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Robotic process automation (RPA) financial robot provides a modern and intelligent tool 

for financial management, and financial business processing. Currently, more than 32% of 

financial applications are implemented by RPA financial robot. As an alternative of human 

in operation and judgment, the financial robot faces some inevitable risks in actual 

application. So far, there is a severe lack of theoretical or practical research into the risks 

or operational guarantees of RPA financial robot. To bridge the gap, this paper proposes a 

financial crisis warning model for financial robot based on artificial neural network (ANN), 

drawing on the merits of artificial intelligence (AI) like self-learning, self-adaptation, and 

self-adjustment. Specifically, a hierarchical evaluation index system (EIS) and the 

corresponding warning strategy were prepared for the financial crisis of RPA financial 

robot. Next, the financial crisis of RPA financial robot was evaluated both statically and 

dynamically. Then, antecedent and subsequent networks were merged into a fuzzy neural 

network (FNN) for predicting financial crisis of RPA financial robot. The proposed model 

was proved effective and accurate through experiments. 

Keywords: 

artificial intelligence (AI), financial robot, 

financial crisis warning, robotic process 

automation (RPA) 

1. INTRODUCTION

Recent years has witnessed rapid development of big data 

analysis and cloud service systems. These advanced 

technologies have reshaped the form of financial sharing 

service, resulting in simpler business process, lower labor cost, 

and integrated financial information [1, 2]. Robotic process 

automation (RPA) financial robot provides a modern and 

intelligent tool for managing and processing financial 

businesses with large capacity, high repetition rate, and high 

error rate. Besides attracting wide academic attention, RPA 

financial robot has fundamentally promoted the digitalization 

and automation of traditional financial sharing services [3-5]. 

In June 2017, Deloitte launched its RPA financial robot. 

Many internationally renowned accounting firms have 

followed suit, including but not limited to 

PricewaterhouseCoopers, KPMG, and Ernst & Young. Their 

financial robots boast various pertinent functions and wide 

application scopes [6-9]. Currently, RPA financial robot is 

being adopted in more than 32% of financial applications [10-

12]. However, the highly efficient financial robot brings some 

potential risks in dealing with extremely complex and 

important financial businesses, which demand a high 

processing accuracy [13-15]. It is of great necessity to realize 

the financial crisis warning of financial robot.  

Many theoretical results have been achieved on financial 

crisis warning [16-18]. From the angle of cash flow, Lahmiri 

[19] analyzed the cash flow in each component of the total

corporate value in business operations, and constructed a cash

flow-based warning model for corporate financial risk. Cook

and Watson [20] treated cash flow as the core index of

financial crisis criteria, and mentioned several important

impactors of financial crisis: the ratio of net cash flow to

current liabilities, debt ratio, and return on investment (ROI).

Using a five-variable model, De Pinho and Couto [21] 

discussed the possibility and influencing factors of financial 

crisis or bankruptcy in business operations, and divided the 

decisive factors into three aspects: registered capital and 

production scale, division of financial functions and 

management framework, as well as division of responsibilities 

and organizational structure. 

On RPA financial decision-making, Sugiyanto et al. [22] 

studied the resource calling and management methods of two 

important parts of decision support system, namely, financial 

decision model library and database, and developed a 

reasonable functional architecture of human-machine 

conversation (HMC) following the conventional thinking of 

accounting business processing and management, highlighting 

that financial decision-making system cannot make the 

expected ideal decisions without the support from more 

advanced database technology. Kou et al. [23] suggested that 

an enterprise in financial crisis should simultaneously control 

internal financial risk and guard against external risk, and 

created a warning model for internal financial risk in 

structured operation. Andriosopoulos et al. [24] considered the 

mastery of advanced information technology (IT) the key to 

improve the internal risk control of enterprise group: the 

related financial risks between subsidiary and parent need to 

be controlled and handled through advanced IT, such that both 

sides in the enterprise group could operate stably. With the 

help of big data analysis and artificial intelligence (AI), 

Kanjilal and Ghosh [25] integrated the management and 

control mechanism of financial crisis into the state analysis of 

business management, assigned reasonable weights to 

warning indices through analytic hierarchy process (AHP), 

and realized the financial risk rating of actual operation and 

management states. 

