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Dissolved oxygen (DO) concentration is a key variable in the activated sludge wastewater 

treatment processes. In this paper, an auto control strategy based on Euler method and 

gradient method with radial basis function (RBF) neural networks (NNs) is proposed to 

solve the DO concentration control problem in an activated sludge process of wastewater 

treatment. The control purpose is to maintain the dissolved oxygen concentration in the 

aerated tank for having the substrate concentration within the standard limits established 

by legislation of wastewater treatment. For that reason, a new proposed control strategy 

based on gradient descent method and RBF neural network has been used. Compared with 

RBF neural network PI control, the obtained results show the effectiveness in terms of 

both transient and steady performances of proposed control method for dissolved oxygen 

control in the activated sludge wastewater treatment processes. 

Keywords: 

activated sludge process, wastewater 

treatment, gradient descent algorithm, RBF 

neural network, PI control 

1. INTRODUCTION

The wastewater treatment process is a very complex process; 

it presents strong nonlinearity and uncertainties regarding to 

its parameters. The wastewater treatment comprises various 

steps used for reducing the contaminants in the wastewater 

which are: pretreatment, primary treatment, secondary 

treatment [1, 2]. The pretreatment has the objective of 

removing solid objects, and to skimming off floating greases 

and oils. Without passing the wastewater through the 

pretreatment, these objects may cause block and damage the 

equipment and the other steps of treatments. The primary 

treatment removes the remaining suspended and dissolved 

solids. 

The secondary or biological treatment is the most important 

step of wastewater treatment. It aims to add microorganisms 

to reduce the organic matter, nitrogen and phosphorus from the 

wastewater. There are different methods used in the 

wastewater treatment process, but the most used and popular 

one is the activated sludge process (ASP) [3, 4]. 

In the last years, varieties of researches have been 

conducted about the control of the level of dissolved oxygen 

to enhance the process. In general, improvements are related 

to the controlling techniques. A linear proportional integral (PI) 

controller with feedforward from the flow rate and the 

respiration rate has been shown as a basic strategy [4]. Because 

of the PID controller limitation, the classical method of 

proportional integral derivative (PID) has been attempted, and 

the controlling effect of the dissolved oxygen is not 

satisfactory enough. However, the controllers are normally 

designed for the particular operational conditions because of 

the scarcity of sufficient hard or soft sensors and the nonlinear 

features of the bioprocesses [5]. In recent times, scholars have 

begun to study the artificial intelligence (AI) technologies 

which can be widely implemented in numerous areas, 

including chemical and biochemical processes and. Due to its 

great capabilities and adaptabilities of nonlinear modelling, 

the most prevalent AI controlling strategies are neural network 

and fuzzy network, which are usually integrated with the PID 

control. A fuzzy method to the control of dissolved oxygen in 

the process of aeration was studied by Man et al. [6]. An 

adaptive fuzzy control strategy for dissolved oxygen 

concentration was used to control of an activated sludge 

process Liu et al. [7]. In the paper [8] an adaptive fuzzy neural 

network-based model predictive control (AFNN-MPC) is 

proposed for the control problem of DO concentration. 

Piotrowski proposed a supervisory heuristic fuzzy control 

system applied to a Sequencing Batch Reactor (SBR) in the 

Wastewater Treatment Plant (WWTP) [9]. Lin and Luo [10] 

developed an adaptive neural technique using a disturbance 

observer to solve the dissolved oxygen concentration control 

problem. An improved multi objective optimal control 

(MOOC) strategy is developed to improve the operational 

efficiency, satisfy the effluent quality (EQ) and reduce the 

energy consumption (EC) in wastewater treatment process 

[11]. Mirghasemi proposed a robust adaptive neural network 

control strategy and used it to control the dissolved oxygen in 

activated sludge process application [12].  

In this paper, a control strategy based on Euler method and 

gradient method with RBF neural network is proposed to 

control the dissolved oxygen concentration in an activated 

sludge process of wastewater treatment. The Euler is a 

numerical method that is used to approximate the solution of a 

nonlinear differential equation (nonlinear system), and the 

gradient descent algorithm and the RBF neural network are 

used to find the values of a function's parameters (coefficients) 

that minimize a performance function as possible. The 

performance of the proposed control strategies laws is 
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illustrated with numerical simulations comparing their results 

with RBFNN-PI controller.  

The remainder of this paper is organized as follows: in 

Section 2, Euler method is clearly discussed, in Section 3, 

presents a nonlinear control strategy based on gradient method 

accompanied with neural network method. In Section 4, RBF 

neural network PI control is discussed. The Section 5, a 

mathematical model of wastewater treatment process is given. 

