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 Electromyography (EMG) is the process of measuring neuromuscular activities generated 

during the contraction and expansion period of muscles throughout the body. The potential 

is recorded by inserting needle or by placing electrodes on the surface of body. In this 

research, an automatic EMG signal classification system is developed using machine 

learning oriented Support Vector Machine (SVM). The collected data is selected using 

Genetic Algorithm (GA). The purpose of GA is to select those rows from the dataset, which 

contains potential or electrical activities recorded while the patient is in motion. 

Furthermore, the selected features are neutralized using critic method. To improve the row 

selection cosine similarity is being used to determine an average value hence also helps for 

data reduction. Based on the average similarity values, SVM is trained and used for 

classification during the testing phase. The experiment has been performed in MATLAB 

tool and the classification accuracy for normal and pain EMG signal of 91.3% and 92.4% 

respectively is achieved. 
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1. INTRODUCTION 

 

Electromyography (EMG) is a diagnostic method by which 

specialists evaluate the functional state of skeletal muscles and 

peripheral nerve endings. The assessment is based on the level 

of their electrical activity. To conduct EMG, an 

electromyography is used - an apparatus that enhances and 

records the bio potentials of the neuromuscular system [1]. 

Modern computer devices record even the minimum values of 

electrical impulses, automatically read the amplitude and 

frequency of periods, and also perform their spectral analysis. 

The device consists of a complete computer system capable of 

recording certain signals (bio potentials) of muscle tissue [2]. 

Using the device, bio potentials are strengthened, which helps 

doctors to determine the degree of damage to muscle tissue 

without a surgical diagnostic operation. Diodes are attached to 

the computer system that record deviations from the norm. 

Using the apparatus, the signal is amplified, and an image is 

displayed on the screen that displays the state of the muscle 

tissue and peripheral nerves of the body area under study [3]. 

Modern devices display the image directly on the monitor, but 

the old generation electromyography captures the received 

pulses on paper. It has been observed that exist several 

techniques to process complex EMG signal that is assisted by 

EMG classification using either of the Artificial Neural 

Networks (ANN), Multi-Layer Perceptron (MLP), Support 

Vector Machines (SVM), Linear Discriminant Analysis 

(LDA) and K-Nearest Neighbor (KNN). Researchers have put 

their effort in order to classify the EMG data and have 

identified the major issues in the classification as  

a) Preprocessing and Data Selection  

b) Training and Classification  

Following aspects have been discovered in order to classify 

an EMG signal. 

i. The signal contains many artefacts for the same type 

of disease as the signal varies due to the small 

movement of human during the recording process of 

signal. 

ii. The presence of noise also increases the complexity 

and hence difficult to classify the signal. 

iii. Optimal set of data for each class will lead to better 

classification accuracy. 

iv. The machine learning schemes required signal with 

optimal and refined data so that training and then 

classification can be performed in a better way [4]. 

To solve the above defined problems, a new system has 

been designed using signal Attribute selection, feature 

optimization with classification techniques. 

 

  
(a)                                             (b) 

 

Figure 1. (a) Non- invasive (b) Invasive techniques  
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EMG is used to detect the muscular information based on 

the contraction and expansion period of muscles through the 

electrodes, which are placed on the surface of the human body. 

The process of gathering information can be invasive or non- 

invasive. The process of conducting non-invasive surface 

EMG is performed using electrodes whereas the invasive 

EMG required a needle, which is being inserted into the patient 

body for collecting the muscle related information. Both the 

processes are shown in Figure 1.  

The EMG model can be simply represented by Eq. (1).  

 

𝑦(𝑛) = ∑ ℎ(𝑡)𝑒(𝑛 − 𝑡) + 𝑥(𝑛)

𝑁−1

𝑡=0

 (1) 

 

y(n)→Modelled EMG signal. 

e(n)→ Fringing impulse. 

h(t)→ Motor Unit Action Potentials (MUAPs), which is 

used to provide significant source of information that is useful 

for diagnosis of neuromuscular disorders. 

x(n)→While Gaussian Noise. 

n→ Number of motor unit. 