To sum up, the existing studies on RPA financial robot 
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mainly focus on the opportunities and challenges brought by 

the robot to the accounting industry and accountants. There is 

a severe lack of theoretical or practical research into the risks 

or operational guarantees of RPA financial robot. To make up 

for the gap, this paper proposes an AI-based financial crisis 

warning model for financial robot, drawing on the merits of AI 

like self-learning, self-adaptation, and self-adjustment. 

The remainder of this paper is organized as follows: Section 

2 sets up a hierarchical evaluation index system (EIS) for the 

financial crisis of RPA financial robot, and puts forward the 

corresponding warning strategy; Section 3 carries out static 

and dynamic risk analyses for the financial crisis of RPA 

financial robot; Section 4 builds up a fuzzy neural network 

(FNN), which encompasses antecedent and subsequent 

networks, for predicting financial crisis of RPA financial robot; 

Section 5 verifies the effectiveness and accuracy of the 

proposed model; Section 6 puts forward the conclusions. 

 
 

2. EIS CONSTRUCTION 

 

Based on its application scenarios, the core functions of 

RPA financial robot can be divided into five dimensions: entry 

and query of financial data, processing and data recognition of 

texts and images, upload and download of system data stream, 

processing and analysis of financial data, and information 

monitoring and financial decision-making. 

The function of entry and query of financial data replaces 

the manual operations of accountants to enter, migrate, and 

query financial data. The function of processing and data 

recognition of texts and images recognizes images and texts 

through optical character recognition (OCR), and obtains the 

valuable field information from texts and images, as well as 

the electronic financial data that can be directly structured. The 

function of upload and download of system data stream 

receives, uploads, downloads, and outputs financial data along 

the preset paths. The function of processing and analysis of 

financial data further screens, integrates, compares, verifies, 

and analyzes the output financial data. The function of 

information monitoring and financial decision-making 

promotes the progress of financial business with the aid of AI 

technology, or replace accountants to make reasonable 

financial decisions, while analyzing and monitoring financial 

data. 

From the summary of the functions, it can be seen that RPA 

financial robot can bring convenience to businesses in several 

functional areas, including accounting department, human 

resources department, purchasing department, and customer 

service department. The technical operations of RPA financial 

robot fall into two modes: simulation of human operation and 

the simulation of human judgment. As an alternative of human 

in operation and judgment, the financial robot faces some 

inevitable risks in actual application. 

Considering the application in various functional areas, the 

factors of RPA financial robot that might induce financial 

crisis were divided into eight categories: technical risk, 

application risk, control risk, business risk, compliance risk, 

organizational change risk, man-made risk, and sustainability 

risk. Among them, technical and application risks belong to 

system level; control and business risks belong to management 

level; the other risks belong to organization level. Our 

financial crisis warning strategy for RPA financial robot is 

illustrated in Figure 1. 
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Figure 1. The financial crisis warning strategy for RPA financial robot 

 

Considering the features of the financial industry, the 

representativeness of risk elements, the sensitivity of crisis 

response, and availability of index data, the authors 

established a hierarchical EIS for financial crisis of RPA 

financial robot: 

Layer 1 (goal): FC={crisis warning of financial robot} 

Layer 2 (primary indices): 

FC={FC1, FC2, FC3, FC4, FC5, FC6, FC7, FC8}={technical 

risk, application risk, control risk, business risk, compliance 

risk, organizational change risk, man-made risk, sustainability 

risk}; 

Layer 3 (secondary indices): 
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FC1={FC11, FC12, FC13, FC14, FC15, FC16, FC17, FC18, 

