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 This article presents a model for fluid flow in a cylindrical tube filled with a Bi-disperse 
Porous Medium (BDPM). The model is a modified Brinkman model where the conventional 
single solid porous structure is replaced with a porous matrix having a dual porous phases 
(the fracture and porous phases). The fluid velocities 𝑈𝑈𝑓𝑓 and 𝑈𝑈𝑝𝑝 in the fracture and porous 
phases respectively of the BDPM are coupled together by the coefficient of momentum 
transfer (𝜂𝜂). Exact solutions in terms of modified Bessel functions for the velocity fields in 
the fracture and porous phases for any arbitrary value of 𝜂𝜂 using D’Alembert method as well 
as for the limiting cases 𝜂𝜂 = 0 and 𝜂𝜂 → ∞ have been obtained. The study establishes that 
increasing the momentum transfer coefficient suppresses (enhances) the fluid velocity in the 
fracture (porous) phases of the BDPM.  
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1. INTRODUCTION 
 

A porous material is described as material that is made up 
of a solid matrix with an interconnected pores. The 
interconnectedness of the pores allow the flow of one or 
more fluids through the material. The role plays by porous 
media in any transport problem bore out of its two important 
properties: measure of permeability and the ratio of all the 
pores to the total volume of the medium (porosity). Jha and 
Musa [1-2] noted that if the permeability of the porous 
medium is increased, the fluid experiences less resistance to 
motion and consequently, increase in the fluid momentum is 
observed. By taking the effect of porosity into account, 
Vortmeyer and Schuster [3] observe that the flow channeling 
will naturally occur adjacent to the surface of the transport 
medium. In addition, the effect of variable porosity on fluid 
flow in a vertical channel filled with porous material was also 
investigated by Paul et al. [4]. Several researchers such as 
Vafai and Tien [5] and Vafai [6] have documented the 
influence of porous media on fluid flow. Additionally, Butler 
et al. [7] studied the interstitial fluid flow in biological tissues 
such as the fibrous tissues connecting bones and cartilages 
when subjected to tension.       

Diverse applications of porous media have been recorded 
and each application may necessitate the use of a different 
form of porous structure. For instance, Warren and Root [8] 
examined the problems related to fractured porous medium 
where the porous structure consist of two superimposed 
continuum fracture system (Double porosity medium or 
DPM). The understanding of the roles play by the fracture 
properties in this type of porous structure are of great 
scientific interest, especially as they strongly influence fluid 
flow such as underground fluid flow or contaminants. More 
so, the abundance of fracture material increases the area of 
application from the initially industrial application to wider 
areas such as the petroleum, geothermal and water supply 
reservouirs. Thus, in the determination of the up-scaled inter-
block transmissibility in DPM, Arbogast et al [9] derived the 

mathematical model for Double Porosity Model of single 
phase flow. Results on DPM and general porous media can 
also be found in Avraam and Payatakes [10], Dietrich et al 
[11], Hassanizadeh and Gray [12], the excellent work of 
Bourgeat [13] et al. on the double porosity model for 
immiscible incompressible two-phase flow in a reduced 
pressure formulation. Other investigations include the texts 
of Kaviany [14] and Nield and Bejan [15] where the 
problems of fluid flow in the presence of porous medium are 
extensively discussed.  

In industrial applications where large area for liquid firm 
evaporation, such as in the evaporators of heat pipes are 
required, the use of a Bi-Disperse Porous Media (BDPM) has 
been proposed [16]. In a theoretical and experimental study 
on stagnant thermal conductivity of Bi-disperse porous media, 
Chen et al. [17] stated that a BDPM can be viewed as a case 
where the traditional classical porous medium is replaced 
with another form of porous structure consisting of two 
phases: the macro-void (fracture or f-phase) and a micro-pore 
(porous or p-phase). Modifying the Brinkman model, Nield 
and Kuznetsov [18] proposed a model for the steady-state 
momentum transfer in a BDPM. The model consists of a pair 
of second order differential equation in which the velocities 
profiles (for the fracture and porous phases) are coupled 
together by a parameter; the coefficient of momentum 
transfer. Nield and Kuznetsov [19] observe that the inclusion 
of the coefficient of momentum transfer in the model is 
simply to modify the permeabilities of the two phases of the 
BDPM via the parameter�𝜁𝜁

𝜇𝜇
� ; where 𝜁𝜁  is the dimensional 

velocity transfer coefficient and 𝜇𝜇  represents the fluid 
viscosity.  