 

This research deals with the Attribute selection and 

classification of the EMG signal into two categories that is 

either pain or normal activity of muscles. 

 

 

2. RELATED WORK 

 
The research has been done by number of authors to 

enhance the Attribute selection and classification rate of the 

EMG signal by using different techniques. A survey has been 

conducted to know about the tradition techniques used by the 

previous authors and how one can improve the classification 

rate. Robotic learning was applied by Stiyal on EMG signals 

as a subject-independent framework [5]. EMG classification 

can be utilized in distinct medical domains like as 

neuromuscular disorder diagnosis [6], Neuromuscular 

Disorder [7], knee pathology detection [8], motion recognition 

[9], fatigue muscle analysis [10], and prosthesis control [11]. 

Mishra et al. had classified EMG signals, which have been 

collected from bicep muscels or different category of patients 

such as normal, mayopathic and neuropathic. The time and 

frequency domain parameters of MUAP potential has been 

analysed and optimized using soft computing approach. The 

classification has been performed by RBFN, K-NN and SVM 

technique and has been observed that SVM performed well 

among all with an accuracy of 95.25% [12]. de Dieu 

Uwisengeyimana and Ibrikci [13] have diagnose knee related 

problems using KNN and ANN classifiers. The data has been 

collected from the four muscles surrounding the knee and 

about 500 samples have been prepared. From the experiment 

it has been concluded that knee pathology can be better 

analyzed using ANN with detection accuracy of 91.3%. Lin et 

al. [14] have presented an attribute selection approach for 

EMG signal that helps to classify signal. Initially, data is pre-

processed using normalization in order to minimize the effect 

of the inter- and intra-participant of signal resulting while 

collecting signal through sensors. Basically, three types of 

normalizations have been applied such as (i) channel wise, (ii) 

motion-wise and (iii) participant wise. Also, down sampling 

has been applied to remove the unwanted or overlapped data 

points. Using Base classifier such as ANN provides better 

accuracy of 83∓6 [14].  

Pancholi and Joshi [15] presented EMG signal for upper 

limb. The data has been collected from five different positions 

of arms during the exercise period. palpation method has been 

used for the selection of muscles. Using palpation method, the 

nerves have been selected based on the blood flow. Using 29 

subjects the signal has been acquired and the data has been 

divided into time domain and frequency domain features. For 

classification different classifiers such as Random Forest (RF), 

k-nearest neighbours (k-NN), linear discriminant analysis 

(LDA), Support Vector Machine (SVM), Random Tree (RT) 

have been used and the detection accuracy ranges from 

57.69% to 99.92% [15]. 

Morbidoni et al. [16] have worked to deal with the 

classification of stance and swing as muscular disease using 

EMG classification approach. The classification of the 

designed system has been tested using Multi-Layer Perceptron 

techniques and the examined accuracy lies between 92.6%–

97.2%. The study has suggested that ANN can be an 

appropriate tool for automatic classification of EMG signal 

[16]. 

 

 

3. PROPOSED WORK 

 

The entire work is shown in Figure 2, which consists of 

three main parts such as attribute row selection using genetic 

Algorithm (GA), Similarity measure using Cosine Similarity, 

application of critic method to normalize features and 

classification using Support Vector machine (SVM).  

 

3.1 Dataset 

 

The dataset is collected from 

https://www.kaggle.com/nccvector/electromyography-emg-

dataset link. The considered dataset contains pain and normal 

muscular data of 1000 row for each category with seven 

different un-named attributes. The electric potential observed 

is as like presented in Table 1. 