In Section 6, the simulation results are presented. Finally, it is 

ended by a conclusion. 

 
 
2. EULER METHOD  

 
The Euler's method is numerical method that is used to 

approximate the solutions of a differential equation (Figure 1). 

Let consider the following differential equation: 
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( ) 00, yyt =  is the initial condition. 

t: time variable, y: output system. 

The principal of Euler's method is to integrate the two parts 

of Eq. (1) between t0 and t1. 
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Figure 1. Euler method 

 

* The area of upper rectangle of ( )( )11, tytf  and length 

htt =− 01 . Then: 
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* The following statement results from the application of 

the trapezoidal rule in the approximation integration of the 

integral in Eq. (2). 
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By using Eq. (4), The numerical solution of Eq. (1) can be 

given by the following equation: 

 

( ) ( ) ( )( )0001 ,. tytfhtyty +=  (7) 

 

For 0k : 

 

( ) ( ) ( )( )kkkk tytfhtyty ,.1 +=+  (8) 

 

Now, consider a nonlinear system that can be written as the 

following differential equation: 
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Figure 2. Nonlinear system with single input-single output 

 

The curve of the output system ( )ku ty  depends on the input 

control u(t). If we consider two different inputs control u(t)=u0, 

and u(t)=u1, then Eq. (9) yields: 
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The numerical solutions of these equations (Eq. (10) and Eq. 

(11)) by using Euler's method are:  

 

( ) ( ) ( )( )01 ,,.
000

utytfhtyty kukkuku +=+  (12) 

 

( ) ( ) ( )( )11 ,,.
111

utytfhtyty kukkuku +=+  (13) 

 

Figure 3 shows the curves of Eq. (12) and Eq. (13). 

Figure 3 shows that if we apply two different inputs u(t)=u0 

and u(t)=u1 on system in Figure 2, we will have two different 

trajectories in the output system. Suppose that we know the 

input u(t)=u0, if we want that the trajectory ( )10 +ku ty  (blue 

curve) tracks the trajectory ( )11 +ku ty  (red curve), we have to 

find  the value of input control u1 that makes the trajectory 
0uy

tracks the trajectory 
1uy . 
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The aim of the proposed control strategy is to control the 

system output ( )10 +ku ty  to track a desired reference ( )1+ktr by 

changing at every instant tk the value of input control uk. 

 

 
 

Figure 3. Curve of Eq. (9) with two different inputs control 

( ) 0utu =  and ( ) 1utu =  

 

 

3. GRADIENT DESCENT ALGORITHM BASED ON 

RBF NEURAL NETWORK  
 

The proposed control strategy is depicted in Figure 4. 

 

 
 

Figure 4. Curve of Principal of the proposed control strategy 

 

Consider the following nonlinear system: 
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The numerical solution of Eq. (14) by using Euler's method 

is: 

 

( ) ( ) ( )( )00001 ,,.
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utytfhtyty uuu +=  (15) 

 

At time t1, we have to find the value of the input control u1 

to get: ( ) ( )110
trtyu = . 

( ) ( ) ( )( )10001 ,,.
001

utytfhtyty uuu +=  (16) 

 

The input control u1 is adjusted by using the gradient 

descent algorithm by minimizing the performance function 

with respect to u0.The performance function is the squared 

error 1( )E t  between 
1 1( )uy t  and 

0 1( )uy t . 
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Input control u1 updating by using the gradient descent 

algorithm: 
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where,  : learning rate.  
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In general case, it is difficult to calculate  the expression of 
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 , therefore, it has been known that the neural network 

can approximate any nonlinear function, then, it can be used 

to approximate 
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0
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u

tyu




. 

 

3.1 RBF neural network algorithm  
 

 
 

Figure 5. RBF neural network structure 
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A radial basis function neural network (RBFNN) is 

introduced into neural network in the paper [13], it has three 

layers: an input layer, a nonlinear hidden layer that uses 

Gaussian function as activation function, and a linear output 

layer [14]. The RBF networks have many uses, including 

function approximation, classification, and system control. It 

has the advantage of fast learning speed and is able to avoid 

the problem of local minimum. 

The structure of the RBF neural network is illustrated in 

Figure 5. 

The output of the thj  hidden neurons is given by the 

following equation:  

 















 −
−=

2

2

,

2
exp

j

ji

j
b

CX
h  (25) 

 

where,  TnxxxX ,...,, 21= is the input vector of the neural 

network. 

The RBF neural network output is described in the 

following equation: 

 















 −
−==  == 2

2

,

1
,

1
,

2
exp

j

jim

j jl

m

j jjlRBFNN
b

CX
WhWy

 

(26) 

 

where, Wl,j is the weight between the hidden layer and the 

output layer. The center Ci,j, the basis width parameter bj  and 

the weights Wl,j of the RBF neuron network are adjusted by 

using the gradient descent algorithm to minimize the sum of  

square error ERBFNN. 

