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Figure 11. Percentage factor measure using (a) flatness density measure (PFDM), (b) global form factor (PGFF) and (c) mean 

form factor for vertical (𝑃𝐹𝐹𝑚𝑛𝑣) 

 

 
 

Figure 12. Histograms of power output and efficiency to indicate the fault classification 
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NOMENCLATURE 

 

2D 2 dimensional 

A the cell area (cm2) 

CdTe cadmium telluride 

CIGS copper Indium Gallium Selenide 

CPM cold area percentages measure  

c-Si crystalline silicon 

𝑑𝑇𝐻  first order derivatives of temperature in 

horizontal direction 

𝑑𝑇𝑉  first order derivatives of temperature in vertical  

direction 

E solar irradiance  

𝐹𝐹𝑚𝑎𝑥ℎ  maximum form factor for horizontal 

𝐹𝐹𝑚𝑎𝑥𝑣  maximum form factor for vertical 

𝐹𝐹𝑚𝑛ℎ  mean form factor for horizontal 

𝐹𝐹𝑚𝑛𝑣  mean form factor for vertical 

𝑇𝑖,𝑗  represents pixel temperature at (i, j). 

FCM flatness continuity measure  

FDD fault detection and diagnosis 

FDM flatness density measure  

FF Fill factor 

GFF global form factor 

GW Gigawatts 

I Current 

Ih maximum operating current of the healthy 

module 

Io operating current of the inspected module 

Ir operating current ratio  

IRT infrared thermography  

Isc short circuit current 

IV current- voltage measurements 

K column order 

MDF module degradation factor 

𝑁 total number of pixels 

𝑁𝑙 the number of columns 

NNs Neural networks  

𝑁𝑤 the number of rows 

P power output 

P𝐹𝐹𝑚𝑎𝑥ℎ percentage factor measure using the maximum 

form factor for horizontal 

P𝐹𝐹𝑚𝑛𝑣 percentage factor measure using the mean form  

factor for vertical. 

pc-Si polycrystalline silicon 

PFDM percentage factor measure using flatness density 

measure 

PFM Percentage factor measure  

PGFF Percentage factor measure using the global form 

factor 

Ph maximum operating power of a healthy module 

PID potential induced degradation 

Pin 1 kW/m2 or 100 mW/cm2 

Pmax maximum power output of standard module (w) 

Po operating power of an inspected module 

PP peak to peak 

Pr operating power ratio  

PV photovoltaic 

PVM photovoltaic module  

ROI region of interest 

Tamb ambient temperature  

TFE texture feature extraction 

Tmax maximum pixel temperature  

Tmin minimum pixel temperature 

UV ultraviolet 

V voltage  

Vh maximum operating voltage of the healthy  

module 

Vo operating voltage of the inspected module 

Voc open circuit voltage 

Vr operating voltage ratio  

Z row order 
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Greek symbols 

ɛ the very low value ≈.01 

Ƞ Efficiency 

ω the 1st order zero temperature change rate 

ώ the 2nd order zero temperature change rate 

ωh the 1st order zero temperature change rate in 

horizontal direction 

ώh the 2nd order zero temperature change rate in 

horizontal direction 

ωv the 1st order zero temperature change rate in 

vertical direction 
ώv the 2nd order zero temperature change rate in 

vertical direction 

Ω Ohm 
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