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The objective of this paper is to design three different robust controllers such as 

proportional-integral (PI), internal model control (IMC), and H∞ control techniques for 

position control of the computerized numeric controlled machine tool (CNCMT) system. 

The proposed controllers aim to control the servo motor that regulates the position of the 

machine table and also enhances the robustness of the CNCMT system under the influence 

of parametric uncertainties. The stability of the uncertain CNCMT system with all 

designed controllers is investigated using Kharitonov’s theorem. The stability margin 

(SM) criterion is utilized for robustness analysis. 
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1. INTRODUCTION

A computerized numeric controlled (CNC) machine is a 

highly integrated mechatronic system and it was developed to 

control the motion and operation of machine tools [1]. The 

CNCMT system is used mainly for drilling, cutting, milling, 

boring, finishing, welding, and aligning operations in 

automotive, aerospace, electrical, and instrumentation 

industries [2, 3]. In the CNCMT system, the information 

related to the structure of the workpiece is stored in the 

computer in the form of 'm-code'. The disturbances occurring 

during the machining process should be minimized to achieve 

high precision and operational efficiency [4-6]. The structured 

or parametric and unstructured uncertainties are presented in 

all practical control systems [7]. The source of parametric 

uncertainty in the CNCMT system is deficient in clear-cut 

knowledge of parameters, and few parameters like inertia and 

friction and varied under running conditions, therefore the 

system is called the uncertain CNCMT system. Hence the 

robustness analysis of the CNCMT system is essential and as 

proposed in this paper. To accomplish the most wanted 

position of machine table alongside the external disturbances 

and the parametric uncertainty three different robust 

controllers such as PI, IMC, and H∞ controllers are presented. 

Due to the presence of the derivative 'D' term in the PID 

controller, a derivative kick occurs and as a result, the 

controller output becomes dangerously high which may 

damage the actuator, in the present case, a servomotor. An 

integral 'I' control, a steady-state error is nullified but 

overshoot (OS) reaches to very high magnitude. Therefore, a 

PI type controller is used for position control of uncertain 

CNCMT system. 

Indeed, the design of a low order controller is often more 

difficult than the design of a high order complex controller [8]. 

A robust PI controller is designed using Kharitonov’s theorem 

with the worst gain margin (GM) and phase margin (PM) 

because it plays an important role concerning the robustness 

of the system [9, 10]. In 1978, Kharitonov published his work 

in form of a research paper in a journal which is well taken for 

robust control problem [11]. So far, Kharitonov's theorem has 

been applied to various engineering applications such as 

mechanical systems [12], vehicle system [13], and an 

electrical system like DC-DC converter [14], load frequency 

control [15], and permanent magnet synchronous motor [9]. 

IMC policy was developed by Garcia and Morari [16], the 

design strategy of IMC is broadly documented that can realize 

the robust performance for tracking and disturbance rejection 

from the system response [17, 18]. The industrial applications 

of IMC for an electro-mechanical system such as heavy-duty 

vehicles [17, 19, 20], power system [21], and milling CNCMT 

system [22] are discussed. The robust H∞ controller using 

mixed sensitivity approach addresses the problem of system 

robustness by designing controllers in presence of noise and 

disturbance in the system [23, 24]. The method of selecting 

weighting functions for H∞ control has been discussed by 

Tewari et al. [25-27]. The various applications of the H∞ 

control theory is presented by Yadav et al. [13, 25, 26]. The 

modern and artificial intelligence-based control techniques 

such as fuzzy logic, adaptive, and artificial neural network-

based controls of CNCMT is presented in the papers [1, 2, 22, 

28, 29]. The benefits of artificial intelligence-based techniques 

such as fuzzy logic and artificial neural network are to reduce 

the mathematical complexity of controller design for the actual 

nonlinear, time-varying, and uncertain systems. 

The effects of parametric uncertainty and disturbance on 

uncertain CNCMT systems with all three designed controllers 

are analyzed as proposed in this paper. The performance 

specifications such as OS, settling time (ST) and rise time (RT), 

and SM are considered for performance analysis of uncertain 

CNCMT system with designed controllers. A comparative 

performance analysis of controllers for the CNCMT system is 

presented to identify the superior controller over all the 
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controllers designed in this paper. The robustness of the 

CNCMT system against parametric uncertainty using all 

designed controller is measured in terms of SM. Apart from 

OS, RT, ST, and SM performance parameters, the input 

disturbance and sensor noise rejection capability are also taken 

into consideration for performance analysis of different 

controllers. 

The organization of the paper is as follows: In Section 2 the 

detailed modeling of uncertain CNCMT system is presented. 

The design of robust PI, IMC, and H∞ controllers and stability 

analysis of the CNCMT system are presented in Section 3. In 

Section 4, simulation results and discussion of controllers as 

applied to the CNCMT system are presented, followed by the 

conclusion in Section 5. 