 

Table 1. Dataset  

 
Patient Number t1 t2 t3 t4 t5 t6 t7 t8 

1 0.03125 0.054688 0.03125 0.039063 0.03125 0.046875 0.023438 0.023438 

2 0.046875 0.03125 0.039063 0.039063 0.03125 0.023438 0.023438 0.015625 

3 0.046875 0.023438 0.039063 0.054688 0.03125 0.023438 0.015625 0.023438 

4 0.0625 0.039063 0.054688 0.039063 0.023438 0.03125 0.039063 0.015625 

5 0.046875 0.03125 0.03125 0.03125 0.015625 0.03125 0.023438 0.03125 

6 0.03125 0.054688 0.054688 0.078125 0.03125 0.023438 0.023438 0.03125 

7 0.015625 0.046875 0.03125 0.03125 0.03125 0.023438 0.023438 0.03125 

8 0.039063 0.03125 0.054688 0.054688 0.039063 0.023438 0.039063 0.023438 

9 0.054688 0.054688 0.039063 0.039063 0.03125 0.023438 0.03125 0.03125 
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10 0.03125 0.03125 0.0625 0.054688 0.03125 0.015625 0.015625 0.015625 

11 0.03125 0.039063 0.054688 0.039063 0.03125 0.039063 0.03125 0.03125 

12 0.03125 0.023438 0.046875 0.0625 0.039063 0.023438 0.023438 0.023438 

13 0.03125 0.046875 0.039063 0.0625 0.03125 0.023438 0.039063 0.023438 

14 0.023438 0.023438 0.070313 0.078125 0.03125 0.023438 0.03125 0.023438 

15 0.039063 0.070313 0.09375 0.054688 0.046875 0.023438 0.03125 0.03125 

16 0.039063 0.023438 0.039063 0.046875 0.046875 0.03125 0.023438 0.023438 

17 0.015625 0.046875 0.039063 0.054688 0.03125 0.015625 0.03125 0.039063 

18 0.023438 0.039063 0.070313 0.085938 0.039063 0.03125 0.039063 0.015625 

19 0.03125 0.039063 0.09375 0.0625 0.023438 0.03125 0.039063 0.023438 

20 0.054688 0.070313 0.078125 0.078125 0.03125 0.015625 0.023438 0.015625 

21 0.023438 0.046875 0.0625 0.0625 0.03125 0.023438 0.039063 0.023438 

Where, t is the time interval for time ranging from t1 to t8 measured in miliseconds. 

 

 
 

Figure 2. Flow of proposed work 

 

 

 

 

Start 

Upload EMG Data 

Feature Extraction for 
Normal & Pain 

For each row in Pain/Normal 
GA crossover value = Intermediate  

Ga Mutation Value is Quad 

Fitness function = 1        (1-e) X Fs>Ft 
                               0        Otherwise 

where, Fs = Current Attributes 
             Ft = All Attributes Row Values 

If row attributes 

satisfy GA fitness 

Categories Pain & 

Normal EMG Data Select Next 

Row 

For Each Categories 

Evaluate Cosine 

Similarity  

Average Similarity 

      𝐴𝑣𝑔 𝑆𝑖𝑚 =  
σ 𝐶𝑜𝑠𝑆𝑖𝑚

𝑛
𝑖=1

𝑛
 

Where, n is total number of similarities 

𝐵1  =  𝐴𝑣𝑔 𝑆𝑖𝑚 + 
𝐴𝑣𝑔 𝑆𝑖𝑚 𝑁𝑜.

100
 

𝐵2  =  𝐴𝑣𝑔 𝑆𝑖𝑚 − 
𝐴𝑣𝑔 𝑆𝑖𝑚 𝑁𝑜.
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3.2 Attribute selection 

 

Attribute selection of EMG signal is performed on each 

recorded movement data per session using the electrodes 

placed on the human body. The amplitude variation in the 

EMG is high when any movement is occurs otherwise the 

signals are in rest and amplitude variation reduces. EMG 

signal, each voltage-time amplitude value need Attribute 

selection to find out the relevant features for painful data or 

normal data to achieve better classification accuracy. The 

benchmark for the selection and rejection is relative to the 

value which is being used. It means, the selection and rejection 

will depend upon the other relative values available in that 

class of other patients. 

In this research, attribute selection of the uploaded EMG 

signal is performed using nature inspired Genetic Algorithm. 

GA selects rows among the available dataset as per the 

designed fitness function represented by Eq. (2). 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  1        (1 − 𝑒)  ×  𝐹𝑠 > 𝐹𝑡 

0        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
(2) 

 

where, Fs = Current Attributes, 

            Ft = All Attributes Row Values. 