FC19}={technical maturity, functional availability, system 

failure rate, maintenance mechanism, crisis response plan, 

resource allocation rationality, business capabilities, user 

permissions, data transmission security}; 

FC2={FC21, FC22, FC23}={application rationality, 

application process stability, ROI};  

FC3={FC31, FC32, FC33}={application automation, design 

and programing risk, control system rationality}; 

FC4={FC41, FC42}={information process interruption, 

emergency program};  

FC5={FC51, FC52, FC53, FC54, FC55, FC56}={application 

process rationality, operation interference, system error, using 

permissions, data logic rule rationality, financial 

standardization scheme rationality}; 

FC6={FC61, FC62, FC63}={ post change, strategic 

adjustment, career growth};  

FC7={FC71, FC72, FC73, FC74}={business process 

proficiency, operational logic understanding, operation 

familiarity, operation error rate}; 

FC8={FC81, FC82, FC83, FC84}={power supply, resource 

supply, emphasis on application, planning and promotion 

strategy}. 

The above EIS contains 8 primary indices and 34 secondary 

indices. Thus, the financial crisis warning is a multi-parameter 

comprehensive evaluation problem. However, the evaluation 

indices differ in attribute and dimension. The original data of 

these indices must be normalized to reflect the financial risks 

in actual scenarios. 

Firstly, an original evaluation matrix FC=[FCij]m×n was 

constructed according to the EIS. Then, the fitness indices like 

system failure rate, ROI, and business proficiency in the EIS 

were processed by max-min strategy (MMS): 

 

* 1

ij opt

FC
FC FC

=
−

 (1) 

 

where, FC* is the value of a fitness index after MMS 

processing; FCopt is the industry standard value (theoretical 

optimal value) of primary index FCj. After MMS processing, 

the index data were nondimensionalized by extreme value 

method:  

 

max-*

max- min-

ij j

ij

j j

FC FC
FC

FC FC

−
=

−
 (2) 

 

where, FC*
ij is a value in the interval [0, 1]; FCij is the original 

data of the evaluation index; FCmax-j=max{FCj} and FCmin-

j=min{FCj} are the maximum and minimum assigned by 

experts to the primary index FCj for the financial crisis of 

financial robot, respectively. Without loss of generality, the 

normalized data of the evaluation index is still expressed as 

FCij. 

 

 

3. DYNAMIC AND STATIC EVALUATIONS 

 

3.1 Static evaluation 

 

During the dynamic financial crisis evaluation of RPA 

financial robot, the evaluation indices involve many time 

series data (Table 1). 

 

Table 1. The time series data for financial crisis evaluation of 

RPA financial robot 

 
Time Period 1 Period 2 … Period P 

FC1 
FC1

11, FC1
12, …, 

FC1
1M 

FC2
11, FC2

12, …, 

FC2
1M 

… 
FCP

11, FCP
12, …, 

FCP
1M 

FC2 
FC1

21, FC1
22, …, 

FC1
2M 

FC2
21, FC2

22, …, 

FC2
2M 

… 
FCP

21, FCP
22, …, 

FCP
2M 

⋮ ⋮ ⋮ … ⋮ 

FCN 
FC1

N1, FC1
N2, …, 

FC1
NM 

FC2
N1, FC2

N2, …, 

FC2
NM 

… 
FCP

N1, FCP
N2, …, 

FCP
NM 

 

Let FC={FCk|k=1,2,…,N} be the set of primary indices, 

FCk={FCkl|k=1,2,…,N;l=1,2,…,M} be the set of secondary 

indices, and ET={t|t=1,2,…,P} be the set of evaluation 

periods, where FCt
kl is the original data on secondary index 

FCkl at time t. Then, the static evaluation matrix for financial 

crisis of RPA financial robot at time t can be expressed as: 

 

11 12 1

21 22 2

1 2

       C                 C  

       C                 C

                                