 

 

2. MODELING OF CNCMT SYSTEM 

 

The physical configuration and Mechatronic diagram of the 

CNCMT system are shown in Figure 1 (a) and (b) respectively 

[22]. The block diagram of CNCMT systems is shown in 

Figure 2, and the parameters of blocks shown in the same are 

derived in Appendix-A.  

The input to the CNCMT is electric power to the power 

amplifier which gives the suitable voltage applied to the servo 

motor and the output variables are position, velocity, and 

acceleration of the machine table. The position and velocity of 

the machine table are considered as output variables of the 

CNCMT system in this paper. In this work two feedback loops 

are employed which has the advantage to reduce the OS and is 

used where it is undesirable like in cutting and welding 

operations. The friction due to lead screw shaft is very less as 

compared to friction due to drilling, boring and milling 

operations in the CNCMT system. Therefore, assuming the 

lead screw shaft is friction-free. The detailed mathematical 

modeling of the CNCMT system is presented in appendix-A. 

The nominal values and the range of parametric uncertainty of 

the CNCMT system used in simulation and stability analysis 

are given in Table 1. The equivalent inertia (Im) i.e. combined 

inertia of motor shaft and lead screw shaft, weight/mass of 

workpiece (m), gains of the power amplifier (K1), and 

servomotor (K2) are considered as uncertain parameters as 

shown in Table 1. Because under running conditions inertia of 

the motor are varying, and the parameters related to gains of 

power amplifier and servomotor are changing under varying 

environmental conditions. Therefore, these parametric 

uncertainties are considered in this study. From Figure 2, the 

transfer function of CNCMT system G(s) is represented by (1). 

 

𝐺(𝑠) =
𝑋0(𝑠)

𝑈(𝑠)
=

𝐾1𝐾2𝑛𝑝

(𝑝2𝑚 + 𝑛2𝐼𝑚)𝑠2 + 𝐾1𝐾2𝑛𝐻2𝑠
 

=
𝐾1𝐾2𝑛𝑝 (𝑝2𝑚 + 𝑛2𝐼𝑚)⁄

𝑠2 +  
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚 + 𝑛2𝐼𝑚)
 𝑠

 
(1) 

 

where, p is the pitch of lead screw, n is gear ratio, H1 is the 

gain of encoder and H2 is the gain of tach generator. X0(s) is 

the actual position of the machine table on the lead screw shaft 

which is coupled with the shaft of DC servo motor through the 

gearbox, and ‘s’ refers to Laplace function. In real or practical 

applications any system may be approximated as first or 

second-order plus delay time model, hence the open-loop 

transfer function of the CNCMT system is achieved after 

putting the values in (1) from Table 1, which is as follows: 

 

𝐺(𝑠) =
𝑋0(𝑠)

𝑈(𝑠)
=

4.85

𝑠(𝑠 + 9.7)
∗ 𝑒−𝑇𝑑𝑠 (2) 

 

where, Td is the delay time Td=0.1 is considered for simulation 

while in robustness analysis it is neglected for easy calculation. 

It is clear from (2) that there is one pole at origin i.e. 

integrator type, hence open-loop system is marginally stable. 

The location of poles depends upon machine parameters which 

have uncertainty; hence it is required to design a robust 

controller that improves the system performance. In this 

research, the robust PI, IMC, and H∞ controllers are taken into 

consideration for the desired position of the machine table on 

the lead screw shaft. 

 

Table 1. Nominal values and uncertainty in CNCMT 

parameters 

 

Description (SI unit) Symbol  Uncertainty (%) 

Power Amp. gain (V/V) K1 2 ±50% 

Servomotor gain (Nm/V) K2 4 ±25% 

Mass of workpiece (kg) m 50±40% 

Equivalent inertia (kg-m2) Im 0.01±20% 

Pitch of lead screw (mm) p 5 

Gear ratio n 2:1 

Gain of encoder H1 1 

Gain of tachogenrator H2 0.1 

 

 
(a) 
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(b) 

 

Figure 1. (a) Physical configuration of CNCMT systems [22]; (b) Mechatronic diagram of CNCMT systems 

 

 
 

Figure 2. Block diagram of CNCMT systems 

 

 

3. DESIGN OF CONTROLLERS FOR CNCMT 

SYSTEM  

 

3.1 Kharitonov’s theorem 

 

The polynomial:  

 

𝑃(𝑠) = ∑ 𝑎𝑖

𝑛

𝑖=0

𝑠𝑛−𝑖

= 𝑎0𝑠𝑛 + 𝑎1𝑠𝑛−1+𝑎2𝑠𝑛−2 + ⋯
+ 𝑎𝑛−1𝑠 + 𝑎𝑛 

(3) 

 

where, 𝛼𝑖 ≤ 𝑎𝑖 ≤ 𝛽𝑖  , 0 ≤ 𝑖 ≤ 𝑛, and αi and βi are lower and 

upper limit values of polynomial respectively. 

Kharitonov’s theorem says that the P(s) is stable if four 

polynomials as given by (4) are stable. 