Each row has been tested using Eq. (2). If the row satisfied 

the fitness function, then categorize it either pain or normal. 

Otherwise, repeat the process for next row. Using this process, 

the unwanted signal has been removed and the row also 

obtained in reduced and desired form. The process of GA is 

shown in Figure 3.  

 

 
 

Figure 3. GA process  

 

Step 1: Initialization of Population (Rows): Initialize, 

population string (raw EMG data) known as chromosomes. To 

resolve problem that is to select EMG signal, which is being 

recorded during motion and to reject the EMG signal, which is 

recorded at rest position has been performed based on the 

designed fitness function. 

Step 2: Selection: In this step, the selection of appropriate 

signal, which is higher than fitness value is eliminated and 

those less than or equal to fitness value are selected. Those 

values of rows that have lowest value are known as parent and 

contributed to the generation of new member named as 

children. 

Step 3: Mutation: helps to search with the best row selection 

based on mutation threshold. 

Step 4: Termination: The Attribute selection process is 

terminated while the desired rows are selected and categorized 

as pain and normal signal [17, 18]. 

 

Feature selection using GA 

Required 

Input: 

EMG Feature Data  Extracted feature from 

used EMG Dataset for Pain & Normal 

Categories 

Fitness Function  Designed fitness function 

for feature selection 

Fitness function = 1        (1-e) X Fs>Ft 

                              0        Otherwise 

Where, e = It is the generated mutation error 

Fs = Current Attributes 

Ft = All Attributes Row Values 

Obtained 

Output: 

OEMG-FD  Optimized EMG Feature Data 

 

1 Start GA  

2 Load Dataset, EMGFeature Data (EMG-FD) = Load 

feature attributes  

3 To optimized the EMG-FD, GA is used 

4 Set GA Parameters: Population Size (P) – Based on the 

number of properties 

                                           CO – Crossover Operators  

                                           MO – Mutation Operators 

5 Calculate Length of EMG-FD in terms of Len  

6 Set,Optimized EMG Feature Data, OEMG-FD = [] 

7 For I = 1 → Len  

8      Fs = EMG-FD (I) = 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝐸𝑀𝐺 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 

9      Ft = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 = σ 𝐸𝑀𝐺 − 𝐹𝐷(𝐼)𝑅
𝑖=1  

10 𝐹(𝑓) =  𝐹𝑖𝑡 𝐹𝑢𝑛 (𝑒, 𝐹𝑠, 𝐹𝑡) 

11      Nvar = Number of variables 

12      BestProp = OEMG-FD = GA (F(f), T, Nvar, GA 

Parameters) 

13 End - For 

14 Return: OEMG-FD as an Optimized EMG Feature 

Data 

15 End – Function 

 

3.3 Cosine similarity  

 

Cosine similarity is being applied on the selected rows, 

which return a single similarity index for each row. Suppose, 

the selected rows after GA of 700 has been obtained from the 

available 1000 rows for both pain and normal EMG signals. 

Therefore, similarity has been measured for each row with the 

remaining 699 rows. In this way a single or average value has 

been obtained using Eq. (3). 

 

𝐴𝑣𝑔 𝑆𝑖𝑚 =  
σ 𝐶𝑜𝑠𝑆𝑖𝑚

𝑛
𝑖=1

𝑛
 (3) 

 

where, n is total number of similarities 

Start 

Population Initialization (Number of Rows) 

Perform Crossover 

Perform Mutation 

Calculate Fitness Function 

Terminate if Select 

desired Row 

Stop 
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After obtaining the average value, 20% of value has been 

added and subtracted to the obtained average similarity value 

as denoted by 𝑏1  and 𝑏2 [19]. Mathematically, can be 

represented by Eq. (4); 

 

𝐵1  =  𝐴𝑣𝑔 𝑆𝑖𝑚 + 
𝐴𝑣𝑔 𝑆𝑖𝑚 𝑁𝑜.

100
 

𝐵2  =  𝐴𝑣𝑔 𝑆𝑖𝑚 − 
𝐴𝑣𝑔 𝑆𝑖𝑚 𝑁𝑜.