       C                C

t t t

M

t t

t t M

kl N M

t t t

N N NM

FC F F

FC F F
FC FC

FC F F



 
 
  = =   
 
  

 
(3) 

 

Suppose the set of secondary indices FCk contains M nodes 

(secondary indices) FCkl. Then, the connection relationship 

between nodes FCkx and FCky (x,y=1, 2, …, M) can be 

expressed as:  

 

1     Connect

0    No connect
xyCR


= 


 (4) 

 

The correlation coefficient between index vectors FCka and 

FCkb can be computed by:  

 

( )( )

( ) ( )
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1 1
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t t t t
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n n
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= =

 − −

=
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where,  
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i
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=
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  =






 (6) 

 

Then, the correlation coefficient μt
xy was normalized with 

zero as the limit. If μt
xy>0, nodes FCkx and FCky are connected, 

and CRt
xy and CRt

yx are both one; if μt
xy<0, nodes FCkx and FCky 

are not connected, and CRt
xy and CRt

yx are both zero. On this 

basis, a symmetric correlation matrix CRt can be established 

as: 

 

12 1

21 2

1 1

   /                 

      /              
 

                                    

              /   

t t

M

t t

t t M

xy M M

t t

M M

CR CR

CR CR
CR CR

CR CR



 
 
  = =   
 
  

 (7) 

555



 

For the node set FCk={FCkl|k=1, 2, …, N; l=1,2,…,M}, the 

centrality CENt
kl of each node can be calculated by: 

 

, 1

1

M
t

xy

x y yt

j

CR

CEN
M

 =
=

−


 

(8) 

 

The normalized centrality of node FCkl is the weight of that 

node at time t: 

 

1

/
M

t t t

kl kl kl

l

CEN CEN
=

=   (9) 

 

where, ωt
kl is within the interval (0, 1). At time t, the weights 

of secondary indices for financial crisis of RPA financial robot 

can be expressed as ωt
k=(ωt

k1, ωt
k2, …, ωt

kM).  

To improve the evaluation accuracy and simplify the 

processing of index data, the closely correlated indices were 

allocated to multiple clusters, and the size and mass features 

of each cluster were fused; after that, the density operator was 

adopted to measure the sparsity of financial crisis information 

in each cluster. The density weight ρt
g of mass feature of 

cluster FCk={FCkl|k=1, 2, …, N; l=1,2,…,Q} can be 

calculated by: 

 

1

/
Q

t t t

g g g

g

COH COH
=

=   (10) 

 

where, Q is the number of nodes in cluster FCk; ρt
g∈(0, 1) is 

the density weight of mass feature; COHt
g is the cohesion of 

cluster FCg at time t, reflecting the density of the nodes in the 

cluster. The higher the COHt
g value, the more consistent the 

financial crisis information in the evaluation indices, and the 

better the clustering effect. The COHt
g value can be calculated 

by: 

 

( )1

t

xy

x R y Rt

g

CR

COH
R R

 
=

−


 (11) 

 

where, R is the number of nodes in cluster FCg; CRt
xy is the 

element value obtained through multiple iterations of the 

correlation matrix. Let θt
g=(Ru/M)B be the weight impact factor. 

The density weight φt
g of the size feature of cluster 

FCk={FCkl|k=1,2, …, N; l=1,2,…,Q} can be calculated by: 

 

( )

( )
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t
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g Q
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(12) 

 

where, B is the density impact index. Let υt
g={υ1

t,υ2
t…,υt

p} be 

the weighted vector of index density in each cluster. Then, the 

cohesion of cluster FCg can be obtained by aggregating the 

density weights of mass feature and size feature through 

multiplicative normalization: 
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t t

g gt

g Q
t t

g g
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=
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(13) 

 

Then, the static evaluation value of financial crisis of RPA 

financial robot at each moment can be calculated by: 

 

1 1

Q R
t t gt t

k g k kl

g k

E FC 
= =

 
=  

 
   (14) 

 

where, Et
k is the static evaluation value of primary index FCk 

(the greater the value, the more unlikely the financial crisis); 

ωgt
k is the weight of normalized index FCt

kg in cluster FCt
g. 