 

𝑝1(𝑠) = 𝛼0𝑠𝑛 + 𝛼1𝑠𝑛−1 + 𝛽2𝑠𝑛−2 + 𝛽3𝑠𝑛−3 + ⋯ 

𝑝2(𝑠) = 𝛼0𝑠𝑛 + 𝛽1𝑠𝑛−1 + 𝛽2𝑠𝑛−2 + 𝛼3𝑠𝑛−3 + ⋯ 

𝑝3(𝑠) = 𝛽0𝑠𝑛 + 𝛼1𝑠𝑛−1 + 𝛼2𝑠𝑛−2 + 𝛽3𝑠𝑛−3 + ⋯ 

𝑝4(𝑠) = 𝛽0𝑠𝑛 + 𝛽1𝑠𝑛−1 + 𝛼2𝑠𝑛−2 + 𝛼3𝑠𝑛−3 + ⋯ 

(4) 

 

The necessary and sufficient condition for robust stability 

of the third-order system and formula for calculation of SM is 

given by Hote et al. [14] which is as follows: 

 

𝛼1 𝛼2 >  𝛽0 𝛽3 and 𝑆𝑀 =  𝛼1𝛼2 −  𝛽0𝛽3 (5) 

 

Hence, if the SM is high i.e. more positive, then the system 

will be more stable, if the SM is zero, then the system is 

marginally stable, otherwise, the system will be unstable. 

 

3.2 Design of controller using the worst GM and PM 

 

The closed-loop characteristic equation (CLCE) with 

controller C(s) is written as 

1 + 𝐺(𝑠)𝐶(𝑠) = 0 (6) 

 

In order to determine the GM, a virtual gain kv is introduced 

in series with G(s). Therefore, the CLCE in the form of a 

polynomial can be written as; 

 

𝑃(𝑠) = 𝑎0𝑠3 + 𝑎1𝑠2+𝑎2𝑠 + 𝑎3𝑘𝑣  (7) 

 

The GM of the system is calculated simply from the s1 row 

of the Routh array and the phase crossover frequency ѡcp is 

determined using an auxiliary equation which is derived from 

the s2 row. Considering p3(s) because it gives the worst value 

of GM and PM [9, 10] the equation for p3(s) of (4) using (7) is 

as follows: 

 

𝑝3(𝑠) = 𝛽0𝑠3 + 𝛼1𝑠2 + 𝛼2𝑠 + 𝛽3𝑘𝑣 (8) 

 

Formulate the Routh table and taking higher-order 

coefficient is equal to 1. 

 
𝑠3 1 𝛼1 

𝑠2 𝛼2 𝛽3𝑘𝑣  

𝑠1 (𝛼1𝛼2 − 𝛽3𝑘𝑣)/ 𝛼2 0 

𝑠0  𝛽3𝑘𝑣1 0 

 

From s1 row of above Routh table, 

 

(𝛼1𝛼2 − 𝛽3𝑘𝑣)/ 𝛼2 = 0 (9) 

 

𝑘𝑣 =
𝛼1𝛼2

𝛽3

=
coefficient of 𝑠2 × coefficient of 𝑠1

coefficient of 𝑠0
 (10) 

 

GM in dB =20 log 
𝛼1𝛼2

𝛽3
 (11) 
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The auxiliary equation, from s2 row of Routh table, is 

written as:  

 

𝛼2𝑠2 +  𝛽3𝑘𝑣 = 0 (12) 

 

Put s=jw and 𝑘𝑣 =
𝛼1𝛼2

𝛽3
 in (12), it gives wcp 

 

𝜔 = 𝜔𝑐𝑝 = √𝛼2 = √coefficient of 𝑠1 (13) 

 

In order to determine the PM, gain crossover frequency wcg 

is determined first which is calculated using the empirical 

formula as given by [10]: 

 

𝜔𝑐𝑔 = 𝜔𝑐𝑝 (
1

𝑘𝑣

)
0.5

 (14) 

 

From (10), (13), and (14); 𝜔𝑐𝑔 = √𝛽3 𝛼1⁄  and PM is as 

follows: 

 

𝑃𝑀

= 1800 − 900 − tan−1 (√𝛼1
3 ∗ 𝛽3 (𝛼1𝛼2 − 𝛽3)⁄ ) 

(15) 

 

In recent research, the typical range of GM and PM is 5-

10dB and 50°-70° respectively. To design a robust PI 

controller the 10 dB of GM and 60° of PM is considered in this 

paper. From (1) and (6) the CLCE with PI controller can be 

written as: 

 

1 + (

𝐾1𝐾2𝑛𝑝
(𝑝2𝑚 + 𝑛2𝐼𝑚)

𝑠2 +
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚 + 𝑛2𝐼𝑚)
𝑠

) (𝐾𝑃 +
𝐾𝐼

𝑠
) = 0 (16) 

 

where, KP and KI are parameters of the PI controller. 

Formulate a polynomial p(s) using p3(s) of (4), (16) and values 

from Table 1, yields (17). 

 

𝑝(𝑠) = 𝑠3 + 7.5𝑠2+3𝐾𝑃𝑠 + 6𝐾𝐼  (17) 

 

The lower and upper limit values of (17) are as follows: 

α1=7.5, α2=3 and β0=1, β3=6 respectively. 