The expression of ERBFNN is given as follow: 
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The corresponding modifier formulas are as follows: 
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where,  is the momentum factor, and  is the learning rate. 

From Eq. (24), we have: 
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The RBF neural network will be used to calculate the 

expression of 
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0
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. 

The schema of RBF neural network identification is 

depicted in Figure 6. 

 

 
 

Figure 6. Schema of RBF neural network identification 

 

If the RBF neural network output yRBFNN is equal to the 
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We substitute Eq. (45) in Eq. (37) to get the control law: 
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The steps of the proposed control strategy are as follows: 

Step1. We start by u=u0 (the choice of u0 depend on the 

study system). 

Step2. Initializing the network parameters: the number of 

nodes in input, hidden and output layer, the center Ci,j, the 

basis width parameter bj and the weights Wl,j, learning rate. 

Step3. for k0. 

- Calculating the output ( )1+ku ty
k

 and network output 

yRBFNN(tk+1), calculating the error eRBFNN(tk+1). 

- Adjusting of neural network parameters: Ci,j, jb  and Wl,j 

from Eq. (32), Eq. (34) and Eq. (36). 

- Calculating error e(tk+1) between ( )1+ku ty
k

 and r(tk+1). 

- Calculating the new value of uk+1 via the following 

expression: 
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Step 4. We replace the found value of uk+1 on the system. 

 

( ) ( ) ( )( )11 ,,.
000 ++ += kkukkuku utytfhtyty  (48) 

According to this algorithm, we can obtain: 

( ) ( )110 ++ = kku trty . 

The structure of the proposed method is illustrated in Figure 

7. 

 

 
 

Figure 7. Schema of the proposed control strategy 

 

 
 

Figure 8. Adaptive RBF neural network PI structure 

 

 

4. STRUCTURE OF RBF NEURAL NETWORK PI 

CONTROL 

 

The structure of the RBF neural network PI is based on two 

control strategy (Figure 8), the first one is a conventional PI 

control because of its good control performance and the 

second is the RBF neural network control strategy. The PI 

control is used for controlling the dissolved oxygen 

concentration in the aerobic reactor, and the RBF neural 

network is used to regulate the parameters of PI control: kp and 

ki for improving the adaptability of the controller. 

The mathematical expression of the PI (Proportional 

Integral) control algorithm is given by the following equation: 

 

( ) ( ) ( ) ( )( ) ( )kekkekekkuku ip +−−+−= 11  (49) 

 

where, u(k) is the output of the PI control (the input control of 

the system) and e is the error between the desired output r and 

actual system output. 

 

( ) ( ) ( )kykrke −=  (50) 
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It has been known that the PI control performance is based 

on the value of PI parameters kp and ki. To improve the 

performance of the PI controller against the disturbance on the 

system, the parameters kp and ki can be auto-adjusted and 

optimized, so, the adaptive PI control algorithm became: 

 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )kekkkekekkkuku ip +−−+−= 11  (51) 

 

The parameters of PI controller (kp and ki) are adjusted 

(auto-tuning) by using the gradient descent algorithm to 

minimize the sum of squared error E between the system 

output y and the desired output r. 

The performance function E is defined as: 
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According to the gradient descent method, the adjustment 

rules of the PI parameters are given as:  
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5. MATHEMATICAL MODEL OF WASTEWATER 

TREATMENT PROCESS 
 

The schematic of the wastewater treatment process is 

represented in Figure 9.  

 

 
 

Figure 9. Schema of activated sludge process 

The aeration tank is a biological reactor in which the 

microorganisms are developed by removing the organic 

substrate in the presence of the dissolved oxygen 

concentration. In the settler tank the solids are separated from 

the wastewater. The growth of micro-organisms (biomass) in 

the aeration tank is not sufficient, then, a part of the removed 

sludge (the sludge contains the biomass) is recycled back tothe 

aeration tank while the other part is removed from the system. 

The mathematical model considered in this paper contains 

four differential equations, the biomass concentrationX, the 

substrate concentration S, the dissolved oxygen concentration 

DO and the recycled biomass concentration Xr. The model is 

given by the following equations [17, 18]. 
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With: 
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W: the aeration flow rate. 

The aeration rate W is considered in this paper as the 

variable control for controlling the oxygen concentration in the 

aeration tank. Table 2 and Table 3 below show the parameters 

and initial values of the model respectively. 
 