 

3.2 Dynamic evaluation 

 

Based on the static evaluation, the dynamic evaluation for 

financial crisis of RPA financial robot comprehensively 

considers the timeliness of each index and the volatility of 

each functional area (Table 2). The time weight of each index 

can be obtained ideally by: 

 

1

max ln
T

t t

t

ENT  
=

= −  (15) 

 

where, ENT is the entropy of time vector that satisfies:  
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where, α is the degree of time (the closer α is to 1, the more 

important the earlier information of the index); ζt is the time 

weight reflecting the volatility of each functional area. The ζt 

value can be determined based on the information entropy of 

the static evaluation value: 

 

1t tENT = −  (17) 

 

where, ENTt is the entropy of time vector at time t. The smaller 

the ζt value, the smaller the gap of Et
k, the less volatile each 

functional area. 

 

Table 2. The classification criteria for the trends of financial 

crisis 

 
Type Criterion Meaning 

Rising risk  

 

Degree of time < 

0.5; entropy>0.5 

Financial crisis tends to 

worsen, and dynamic risk 

grows with time. 

Falling risk 
Degree of time> 

0.5; entropy<0.5 

Financial crisis tends to 

improve, and dynamic risk 

falls with time. 

Volatile 

environment 
Entropy  (0.5, 

1) 

The functional areas are 

highly volatile, and 

financial risk exhibits an 

uncertain trend. 

Time 

insensitivity 

Degree of time 

(0.5, 1) 

The trend of financial crisis 

is uncertain and insensitive 

to time. 

 

After integrating the timeliness of each index and the 

volatility of each functional area, the time weight can be 

expressed as: 
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t t ta b  =  +   (18) 

 

where, a and b are both numbers in (0, 1); a + b = 1. The 

dynamic evaluation value of financial crisis for RPA financial 

robot can be calculated by:  

 

1

T
t

kl t kl

t

DE y
=

=  (19) 

 

DEkl characterizes the dynamic risk of financial crisis. The 

greater the DEkl value, the smaller the risk; the smaller the DEkl 

value, the greater the probability of financial crisis. 

 

 

4. PREDICTION MODEL 

 

The FNN integrates the merits of fuzzy theory and artificial 

neural network (ANN). Besides its excellence in self-learning 

and association, the FNN makes full use of expert knowledge 

through a simple reasoning process, without strict 

requirements on samples. This paper combines the antecedent 

and subsequent networks into an FNN (Figure 2). 

The input layer receives the dynamic evaluation values of 

the indices for the financial crisis of RPA financial robot. 

These values can be expressed as I=[I1,I2,…,IN]. In the input 

layer, N1 nodes process the input data, and transfer the results 

to the fuzzification layer. The membership function between 

each input data and its corresponding linguistic fuzzy set can 

be described as a Gaussian function: 

 

2
i ij ij(I P )/j

iμ e
− −

=  (20) 

 

where, εij is the width of the Gaussian membership function; 

Pij is the x-coordinate of the center of the function; i=1, 2, …, 

N; j=1, 2, …, M. Note that N is the dimension of the input data; 

M is the number of fuzzy classes. Table 3 lists the fuzzy 

classes and risk levels of financial crisis of RPA financial 

robot. 
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Figure 2. The structure of the proposed FNN  

Table 3. The fuzzy classes and risk levels 

 
Fuzzy class Risk level Meaning 

1 E Strongly low system risk, strongly low management risk, and strongly low organization risk 

2 D Slightly low system risk, slightly low management risk, and slightly low organization risk 

3 C Neutral system risk, neutral management risk, neutral organization risk 

4 B Slightly high system risk, slightly high management risk, and slightly high organization risk 

5 A Strongly high system risk, strongly high management risk, and strongly high organization risk 

 