From (11) and (17), 

 

𝐺𝑀 = 20 log 
7.5 ∗ 3 ∗ 𝐾𝑃

6𝐾𝐼

= 10 ⇒ 𝐾𝑃 = 0.84 ∗ 𝐾𝐼  (18) 

 

From (15) and (17), 

 

𝑃𝑀 = 1800 − 900

− tan−1 (
√7.53 ∗ 6 ∗ 𝐾𝐼

7.5 ∗ 3 ∗ 𝐾𝑃 − 6𝐾𝐼

)

= 600 

⇒ (22.5𝐾𝑃 − 6𝐾𝐼)2 = 7593.75 ∗ 𝐾𝐼  

(19) 

 

After solving (18) and (19); we obtain Kp=38.33 and 

K1=45.65. 

 

3.3 IMC design theory  

 

IMC has many features such as noise and disturbance 

rejection capability, tracking of reference trajectory, and 

insensitive to parameter variations i.e. it makes a robust system 

[22]. In IMC, a single tunable parameter μ exists as given in 

(22). The procedure to obtain the suitable value of μ is 

discussed in appendix-B. The controller parameter μ 

represents a trade-off between tracking performance and 

robustness of the system and this is a unique feature of IMC. 

The generalized architecture of IMC is presented in Figure 3(a) 

and the proposed simplified IMC block diagram is shown in 

Figure 3(b), which gives similar performance as given by the 

IMC as shown in Figure 3(a). It consists of controller C(s), 

original system (G(s)), and internal model G0(s). D(s) and N(s) 

are disturbance and noise in the system respectively. 

 

 
(a) 

 
(b) 

 

Figure 3. (a) Generalized architecture (b) Proposed block 

diagram of IMC 

 

From Figure 3(b); considering D(s) and N(s) are equal to 

zero. 

 

𝑋0(𝑠)  =
𝐺(𝑠)𝐶(𝑠)𝑋𝑑(𝑠)

1 + 𝐶(𝑠)𝐺(𝑠)
 (20) 

 

𝐶(𝑠) =
𝑄(𝑠)

1 − 𝐺0(𝑠)𝑄(𝑠)
 (21) 

 

The condition for perfect reference point tracking and effect 

of parameter variations are obtained, if G0(s)=G(s) and 

Q(s)=1/G(s) [18, 22]. If G(s) is proper, then it's inverse i.e. 

1/G(s) becomes improper. Hence to make a proper system a 

low pass filter is incorporated as a part of Q(s). Hence it is 

defined as: 

 

𝑄(𝑠) =
1

(𝜇𝑠 + 1)𝜆
𝐺(𝑠)−1 (22) 

 

where, λ is the value which makes Q(s) proper. The low pass 

filter parameter μ influences the speed of response and 

robustness of the system. Here taking λ=2 and μ=1 for the 

design of IMC. The selection procedure of the suitable value 

of μ for different operations of the CNCMT system is 

discussed in appendix-B. Therefore, the transfer function of 

IMC is as follows:  

 

𝐶(𝑠) =
0.21𝑠 + 2

𝑠 + 2
 (23) 
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3.4 H∞ control technique 

 

The standard configuration of H∞ control with weighting 

functions W1, W2, and W3, and the proposed robust control 

block for uncertain CNCMT system is shown in Figure 4 (a) 

and (b) respectively. The motive of controller C(s) is to obtain 

both tracking and robustness performances under a specified 

range of system parameters. 

In Figure 4(a), G(s) is the system with nominal values; z, y, 

SV, and u are the controlled output, the measured output, the 

set value, and the control input respectively, whereas of W1(s), 

W2(s) and W3(s) are weights to the tracking error, controller 

transfer function, and system performance respectively. Figure 

5 depicts the variation of singular values of the nominal system, 

plant uncertainty, and weighting function W1 and W3 with low 

to high frequency. 

 

 

 
(b) 

 

Figure 4. (a) Standard configuration of H∞ control with W1, 

W2, and W3 weighting functions; (b) Proposed robust control 

block diagram for uncertain CNCMT system 

 
 

Figure 5. Plot of singular values of the nominal system, plant 

uncertainty, and W1 and W3 

 

The C(s) is designed such that the H∞ norm of the sensitivity 

matrix ||S(jω)||∞ and the mixed-sensitivity matrix, ||M(jω)||∞ 

are minimized, where M(jω) is given by the following 

equation [13, 25]. 