Table 2. Model parameters 

 
Description Parameters Units Values 

Biomass yield factor Yh - 0.65 

Maximum specific growth 

rate 
max h-1 0.15 

Half-saturation coefficient 

for micro-organisms 
ks mg. l-1 100 

Oxygen half-saturation 

coefficient for 

micro-organisms 

kDO mg. l-1 2 

Maximum DO concentration DOmax mg. l-1 10 

Model constant K0 - 0.5 

Oxygen transfer rate  - 0.018 

Ratio of recycled r - 0.6 

Ratio of waste flow  - 0.2 

Influent substrate 

concentration 
Sin mg. l-1 200 

Influent DO concentration DOin mg. l-1 0.5 

Oxygen mass transfer 

coefficient 
KLa h-1 - 

Aeration rate W m3. h-1 - 

Dilution rate D  1−h  - 
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Table 3. Initial values 

 

Variables concentrations Symbols Units Values 

Substrate concentration Ss mg. l-1 88 

Biomass concentration X mg. l-1 20 

Dissolved oxygen 

concentration 
DO mg. l-1 2 

Recycle biomass 

concentration 
Xr mg. l-1 320 

 

 

6. RESULTS AND DISCUSSION  
 

This paper proposes a control strategy based on Euler and 

gradient method based on Radial basis function neural 

network (RBFNN) is used to control the organic substances 

concentration in the aeration tank through the control of the 

dissolved oxygen concentration. 

Figures 10 and 11 show the dissolved oxygen and substrate 

concentration in open loop (no control technique is applied to 

control the dissolved oxygen concentration). We can see 

clearly that the substrate concentration exceeds the maximum 

allowable value 20mg.l-1, so, the control of the dissolved 

oxygen concentration became obligatory for having a substrate 

concentration below the standard limit. 

 

 
 

Figure 10. Dissolved oxygen concentration 

 

 
 

Figure 11. Substrate concentration 

 

For comparison, RBF neural network PI controller has been 

used with the initial’s parameters: kp=3 and ki=0.9. 

The RBF neural network has the following structure (for the 

proposed control strategy and RB neural network PI control): 

two inputs in input layer X=[W DO]T, six neurons in hidden 

layer, and one neuron in output layer. The RBF neural network 

parameters Ci,j, bj and Wk,j are respectively initialized in the 

range [30, 60], [20, 40], and [0, 10], the learning rate =0.09 

and he momentum factor =0.5. 

The step size h=0.5. 

The dilution rate (Figure 12) is considered variable to cover 

many different regimes: high flow D=0.035h-1, normal flow 

D=0.025h-1 and low flow D=0.015h-1. The influent substrate 

concentration Sin is also considered with different values to 

assure a real study of wastewater system (Figure 13). 

 

 
 

Figure 12. Dilution rate 

 

 
 

Figure 13. Influent substrate concentration 

 

 
 

Figure 14. Dissolved oxygen concentration with modified 

dilution rate and influent substrate 
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From Figure 14, when the dilution rate and the influent 

substrate concentration changed, the RBFNN-PI controller is 

very affected by these changes and it is not well tracking the 

set-point reference DOref, contrary of the proposed method 

that is not very affected by these disturbances generated by 

dilution rate and the influent substrate concentration. The 

dissolved oxygen concentration has a good tracking of the set-

point reference DOref by using the proposed control strategy. 

The aeration rate (control variable) is depicted in Figure 15.  

Figure 16, shows clearly that substrate concentration is 

biologically degraded below the maximum allowable value 

20mg.l-1.
 

 

 
 

Figure 15. Aeration rate (Control variable) 

 

 
 

Figure 16. Substrate concentration 

 

The criterions IAE (integral of absolute error) and ISE 

(integral of square error) are used to compare the performance 

of the different control strategies: 

 

( )dtteIAE 


=

0

 (63) 

 

( ) dtteISE 


=

0

2
 (64) 

 

The simulations results are compared from the view point 

of integral of absolute error (IAE). Considering this measure, 

the dissolved oxygen concentration has the best results 

applying the proposed controller (Table 1). 

Table 1. Simulated IAE and ISE of the controllers 

 

Used control methods IAE ISE 

RBFNN-PI controller 0.1232 0.0740 

Proposed controller 0.0678 0.0455 

 

 

7. CONCLUSION  

 

In this paper, an Euler control strategy and gradient method 

based on RBFNN has been established to control the substrate 

concentration via the control of the dissolved oxygen 

concentration in an activated sludge process of wastewater 

treatment. The effectiveness of the proposed method was 

evaluated through a comparison with RBF neural network PI 

controller. The simulation results indicate that the proposed 

control strategy has a better performance for tracking the set-

point reference DOref compared to the RBF neural network PI 

control.   
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