In the fuzzification layer, N2 nodes process the received data, 

and push the results to the rule-based reasoning layer. In the 

rule-based reasoning layer, the N3=M nodes correspond to the 

fuzzy rules for the dynamic evaluation of the financial crisis, 

and compute the fitness of each fuzzy rule: 

 
N1 2 rr r

j 1 2 Na μ μ μ=   (21) 

 

where, r1{1,2,…,Q1}, rN∈{1,2,…,QN}, j=1, 2, …, M. The 

number of nodes in the rule-based reasoning layer equals the 

continuous multiplication of Q1 to QN. The results from the 

rule-based reasoning layer are forwarded to the normalization 

layer, where N4=N3=M nodes normalizes the received data: 

 

1

ˆ
M

i j i

i

a α / a  
=

=   (22) 

 

The normalized results are defuzzied and outputted by the 

output layer. The output can be computed by:  

 

1

ˆ
M

i i

i

O O a
=

=  (23) 

 

The FNN was designed in reference to the structure of 

backpropagation neural network (BPNN). The error objective 

function of the FNN can be expressed as: 

 

( )
21

2
E O O= −  (24) 

 

where, O* and O are the expected output and actual output of 

the FNN, respectively. Following the idea of BPNN algorithm, 

the connection weights ωji of the output layer, the width εij of 

the membership function, and the center Pij of the membership 

function were adjusted. The learning algorithm of ωji can be 

expressed as: 

 

( ) ˆj

j i

ji j ji

E O OE
O O a I

O O O


  

= = − −
   

 (25) 

 

( ) ( )1ji ji

ji

E
k k  




+ = −


 (26) 

 

where, η is the learning rate. Fixing the weight ωji, εij and Pij 

can be respectively adjusted by:  
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( ) ( )1ij ij

ij

E
k k  




+ = −


 (27) 

 

( ) ( )1ij ij

ij

E
P k P k

P



+ = −


 (28) 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 
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Figure 3. The training flow of the FNN 

 

As shown in Figure 3, the BPNN-based FNN was trained in 

the following process. First, the data samples on the evaluation 

indices for the financial crisis of RPA financial robot are 

fuzzified. Then, the network parameters are initialized, and the 

data samples are imported, together with the expected output. 

After that, each layer of the FNN performs calculations, and 

derives the value of the objective function. After the network 

is trained by all data samples, the output error of each layer is 

computed according to the objective function value. Then, the 

connection weights of each layer are adjusted, followed by the 

update of the membership function. Through repeated 

iterations, the objective function value eventually reaches the 

preset requirement. 

The training and test errors of our model are shown in 

Figures 4(a) and 4(b), respectively, where x-axis is the training 

cycle, and y-axis is the RMSE. The data samples on the 

evaluation indies for the financial crisis of RPA financial robot 

in an enterprise were split into a training set and a test set at 

the ratio of 4:1. As shown in Figure 4, the training effect was 

satisfactory after 7-8 iterations in training or testing. The 

trained network achieved good approximation accuracy, 

indicating that our model can effectively fit the training and 

test samples. Figure 5 displays the convergence effect of our 

model. It can be seen that the training error tended to be stable, 

after the FNN iterated for about 100-140 times. 

Figure 6 shows how the node centrality of the dynamic 

evaluation model affects the training error of the FNN. With 

the growing node centrality, the training error gradually 

decreased. Thus, the proposed model can optimize node 

centrality to a certain extent. 

 

 
(a) Training error  

 

 
(b) Test error 

 

Figure 4. The training error and test error of our model 
Note: RMSE is root mean square error. 