100
 

(4) 

 

If the value of 𝐵1 and 𝐵2 lies between the similarity value 

and those values are used for the training and classification 

purpose using SVM approach. Otherwise drop the data [20]. 

 

Cosine similarity 

Required 

Input: 

OEMG-FD  Optimized EMG Feature Data 

Obtained 

Output: 

SimCos Cosine similarity between 

OEMG-FD  

Avg Sim  Average Similarity 

1 Start  

2 Create an empty array to store similarity, SimCos = [] 

3 Sim-count = 0 

4 For I = 1 → Length (OEMG-FD) 

5       Current_Data = OEMG-FD (I) 

6       For J = I+1 → Length (OEMG-FD) 

7             L = |Cos (Current_Data) - Cos (Data (J))| 

8             SimCos [sim_count, 1] = Current_Data 

9             SimCos [sim_count, 2]= Data(J) 

10             SimCos [sim_count, 3]=L   

11             Increment in array, Sim-count = Sim-count + 1 

12       End – For 

13 End – For 

14 Calculate Average Similarity 

15 𝑨𝒗𝒈 𝑺𝒊𝒎 =  
σ 𝑺𝒊𝒎𝑪𝒐𝒔

𝒏
𝒊=𝟏

𝒏
 // Where, n is total number of 

similarities 

16 Return: SimCos as an output in terms of cosine 

similarity between OEMG-FD and Avg Sim as an 

Average Similarity 

17 End – Function 

 

3.4 Critical method 

 

Critic method is used to normalize the feature vector 

attained from the application of Genetic Algorithm [21]. Critic 

method acts on three elements as follows: 

a) The current state of value 

b) The maximum value of the section 

c) The minimum value of the section  

Following pseudo code is applied in order to implement the 

critic method. 

 

Application of Critic  

1) 𝑭𝒐𝒓𝒆𝒂𝒄𝒉 𝑺𝒆𝒍𝒆𝒄𝒕𝒆𝒅 𝒓𝒐𝒘  
2) 𝑭𝒐𝒓𝒆𝒂𝒄𝒉𝒄𝒐𝒍 𝒊𝒏 𝑺𝒆𝒍𝒆𝒄𝒕𝒆𝒅𝒓𝒐𝒘 

3) 𝑪𝒓𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑽𝒂𝒍𝒖𝒆
= 𝑺𝒆𝒍𝒆𝒄𝒕𝒆𝒅𝒓𝒐𝒘−𝒄𝒐𝒍. 𝑭𝒆𝒂𝒕𝒖𝒓𝒆 

4) 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅. 𝑽𝒂𝒍𝒖𝒆 =
σ 𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑽𝒂𝒍𝒖𝒆

𝒏
𝒊=𝟏

𝒏
 

5) 𝑰𝒇 𝑪𝒓𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝑽𝒂𝒍𝒖𝒆
≥ 𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅𝑽𝒂𝒍𝒖𝒆 

6) 𝑫𝒐𝑵𝒐𝒕𝒉𝒊𝒏𝒈 

7) 𝑬𝒍𝒔𝒆 

8) 𝑭𝒊𝒏𝒅 𝒎𝒂𝒙𝒗 = 𝑴𝒂𝒙𝒊𝒎𝒖𝒎 𝑽𝒂𝒍𝒖𝒆(𝒄𝒐𝒍) 𝒐𝒇 𝒂𝒍𝒍 𝒓𝒐𝒘𝒔 

9) 𝑭𝒊𝒏𝒅 𝒎𝒊𝒏𝒗 = 𝑴𝒊𝒏𝒊𝒎𝒖𝒎 𝑽𝒂𝒍𝒖𝒆(𝒄𝒐𝒍)𝒐𝒇 𝒂𝒍𝒍 𝒓𝒐𝒘𝒔 

10) 𝑹𝒗 =
𝑪𝒓𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝒗𝒂𝒍𝒖𝒆−𝒎𝒊𝒏𝒗

𝒎𝒂𝒙𝒗+𝒎𝒊𝒏𝒗
 

11) 𝑹𝒆𝒑𝒍𝒂𝒄𝒆 𝑪𝒓𝑭𝒆𝒂𝒕𝒖𝒓𝒆𝒗𝒂𝒍𝒖𝒆
 𝒃𝒚 𝑹𝒗 

12) 𝑬𝒏𝒅 𝑭𝒐𝒓 

13) 𝑬𝒏𝒅 𝑭𝒐𝒓 

 