𝑀(𝑗𝜔) = [

𝑊1(𝑗𝜔)𝑆(𝑗𝜔)

𝑊2(𝑗𝜔)𝐶(𝑗𝜔)𝑆(𝑗𝜔)

𝑊3(𝑗𝜔)𝑇(𝑗𝜔)

] (24) 

 

The weighting matrices for tracking and robustness 

performance of H∞ control is represented as follows [25]: 

 

𝜎𝑚𝑎𝑥(𝑆(𝑗𝜔)) ≤ 𝜎𝑚𝑎𝑥(𝑊1
−1(𝑗𝜔)) 

𝜎𝑚𝑎𝑥(𝐶(𝑗𝜔)𝑆(𝑗𝜔)) ≤ 𝜎𝑚𝑎𝑥(𝑊2
−1(𝑗𝜔)) 

𝜎𝑚𝑎𝑥(𝑇(𝑗𝜔)) ≤ 𝜎𝑚𝑎𝑥(𝑊3
−1(𝑗𝜔)) 

(25) 

 

where, σmax is the maximum singular value. The H∞ control 

algorithm used in this work is as follows: 

 
‖𝜗𝑀(𝑗𝜔)‖∞ ≤ 1 (26) 

 

where, ϑ is a scaling factor. Using a robust control toolbox of 

MATLAB command ‘hinfopt’ which iterates ϑ until a 

stabilizing solution which satisfies (26) is obtained. The 

selection of W1(s), W2(s), and W3(s) are determined with the 

help of Yang et al. [26]. The weighting transfer functions used 

in the simulation are given as below:  

 

𝑊1(𝑠) =
20

s+0.01
, 𝑊2(𝑠) = 1 and 𝑊3(𝑠) =

1

s+0.1
 (27) 

 

Iteration number 14 gives an answer under the tolerance of 

0.0100, which has ϑ=1.3794*10-2. The order of the resulting 

controller is fourth, which is the same as the order of the 

augmented plant. The stabilizing C(s) is obtained as follows: 

 

𝐶(𝑠)

=
20.12 𝑠3 + 197.2 𝑠2 + 19.52 𝑠 + 2.72 ∗ 10−13

𝑠4 + 14.23 𝑠3 + 54.16 𝑠2 + 5.879 𝑠 + 0.05339
 

(28) 

 

Using order reduction command ‘reduce' of MATLAB, the 

original controller given by (28) is reduced to the first order 

for easy calculation of robust stability. The reduced-order 

controller gives almost similar performance as the original 

higher-order controller. The original and reduced order 

controller gives almost the same singular value from low to 

high-frequency range as shown in Figure 6. 
 

 
 

Figure 6. Plot of singular values of original forth and 

reduced first-order controller C(s) 

 

The transfer function of reduced first order stabilized 

controller C(s) is as follows: 
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𝐶(𝑠) =
20.97

𝑠 + 5.5
 (29) 

 

3.5 Robustness analysis of uncertain CNCMT system in 

terms of SM 
 

The robust stability analysis of uncertain CNCMT systems 

with robust PI, IMC, and H∞ controllers, and using the 

Kharitonov theorem is presented in this section. For the robust 

stability analysis and calculation of SM, it is required to 

calculate the α1, α2, β0 and β3 as represented in (5). The CLCE 

of CNCMT system with a robust PI controller is as follows:  
 

𝑠3 +
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚 + 𝑛2𝐼𝑚)
𝑠2 +

𝐾1𝐾2𝑛𝑝

(𝑝2𝑚 + 𝑛2𝐼𝑚)
𝐾𝑃𝑠

+
𝐾1𝐾2𝑛𝑝

(𝑝2𝑚 + 𝑛2𝐼𝑚)
𝐾𝐼 = 0 

(30) 

 

where, Kp=38.33, K1=45.65, and β0=1. The uncertainty of 

CNCMT system parameters as shown in Table 1 is used for 

calculation of α1, α2, and β3 as shown below: 
 

𝛼1 = 𝑚𝑖𝑛 {
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚+𝑛2𝐼𝑚)
} = 7.5, 

𝛼2 = 𝑚𝑖𝑛 {
𝐾1𝐾2𝑛𝑝

(𝑝2𝑚+𝑛2𝐼𝑚)
𝐾𝑃} = 115 and 

𝛽3 = 𝑚𝑎𝑥 {
𝐾1𝐾2𝑛𝑝

(𝑝2𝑚 + 𝑛2𝐼𝑚)
𝐾𝐼} = 273.9 

(31) 

 

With these values satisfying the condition (5); gives 

7.5*15>273.89, hence the system is found stable. From (5) SM 

is calculated as 588.6. 

The CLCE with IMC is given by (32). 
 

𝑠3 + {2 +
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚 + 𝑛2𝐼𝑚)
} 𝑠2

+ {2 ∗
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚 + 𝑛2𝐼𝑚)
+ 0.21

∗
𝐾1𝐾2𝑛𝑝

(𝑝2𝑚 + 𝑛2𝐼𝑚)
} 𝑠 + 2

∗
𝐾1𝐾2𝑛𝑝

(𝑝2𝑚 + 𝑛2𝐼𝑚)
= 0 

(32) 

 

The values of α1, α2, and β3 are calculated and as given 

below: 
 

𝛼1 = 𝑚𝑖𝑛 {2 +
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚+𝑛2𝐼𝑚)
} = 9.5, 

𝛼2 = min {2 ∗
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚+𝑛2𝐼𝑚)
+ 0.21 ∗

𝐾1𝐾2𝑛𝑝

(𝑝2𝑚+𝑛2𝐼𝑚)
} = 16.575  and 𝛽3 = max {2 ∗

𝐾1𝐾2𝑛𝑝

(𝑝2𝑚+𝑛2𝐼𝑚)
} = 12 

(33) 

 

The stability condition as given by (5) is satisfied; therefore, 

the uncertain system is found as stable. The SM from (5) is 

calculated as 9.5*16.575-12=145.4.  