In this article, a mathematical model is presented for the 
fluid flow resulting from the application of a constant 
negative pressure gradient in the z-direction (Fig. 1.0) on a 
viscous, incompressible fluid in a horizontal cylindrical tube 
filled with Bidisperse porous medium. The exact solutions in 
terms of modified Bessel functions for the velocity profiles in 
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both the fracture and porous phases have been obtained while 
taking into account the role of the parameter that couple the 
two velocity profiles together. Accordingly, three cases are 
considered: (i) the general fluid flow for any arbitrary value 
of the momentum transfer coefficient. In this case, the second 
order governing differential equations are systematically 
decoupled without altering the initial order of the equation. 
(ii) the weak coupling: when the coefficient of momentum 
transfer is neglected and (iii) the strong coupling; when the 
momentum transfer coefficient approaches infinity.   

 
 

2. MATHEMATICAL ANALYSIS 
 

Consider a steady state fluid flow formation emanating 
from the applied constant pressure gradient on fluid of 
constant density (𝜌𝜌) and viscosity (𝜇𝜇)  in a horizontal pipe 
filled with Bidisperse Porous Material as displayed in figure 
1.0 below.  
 

 
 

Figure 1. Schematic diagram of the problem 
 

Assume that the pipe is open on both ends, the fluid flows 
along the direction of 𝑧𝑧 -axis and also the radius of the 
cylinder is finite when  𝑟𝑟 = 𝑎𝑎 .  Following Nield and 
Kuznetsov [18] and Magyari [20], the mathematical model 
that describes the physical situation of the fully developed 
stable fluid flow formation through a horizontal tube in 
dimensional forms are given by:  
 

    𝐺𝐺 = 𝜇𝜇
𝑘𝑘𝑓𝑓
𝑈𝑈𝑓𝑓´ + 𝜁𝜁�𝑈𝑈𝑓𝑓´ − 𝑈𝑈𝑝𝑝´ � − �̅�𝜇𝑓𝑓

1
𝑟𝑟ʹ

𝑑𝑑
𝑑𝑑𝑟𝑟ʹ
�𝑟𝑟ʹ

𝑑𝑑𝑈𝑈𝑓𝑓
´

𝑑𝑑𝑟𝑟ʹ
� (1)         

  
    

    𝐺𝐺 = 𝜇𝜇
𝑘𝑘𝑝𝑝
𝑈𝑈𝑝𝑝´ + 𝜁𝜁�𝑈𝑈𝑝𝑝´ − 𝑈𝑈𝑓𝑓´ � − �̅�𝜇𝑝𝑝

1
𝑟𝑟ʹ

𝑑𝑑
𝑑𝑑𝑟𝑟ʹ
�𝑟𝑟ʹ 𝑑𝑑𝑈𝑈𝑝𝑝

´

𝑑𝑑𝑟𝑟ʹ
�                    (2) 

 
where 𝑈𝑈𝑓𝑓´  and 𝑈𝑈𝑝𝑝´  represent the fluid velocity in the fracture 
and porous phases respectively along the 𝑧𝑧-axis. Here,𝐺𝐺 =
𝑑𝑑𝑝𝑝
𝑑𝑑𝑑𝑑

 is the negative applied constant pressure gradient which 
induces the fluid flow formation. Thus, in this set up, the 
boundary conditions consistent with this work are taken to be: 
 
𝑑𝑑𝑈𝑈𝑓𝑓

´

𝑑𝑑𝑟𝑟ʹ
=  𝑑𝑑𝑈𝑈𝑝𝑝

´

𝑑𝑑𝑟𝑟ʹ
= 0       𝑎𝑎𝑎𝑎    𝑟𝑟ʹ = 0  

                                          (3) 
𝑈𝑈𝑓𝑓´ = 𝑈𝑈𝑝𝑝´ = 0          𝑎𝑎𝑎𝑎     𝑟𝑟ʹ = 𝑎𝑎  
                           

Using the non-dimensional quantities defined below in 
Eqs(1)-(3):  

 
𝑅𝑅 = 𝑟𝑟ʹ

𝑎𝑎
 ,𝐷𝐷𝑎𝑎𝑓𝑓 = 𝐾𝐾𝑓𝑓

𝑎𝑎2
, 𝐷𝐷𝑎𝑎𝑝𝑝 = 𝐾𝐾𝑝𝑝

𝑎𝑎2
 , 𝜂𝜂 = 𝜁𝜁 𝑎𝑎

2

𝜇𝜇
, 𝛾𝛾𝑓𝑓 = 𝜇𝜇�𝑓𝑓

𝜇𝜇
, 𝛾𝛾𝑝𝑝 = 𝜇𝜇�𝑝𝑝

𝜇𝜇
 , 

𝑈𝑈𝑓𝑓 =  
𝜇𝜇𝑈𝑈𝑓𝑓

´

𝑎𝑎2𝐺𝐺
, and  𝑈𝑈𝑝𝑝 =  𝜇𝜇𝑈𝑈𝑝𝑝

´

𝑎𝑎2𝐺𝐺
 

 