The critic method takes the current attribute value and 

checks it with the average value of other members which is 

called the selection value in this case. If the attribute value is 

less than the threshold value, it checks for the maximum and 

minimum value of this attribute in all the available rows of the 

category. The current attribute value is subtracted from the 

min value and is divided by a total of max and min value. The 

outcome is replaced by the current attribute value. 

 

3.5 Support Vector Machine (SVM) 

 

SVM is a machine learning approach used to classify EMG 

signal as pain and normal. Using this approach, a hyperplane 

has been constructed to distinguished two different data as 

normal and pain in this case. To train SVM, let the input train 

data be as: (𝑎1𝑏1), (𝑎2𝑏2), …, (𝑎𝑚𝑏𝑚)𝜖𝑃𝑁 × {−1, +1}. 
𝑎𝑖→input value, 

𝑏𝑖→Assigned class to which input belongs {−1, +1}. 

In case, if the input data is not separated linearly, then a 

transform of (𝜑: 𝑃𝑁
→𝑃𝑀) has been used with a new feature 

space represented by 𝑃𝑀. 

Using this as a function, the obtained hyperplane can be 

separated as per the Eq. (5); 

 

𝜔 × 𝜑(𝑎) + 𝑏 = 0 

𝜔𝜖𝑃𝑀 and b𝜖P 
(5) 

 

The training can be said best with optimal hyperplane and a 

minimum error. In case, if the signals are too close or overlap 

with each other, then a kernel function is used to separate that 

data. The kernel function might be Radial Basic Function 

(RBF), polynomial, linear, a Gaussian etc. [1, 22]. 

The training and testing using SVM is shown in Figure 4.  

 

Classification using SVM 

 

 

Required 

Input: 

OEMG-FDTraining Data as an 

Optimized EMG Feature Data 

CTarget/Category in terms of Pain and 

Normal  

RBF  Radial Basis Function as a Kernel 

Function  

SimCos Cosine similarity between 

OEMG-FD  

Avg Sim  Average Similarity 

Obtained 

Output: 

SVM-Structure  Trained SVM Structure 

1 Start  

2 Calculate  

𝑩𝟏       =  𝑨𝒗𝒈 𝑺𝒊𝒎 +  
𝑨𝒗𝒈 𝑺𝒊𝒎 𝑵𝒐.

𝟏𝟎𝟎
 

        𝑩𝟐       =  𝑨𝒗𝒈 𝑺𝒊𝒎 − 
𝑨𝒗𝒈 𝑺𝒊𝒎 𝑵𝒐.

𝟏𝟎𝟎
 

3 If Sim Value < B1& Sim Value > B2 

4 Initialize the SVM with training data OEMG-FD with 

RBF as Kernel function 

5 For I = 1→ Length (OEMG-FD) 

6              If OEMG-FD (I) == Pain 

7                   Cat (1) = OEMG-FD (I) 
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8              Else 

9                   Cat (2) = OEMG-FD (I) 

10 End – If 

11        End – For 

12 Else 

13       Drop OEMG-FD 

14 End – If 

15 VM-Structure =SVMTRAIN (OEMG-FD, Cat, Kernel 

function) 

16 Return: SVM-Structure as a Trained SVM structure 

17 End – Function 

 

 

 
 

 
 

Figure 4. Training and testing of EMG Signal using SVM 

 

 

4. RESULT AND DISCUSSIONS 

 

The results of the designed Attribute selection and 

classification EMG system has been performed in MATLAB 

simulator. The aim of this research is to distinguish the pain 

and normal muscles using GA as an Attribute selection 

approach. To enhance the training of SVM, cosine similarity 

has been applied which will further reduce the irregular and 

the noise signal present in the available segmented EMG data. 