The CLCE with H∞ controller is as follows: 
 

𝑠3 + {5.5 +
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚 + 𝑛2𝐼𝑚)
} 𝑠2

+ {5.5 ∗
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚 + 𝑛2𝐼𝑚)
} 𝑠

+ 20.97 ∗
𝐾1𝐾2𝑛𝑝

(𝑝2𝑚 + 𝑛2𝐼𝑚)
= 0 

(34) 

The values of α1, α2, and β3 are calculated and as given 

below: 

 

𝛼1 = min {5.5 +
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚+𝑛2𝐼𝑚)
} = 13, 

𝛼2 = min {5.5 ∗
𝐾1𝐾2𝑛𝐻2

(𝑝2𝑚+𝑛2𝐼𝑚)
} = 41.25 and 

𝛽3 = max {20.97 ∗
𝐾1𝐾2𝑛𝑝

(𝑝2𝑚 + 𝑛2𝐼𝑚)
} = 125.82 

(35) 

 

The stability condition is given by (5) is satisfied; hence the 

uncertain system is stable. The SM is calculated as follows: 

13*41.25-125.82=410.4, which is slightly less than as 

obtained using a robust PI controller but it is much more than 

that obtained using IMC. With high SM controller can handle 

a wider range of parametric uncertainty in the CNCMT system. 

 

 

4. SIMULATION RESULTS AND DISCUSSION 

 

The results obtained using MATLAB simulations are 

presented in this section. The response of uncertain CNCMT 

systems with robust PI, IMC, and H∞ controllers are presented 

and compared. Figures 7 to 9, show the step response of the 

CNCMT system with robust PI, IMC, and H∞ controllers 

respectively.  

The response Figures 7 to 9 are plotted after considering 10 

uncertain samples between the lower and upper limit via 

nominal values as given in Table 1. The performance index of 

nominal and uncertain CNCMT system with all designed 

controllers is given in Table 2. From Figures 7-9 and Table 2, 

it is evident that the H∞ controller gives the narrowest OS, ST, 

and RT bands as compared to robust PI and IMC, meaning that 

the narrower bands give a similar performance under 

parameter variations, i.e., the robustness of the uncertain 

CNCMT system towards the parametric uncertainty is 

achieved with the H∞ controller. Hence H∞ controller gives 

better performances as compared to robust PI and IMC for 

uncertain CNCMT systems.  

Figure 10 shows the combined response of nominal system 

parameters with all designed controllers for comparative 

performance analysis. Figure 11 shows the response of the 

controller output of robust PI, IMC, and H∞ control techniques 

for the CNCMT system. From Figure 11, it is evident that the 

IMC gives the least and sluggish control effort, H∞ control 

gives moderate and fast control effort whereas robust PI 

controller gives high output that implies it requires much 

control effort for the regulation of the desired position of the 

CNCMT system. 

 

 
 

Figure 7. Step response of uncertain CNCMT system with 

robust PI controller 
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Figure 8. Step response of uncertain CNCMT system with 

IMC controller 

 

 
 

Figure 9. Step response of uncertain CNC system with H∞ 

controller 
 

Table 2. Performance index of nominal and uncertain system 

 

Performance Parameters 

Controller OS (%) ST (s) RT (s) SM 

Robust 

PI 

Nominal 41.2 0.88 0.14 588.6 

Uncertain 32.8-

45.3 

0.77-

1.33 

0.123-

0.27 

IMC Nominal 0.57 ≃ 0 5.84 3.36 145.46 

Uncertain 0.12-

1.27 

4.1-

7.08 

2.56-

3.98 

H∞ Nominal 6.3 2.09 1.12 410.43 

Uncertain 0.598-

10.9 

1.34-

2.32 

1.02-

1.74 

 

 
 

Figure 10. The combined response of CNCMT system with 

all designed controllers 

 

Figure 12 shows the input disturbance and non-

deterministic noise in the system. The variation in input 

voltage is considered as input disturbance and noise due to the 

sensor i.e. sensory noise is usually generated during the 

measurement is considered in this paper. These disturbances 

and noise are used for showing the response Figure 13, which 

is the combined response of the CNCMT system in the 

influence of disturbance and noise with all designed 

controllers. The proposed H∞ controller gives better input 

disturbance and sensor noise rejection capability as clearly 

seen in Figure 13. 
 