The mathematical model will now reduced to:  
 
𝛾𝛾𝑓𝑓
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑈𝑈𝑓𝑓

𝑑𝑑𝑅𝑅
� − 𝜂𝜂�𝑈𝑈𝑓𝑓 − 𝑈𝑈𝑝𝑝� −

𝑈𝑈𝑓𝑓
𝐷𝐷𝑎𝑎𝑓𝑓

= −1                            (4) 

 
𝛾𝛾𝑝𝑝
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑈𝑈𝑝𝑝

𝑑𝑑𝑅𝑅
� − 𝜂𝜂�𝑈𝑈𝑝𝑝 − 𝑈𝑈𝑓𝑓� −

𝑈𝑈𝑝𝑝
𝐷𝐷𝑎𝑎𝑝𝑝

= −1                            (5) 

 
The corresponding boundary conditions are: 

 
𝑑𝑑𝑈𝑈𝑓𝑓
𝑑𝑑𝑅𝑅

=  𝑑𝑑𝑈𝑈𝑝𝑝
𝑑𝑑𝑅𝑅

= 0         𝑎𝑎𝑎𝑎    𝑅𝑅 = 0  
                                         (6) 
𝑈𝑈𝑓𝑓 = 𝑈𝑈𝑝𝑝 = 0             𝑎𝑎𝑎𝑎     𝑅𝑅 = 1  
 
                                                           

Clearly, the complexity in obtaining the exact solutions for 
Eqs (4) and (5) will naturally originate from the coefficient of 
momentum transfer (𝜂𝜂). Nield and Kutznetsov [19] obtained 
an exact solution by directly eliminating one of the velocities. 
This approach results into rising the power of the governing 
equations to a fourth order differential equation. Attempting 
to avoid this complication, Cheng [21] adopted the cubic 
spline collocation method. Magyari [20], while investigating 
the high speed channel flow in a Bidisperse porous medium 
employed the reduction to normal mode method. In this 
classical mechanics approach, the simplified governing 
equations are transformed into matrix form, then followed by 
matrix-similarity transformation. In this present work, the 
exact solutions of the coupled governing equations are 
obtained for any arbitrary value (general case) of the 
coupling parameter (𝜂𝜂)  using the D'Alembert method 
(Ziyaddin and Huseyin [22]). The choice of this method is to 
allow for the systematic decoupling of the governing 
equations while still retaining their initial orders. 
 
2.1 General case 
 

Multiplying Eq(4) by 𝐴𝐴, adding the resulting equation to 
Eq(5) and simplifying the final equation yields   
 
1
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑

𝑑𝑑𝑅𝑅
�𝐴𝐴𝑈𝑈𝑓𝑓 + 𝑈𝑈𝑝𝑝�� − 𝛿𝛿2�𝐴𝐴𝑈𝑈𝑓𝑓 + 𝑈𝑈𝑝𝑝� = −�𝐴𝐴𝛾𝛾𝑝𝑝+ 𝛾𝛾𝑓𝑓

𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝
�   (7)          

 
where   

𝐴𝐴 =
𝐷𝐷𝑎𝑎𝑝𝑝�𝐴𝐴𝛾𝛾𝑝𝑝+𝐴𝐴𝐴𝐴𝛾𝛾𝑝𝑝𝐷𝐷𝐷𝐷𝑓𝑓−𝐴𝐴𝛾𝛾𝑓𝑓𝐷𝐷𝑎𝑎𝑓𝑓�

𝐷𝐷𝑎𝑎𝑓𝑓�𝛾𝛾𝑓𝑓+𝐴𝐴𝛾𝛾𝑓𝑓𝐷𝐷𝑎𝑎𝑝𝑝−𝐴𝐴𝐴𝐴𝛾𝛾𝑝𝑝𝐷𝐷𝑎𝑎𝑝𝑝�
                                              (8) 

 
 𝛿𝛿2 =   𝐴𝐴

𝛾𝛾𝑝𝑝
−  𝐴𝐴𝐴𝐴

𝛾𝛾𝑓𝑓
+ 1

𝛾𝛾𝑝𝑝𝐷𝐷𝑎𝑎𝑝𝑝
                                                        (9) 

 
The particular solution of Eq(7) subject to the boundary 

condtions (Eq(6)) in terms of modified Bessel function of the 
first kind assumes the following form: 
 