As the signal is filtered by two techniques such as GA and 

cosine similarity. Therefore, the possibility of detection 

accuracy also increases. The analysed values in terms of 

precision, recall, F-measure and classification accuracy are 

performed using Eq. (6), Eq. (7), Eq. (8) and Eq. (9) 

respectively. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

 (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

 (7) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑝 + 𝑇𝑁

𝑇𝑝 + 𝐹𝑝 + 𝐹𝑛 + 𝑇𝑁

 (9) 

 

Here, 𝑇𝑝→The EMG signal that are actually comes under 

pain or normal category and also predicted as the same. 

𝐹𝑛→ the EMG signal that are being predicted as real but are 

noise or unwanted signal considered at rest position. 

𝐹𝑝→The EMG signal that is actually real but predicted as 

undesired or noisy signal. 

𝑇𝑛→ The number of appropriately predicted real signal. 

 

Precision values analysed for GA with SVM, GA +Cosine 

Similarity+ SVM for normal and pain muscular signal is 

shown in Figure 5 with the values listed in Table 2.  
From Figure 5, it is clearly seen that maximum values of 

precision are analysed for the proposed work i.e. (GA+ Cosine 

Similarity +SVM) approach used for normal EMG signal 

followed by GA+ Cosine Similarity +SVM used for 

classifying pain EMG signal. The average precision values 

examined for the proposed work using GA SVM and GA with 

Cosine similarity with SVM for normal EMG signal are 

0.8456 and 0.9804 respectively. Similarly, the precision values 

analyzed for the pain EMG signal using GA with SVM and 

GA with Cosine similarity with SVM are 0.815 and 0.943 

respectively. We observed that, precision rate is improved by 

using the combination of cosine similarity measurement 

technique along with the GA and SVM. Improved precision 

rate indicates the selection of EMG attributes are better during 

the classification process and rate of true features is high due 

to better training of system. 

The recall values for the pain and normal muscles analyzed 

using automatic classification system are summarized in Table 

3 and graphically compared in Figure 6. The average values of 

recall measured for normal EMG signal using GA with SVM, 

and GA+ Cosine Similarity +SVM are 0.7456 and 0.7501. 

Similarly, the average value of recall examined for pain 

muscular signal using GA with SVM, and GA+ Cosine 

Similarity +SVM are 0.7451 and 0.838 respectively. Similar 

to precision, recall rate also improved by using the 

combination of cosine similarity measurement technique 

along with the GA and SVM. Recall rate denotes the selection 

of appropriate feature according to the training of the system 

and in proposed work the recall rate is improved that means 

proposed system achieved good performance. 
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Table 2. Computed precesion 

 
Number of 

Iterations 

GA with SVM GA+ Cosine Similarity 

+SVM 

 Normal Pain Normal Pain 

1 0.853 0.835 0.992 0.985 

2 0.847 0.829 0.972 0.942 

3 0.839 0.801 0.983 0.957 

4 0.835 0.799 0.972 0.936 

5 0.825 0.812 0.995 0.943 

6 0.817 0.794 0.978 0.928 

7 0.815 0.752 0.968 0.933 

8 0.857 0.824 0.986 0.947 

9 0.895 0.852 0.976 0.927 

10 0.873 0.853 0.982 0.937 

 

 
 

Figure 5. Precision analysis 

 

Table 3. Computed recall 

 
Number 

of 

Iterations 

GA with SVM GA+ Cosine Similarity 

+SVM 

 Normal Pain Normal Pain 

1 0.795 0.775 0.751 0.865 

2 0.758 0.895 0.768 0.758 

3 0.776 0.765 0.728 0.789 

4 0.767 0.687 0.715 0.862 

5 0.759 0.694 0.756 0.831 

6 0.742 0.687 0.785 0.864 

7 0.768 0.668 0.735 0.863 

8 0.712 0.697 0.759 0.857 

9 0.696 0.785 0.736 0.869 

10 0.683 0.798 0.768 0.823 

 

 
 

Figure 6. Recall analysis 

 

The analyzed data for F score is shown in Figure 7 with the 

values listed in Table 4 is the collective representation of 

precision and recall. The average value of F score analyzed for 

two different EMG data (pain and normal) using GA with 

SVM and GA with Cosine and SVM are represented by the 

orange, the yellow, the blue and the grey bar respectively. Here, 

F-score basically denotes the average of precision and recall 

rate and for a better system it should be high. From the 

observation we, concluded that, precision as well recall rate is 

better by using the combination of cosine similarity 

measurement technique. 