 
 

Figure 11. Controlled input response of all designed 

controllers for CNCMT system 
 

 
 

Figure 12. Input disturbances and noise signal after the 

sensor unit 
 

 
 

Figure 13. Response with input disturbance and sensor noise 
 

From Figure 10, it is evident that the robust PI controller 

gives the least ST and RT and very high OS and better SM as 

compared to IMC and H∞ controllers. High OS is harmful, 

which is unwanted energy and cannot be tolerated for cutting 

operations in CNC machines. IMC gives nearly zero OS, but 

it gives the least SM and more RT and ST as compared to 

robust PI and H∞ controllers, which indicates sluggish CNC 

machine operations. H∞ controller gives all the performance 

parameters such as OS, ST, RT, and SM under design 

consideration and suitable for all CNC machine tool 

operations such as drilling, cutting, milling, boring, finishing, 

aligning etc. According to the proper balance of performance 

parameters, H∞ controller is best amongst the other designed 

controllers. 

 

 

5. CONCLUSION 

 

In this paper the robust PI, IMC, and H∞ controllers are 

designed successfully for uncertain CNCMT system that is 

subjected to input disturbance and sensor noise. Comparative 

performance analysis of the controllers is performed and 
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shows that H∞ controller gives a better and desirable 

performance index and reasonable SM among all other 

reported controllers. H∞ controller and IMC have eliminated 

measurement noise and disturbance completely as compared 

to the robust PI controller. Hence H∞ controller is considered 

best out of other designed controllers in this paper. This robust 

control technique may also be applied to aerospace and other 

electromechanical systems. 
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NOMENCLATURE 
 

Acronyms 

 

CLCE closed-loop characteristic equation 

CNC computerized numeric controlled 

CNCMT computerized numeric controlled machine 

tool 

GM gain margin 

IMC internal model control 

OS overshoot 

PI proportional-integral 

PM phase margin 

RT rise time 

SM stability margin 

ST settling time 
 

Symbols 
 

C(s) Controller 

H1 the gain of shaft encoder 

H2 gain of tachogenrator 

Im equivalent inertia (kg-m2) 

K1 power amplifier gain (V/V) 

K2 servomotor gain (Nm/V) 

KP proportional gain of PI controller 

KI integral gain of PI controller 

m mass of work piece (kg) 

n gear ratio 

p pitch of lead screw (m) 

𝑇𝑑 delay time (s) 

W1, W2, 

W3 

weighting functions 

𝜆, 𝜇 filter parameters of IMC 
 

 

APPENDIX-A 
 

This section presents the modeling of the CNCMT system 

and derivation of the transfer function of the same as 

represented by (1). Consider Figures 1 and 2 for the complete 

modeling of the CNCMT system [4]. 

1. Power Amplifier: The output of the power amplifier is a 

controlled input 𝐸(𝑠) to the DC servomotor as follows: 
 

𝐸(𝑠) = 𝐾1(𝑈(𝑠) − 𝐵(𝑠)) (36) 
 

where, K1 is the gain of the power amplifier. 

2. DC servo motor: The applied voltage e(t) is described as 

follows: 
 

𝑒(𝑡) = 𝐿𝑓

𝑑𝑖𝑓

𝑑𝑡
+ 𝑅𝑓𝑖𝑓 (37) 

where, Lf and Rf are the motor parameters, and if is the field 

current. The motor torque Tm ∝ 𝑖𝑎 𝑖𝑓, since 𝑖𝑎 is constant for 

field controlled DC motor, therefore Tm=Kf if, where Kf is the 

constant. Assuming field time constant Lf/Rf is small as 

compared to the mechanical time constant of the motor. 

Therefore, Tm is as follows: 

 

𝑇𝑀(𝑠) = 𝐾2𝐸(𝑠) (38) 

 

The equivalent block diagram of field controlled DC servo 

motor is shown in Figure 14. 

 

 
 

Figure 14. Equivalent field controlled DC servo motor 
 

3. Gearbox, Lead Screw, and Machine Table: The free 

body diagram of the gearbox with motor and lead screw shafts 

are shown in Figure 15. 

 

 
 

Figure 15. Free body diagram of the gearbox with motor and 

lead screw shafts 

 

For the motor shaft: 

 

∑ 𝑀 = 𝐼𝑚

𝑑2𝜃𝑚

𝑑𝑡2
 (39) 

 

𝑇𝑚(𝑡) − 𝐶𝑚

𝑑𝜃𝑚

𝑑𝑡
− 𝑎𝑋(𝑡) = 𝐼𝑚

𝑑2𝜃𝑚

𝑑𝑡2
 (40) 

 

where, X(t) is gear tooth reaction force, θm is the angular 

position of the motor, a is the radius of gear connected to the 

motor and Im is the equivalent inertia of the motor. 

Rearranging (40), 

 

𝑋(𝑡) =
1

𝑎
(𝑇𝑚(𝑡) − 𝐶𝑚

𝑑𝜃𝑚

𝑑𝑡
− 𝐼𝑚

𝑑2𝜃𝑚

𝑑𝑡2
) (41) 

 

Taking Laplace transform of (41) with Cm=0. 
 