 

Figure 7 presents the risk prediction results of our model on 

some samples. It can be seen that the predicted value on test 

data exhibited a similar trend as that on training data. This 

means the proposed model has a high test accuracy; the 

pretrained FNN can ideally approximate the actual values of 

the data samples on evaluation indies.
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Figure 5. The convergence effect of our model 

 

 
 

Figure 6. The influence of node centrality on training error 

 

 
 

Figure 7. The risk prediction of our model (part)  

 

Figures 8(a) and 8(b) provide the fuzzy classification results 

of our model on training and test data, respectively. It can be 

seen that deviations appeared on 4 samples in the training set, 

and 4 samples in the test set. But the deviations were 

controlled near the value range of the correct class. The high 

consistency verifies the recognition ability, credibility, and 

feasibility of the proposed model. 

 

 
(a) Training data  

 
(b) Test data 

 

Figure 8. The fuzzy classification results of our model on 

training and test data 

 

The dynamic evaluation results in 2019 were sorted out by 

month (Table 4). It can be seen that the risk of financial crisis 

was high in January, February, August, and October. 

Compared with the static evaluation results, the dynamic 

evaluation results are close to the reality. Therefore, it is 

scientific for the dynamic evaluation model to consider the 

considers the timeliness of each index and the volatility of 

each functional area. 

For comparison, our model was compared with several 

traditional models in accuracy, recall, F-score, mean absolute 

error (MAE), and RMSE: BPNN + static evaluation, long 

short-term memory (LSTM) + static evaluation, FNN + static 

evaluation, and BPNN + dynamic evaluation. The evaluation 

results of these models are compared in Table 5. 

As shown in Table 5, BPNN + dynamic evaluation and our 

model both surpassed 0.85 in accuracy, recall, and F-score, 

reflecting the accuracy and feasibility of the dynamic 

evaluation model for financial crisis of RPA financial robot. 

In addition, our model outperformed the BPNN + dynamic 

evaluation, as evidenced by its relatively low error and high 

accuracy.  

 

 

7

8

9

10

11

12

13

14

15

16

17

0 20 40 60 80 100 120 140 160 180 200

O
b

je
ct

iv
e 

fu
n
ct

io
n
 v

al
u
e

Number of iterations

×10^-2

13

16

19

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

T
ra

in
in

g
 e

rr
o

r

Node centrality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14

P
re

d
ic

te
d

 v
al

u
e

Sample number

Predicted value
on test data

Test data

559



 

Table 4. The dynamic evaluation results in 2019 

 
Month Level Meaning 

2019-01 A High risk 

2019-02 A High risk 

2019-03 B Moderate risk 

2019-04 C General risk 

2019-05 D Low risk 

2019-06 C General risk 

2019-07 D Low risk 

2019-08 A High risk 

2019-09 B Moderate risk 

2019-10 A High risk 

2019-11 B Moderate risk 

2019-12 C General risk 

 

Table 5. The evaluation results of different models 

 
 Accuracy Recall F-score MAE RMSE 

BPNN + static evaluation 0.765 0.801 0.747 0.228 0.234 

LSTM + static evaluation 0.798 0.811 0.791 0.105 0.142 

FNN + static evaluation 0.803 0.823 0.825 0.121 0.126 

BPNN + dynamic evaluation 0.855 0.861 0.852 0.095 0.103 

Our model 0.892 0.881 0.869 0.012 0.016 

 

 

6. CONCLUSIONS 

 

In data processing, the AI has such advantages as self-

learning, self-adaptation, and self-adjustment. Therefore, this 

paper establishes a financial crisis warning model for financial 

robot based on AI. Firstly, a scientific hierarchical EIS was 

created for the financial crisis of RPA financial robot, and the 

corresponding warning strategy was provided. On this basis, 

the financial crisis of RPA financial robot was evaluated 

statically and dynamically. Then, antecedent and subsequent 

networks were combined into an FNN for predicting the 

financial crisis of RPA financial robot. Experimental results 

demonstrate that the proposed model can desirably fit the 

training and test samples, and outperform the other models in 

error and accuracy. 
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