The classification accuracy examined by the proposed work 

for pain and normal EMG signal are listed in Table 5 and 

graphically illustrated in Figure 8. From the figure it is clearly 

seen that the average accuracy for the painful EMG signal is 

higher than 70%. The pain and normal EMG signal has been 

classified with an average accuracy of 92.4% and 91.3% 

respectively. 

 

Table 4. Computed F-score 

 
Number of 

Iterations 

GA with SVM GA+ Cosine Similarity 

+SVM 

 Normal Pain Normal Pain 

1 0.822979 0.803882 0.854839 0.921108 

2 0.800032 0.860737 0.858041 0.840042 

3 0.806271 0.782586 0.836498 0.864918 

4 0.799557 0.738779 0.823924 0.897477 

5 0.790625 0.748377 0.859189 0.883464 

6 0.777696 0.736635 0.870936 0.894857 

7 0.790802 0.707515 0.835561 0.896636 

8 0.7778 0.755198 0.857735 0.899755 

9 0.783055 0.817129 0.839178 0.897063 

10 0.7664 0.824584 0.861915 0.876308 

 

 
 

Figure 7. F-score analysis 

 

Table 5. Computed classification accuracy 

 
Number of 

Iterations 

GA with SVM GA+ Cosine 

Similarity +SVM 

 Normal Pain Normal Pain 

1 0.876 0.786 0.925 0.941 

2 0.875 0.795 0.914 0.935 

3 0.882 0.812 0.935 0.925 

4 0.891 0.802 0.927 0.934 

5 0.875 0.796 0.915 0.915 

6 0.868 0.765 0.905 0.905 

7 0.878 0.754 0.896 0.934 

8 0.868 0.763 0.887 0.936 

9 0.838 0.824 0.914 0.902 

10 0.875 0.798 0.916 0.917 
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Figure 8. Classification accuracy analysis 

 

 
 

Figure 9. Accuracy comparison with the existing work 

 

Table 6. Comparison of computed accuracy with the existing 

work  
 

Proposed Work Existing Work [23] 

Normal Pain Normal Pain 

91.3 92.4 82.14 87.57 

 

To show the effectiveness of the proposed work, the 

comparison of examined classification accuracy is shown in 

Table 6 and plotted for comparative analysis in Figure 9. The 

graph shows that the rate of classifying EMG signal whether 

it is normal EMG or pain EMG signal the proposed algorithm 

performed well compared to the existing ANN classifier. Also, 

the percentage increase in the classification rate of proposed 

work for normal EMG from the Jiang et al. 2019 work [23] is 

11.15% whereas, for painful signal, the classification accuracy 

has been increased by 5.52%. This enhancement has been 

obtained because of the proper selection of appropriate EMG 

data which in turns increase the training rate and hence the 

classification during the testing process. 

 

 

5. CONCLUSION 

 

An automatic Attribute selection and classification system 

for EMG signal has been designed using GA with SVM as 

Attribute selection and classification techniques respectively.  

The results show that proposed model worked well with higher 

classification rate for both pain and normal EMG signal. An 

appropriate selection of EMG signal has been performed using 

GA with cosine similarity as well as reduced the available data 

that minimized the training error and hence improve 

classification rate. The research can provide a better 

understanding of the EMG signal Attribute selection and 

classification procedure. The classification accuracy observed 

for normal and painful EMG signal are 91.3% and 92.4% 

respectively. Also, the improvement of the proposed work 

against the existing work of about 11.15% and 5.52% has been 

examined for normal and painful EMG signal against the 

existing work. In future, we plan to use artificial neural 

network as a classification approach or comparing the results 

of SVM and ANN in order to know the efficiency of the 

classifiers in terms of classification accuracy. 
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