𝑋(𝑠) =
1

𝑎
(𝑇𝑚(𝑠) − 𝐼𝑚𝑠2𝜃𝑚(𝑠)) (42) 

 

The Free body diagram of the machine table and lead screw 

shaft is shown in Figure16. 

For lead screw shaft assuming: work in = workout. 

 

𝑏𝑋(𝑡)𝜃0(𝑡) = 𝐹(𝑡)𝑥0(𝑡) (43) 
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where, b is the radius of gear connected to the lead screw shaft, 

θ0 is the angular position of lead screw, F(t) is the force acting 

on the machine table and x0 is the linear position of the 

machine table.  

Figure 16. Free body diagram of the machine table and lead 

screw shaft 

The pitch p of the lead screw is defined as: 

𝑝 =
𝑥0(𝑡)

𝜃0(𝑡)
(44) 

From (43) and (44), 

𝐹(𝑡) =
𝑏𝑋(𝑇)

𝑝
(45) 

The equation of motion for the machine table is written as 

follows: 

𝐹(𝑡) = 𝑚�̈�0 (46) 

Equating (45) and (46) and taking Laplace transform. 

𝑋(𝑠) =
1

𝑏
(𝑝𝑚𝑠2𝑋0(𝑠)) (47) 

Equating (42) and (47) gives (48). 

𝑝𝑚𝑠2𝑋0(𝑠) =
𝑏

𝑎
(𝑇𝑚(𝑠) − 𝐼𝑚𝑠2𝜃𝑚(𝑠)) (48) 

where, 
𝑏

𝑎
= 𝑛 i.e. gear ratio and 

𝜃𝑚(𝑠) = 𝑛𝜃0(𝑠) (49) 

Hence, 

𝑠2𝜃𝑚(𝑠) = 𝑛𝑠2𝜃0(𝑠) (50) 

From (44), 

𝐺0(𝑠) =
𝑋0(𝑠)

𝑝
(51) 

From (48) to (51), 

𝑝𝑚𝑠2𝑋0(𝑠) = 𝑛𝑇𝑚(𝑠) − 𝑛𝐼𝑚

𝑛

𝑝
𝑠2𝑋0(𝑠) (52) 

Hence the open-loop transfer function of the gearbox, lead 

screw, and machine table is obtained after rearranging (52), 

which is as follows: 

𝑠𝑋0(𝑠)

𝑇𝑚(𝑠)
=  

𝑛

(𝑝𝑚 +
𝑛2𝐼𝑚

p
) 𝑠

(53) 

4. Tachogenerator: The feedback signal B(s) is given as:

𝐵(𝑠) = 𝐻2𝑠𝜃0(𝑠) or 𝐵(𝑠) = 𝐻2𝑠𝑋0(𝑠)/𝑝 (54) 

where, H2 is the gain of tachogenerator. 

5. Position transducer: Feedback signal Xm(s) is given as

follows: 

𝑋𝑑(𝑠) = 𝐻1𝑋0(𝑠) (55) 

where, H1 is the gain of shaft encoder. The overall system is 

represented in Figure 2 is a block diagram of the CNCMT 

system. The complete open-loop transfer function of the 

CNCMT system is given by (1). 

APPENDIX-B 

This appendix presents the investigative approach for the 

selection of adjustable parameter μ of IMC. Let us consider a 

generlized second order system as given below: 

𝐺(𝑠) =
𝑘

𝑠2+𝑑1𝑠+𝑑0
(56) 

and from (21); 

𝐶(𝑠) =
𝑄(𝑠)

1 − 𝐺0(𝑠) ∗ 𝑄(𝑠)
(57) 

where, 𝑄(𝑠) =
1

(𝜇𝑠+1)𝑛 𝐺(𝑠)−1 and 𝐺0(𝑠) = 𝐺(𝑠)

For n=2, 𝐶(𝑠) =
𝑠2+𝑑1𝑠+𝑑0

𝑘(𝜇2𝑠2+2𝜇𝑠)
(58) 

The CLCE is 1+G(s)C(s)=0, that becomes (59) after putting 

the values of G(s) and C(s) from (56) and (58) respectively. 

𝑠2 +
2

𝜇
𝑠 +

1

𝜇2
= 0 (59) 

Comparing (59) with standard second order characteristic 

equation i.e. 𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2 = 0, gives 𝜉 = 1 and 𝜔𝑛 =

1

𝜇
.

A performance Table 3 is used for the selection of suitable 

value of μ. 

Table 3. Performance parameters for different values of 𝜇 

𝝁 𝜉 𝝎𝒏

DP = −𝝃𝝎𝒏 ±

𝒋 𝝎𝒏√(𝟏 − 𝝃𝟐)
ST 

=4/ξωn 
OS 

0.1 1 10 -10 0.4 0 

1.0 1 1 -1 4 0 

10 1 0.1 -0.1 40 0 

The selection of the desired value of μ requires a proper 

balance of bandwidth, ST, RT, sensitivity, and control efforts, 

etc. Hence according to the proper balance of performance 

parameters as derived in Table 3, μ=1 is the best out of the 

three given values as 0.1, 1, and 10. 

670