𝐴𝐴𝑈𝑈𝑓𝑓 + 𝑈𝑈𝑝𝑝 = 𝛾𝛾𝑓𝑓+𝐴𝐴𝛾𝛾𝑝𝑝

𝛿𝛿2𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝
�1 − 𝐼𝐼0(𝑅𝑅𝛿𝛿)

𝐼𝐼0(𝛿𝛿)
�                                        (10) 

 
Replacing 𝐴𝐴 and 𝛿𝛿 in Eq(10) with their respective roots: 
 
 𝐴𝐴1 = 1

2
(𝑑𝑑1 +  𝑑𝑑2)                                                            (11a) 

                        
𝐴𝐴2 = 1

2
(𝑑𝑑1 −  𝑑𝑑2)                                                             (11b) 
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𝛿𝛿1 = �
1

𝐷𝐷𝑎𝑎𝑝𝑝𝛾𝛾𝑝𝑝
+ 𝐴𝐴

𝛾𝛾𝑝𝑝
− 𝐴𝐴𝐴𝐴1

𝛾𝛾𝑓𝑓
                                                   (12a) 

 

𝛿𝛿2 = −�
1

𝐷𝐷𝑎𝑎𝑝𝑝𝛾𝛾𝑝𝑝
+ 𝐴𝐴

𝛾𝛾𝑝𝑝
− 𝐴𝐴𝐴𝐴2

𝛾𝛾𝑓𝑓
                                                (12b) 

 
obtained from Eqs (8) and (9), the expressions for the 
velocity profiles in the fracture and porous phases are 
separately obtained as follows: 
 
𝑈𝑈𝑓𝑓 = 1

𝐴𝐴1−𝐴𝐴2
�𝑑𝑑3 �1 − 𝐼𝐼0(𝑅𝑅𝛿𝛿1)

𝐼𝐼0(𝛿𝛿1)
� − 𝑑𝑑4 �1 − 𝐼𝐼0(𝑅𝑅𝛿𝛿2)

𝐼𝐼0(𝛿𝛿2)
��            (13) 

 
𝑈𝑈𝑝𝑝 =  1

𝐴𝐴1−𝐴𝐴2
�𝐴𝐴1𝑑𝑑4 �1 − 𝐼𝐼0(𝑅𝑅𝛿𝛿2)

𝐼𝐼0(𝛿𝛿2)
� − 𝐴𝐴2𝑑𝑑3 �1 − 𝐼𝐼0(𝑅𝑅𝛿𝛿1)

𝐼𝐼0(𝛿𝛿1)
��  (14) 

 
2.2 Weak coupling 
      

If the coefficient of momentum transfer is neglected (𝜂𝜂 =
0), Eqs (4) and (5) reduced to two similar equations: 
 
1
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑈𝑈𝑓𝑓

𝑑𝑑𝑅𝑅
� − 𝑈𝑈𝑓𝑓

𝛾𝛾𝑓𝑓𝐷𝐷𝑎𝑎𝑓𝑓
= − 1

𝛾𝛾𝑓𝑓
                               (15)

                                               
1
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑈𝑈𝑝𝑝

𝑑𝑑𝑅𝑅
� − 𝑈𝑈𝑝𝑝

𝛾𝛾𝑝𝑝𝐷𝐷𝑎𝑎𝑝𝑝
= − 1

𝛾𝛾𝑝𝑝
                 (16)     

 
The exact solutions for the velocities profiles of the 

fracture and porous phases in modified Bessel function 
obtained by solving Eqs (15) and (16) for 𝜂𝜂 = 0 subject to 
the boundary constraints (Eq(6)) are respectively given as: 
  
  𝑈𝑈𝑓𝑓 =  𝐷𝐷𝑎𝑎𝑓𝑓 �1 − 𝐼𝐼0(𝑅𝑅𝑑𝑑5)

𝐼𝐼0(𝑑𝑑5)
�                             (17) 

                                              
𝑈𝑈𝑝𝑝 =  𝐷𝐷𝑎𝑎𝑝𝑝 �1 − 𝐼𝐼0(𝑅𝑅𝑑𝑑6)

𝐼𝐼0(𝑑𝑑6)
�                                       (18) 

                                               
 
2.3 Strong coupling 
 

Also, if the momentum transfer term is large enough, 
(𝜂𝜂 → ∞) and by taking 𝜂𝜂 to the order 𝜂𝜂−1, the velocity fields 
for both the fractured and the porous phases coincide so 
that  𝑈𝑈𝑓𝑓(𝑍𝑍) = 𝑈𝑈𝑝𝑝(𝑍𝑍) = 𝑈𝑈(𝑍𝑍) . Thus Eqs (4)  and (5) 
respectively are reduced to: 
 
1
𝐴𝐴
1
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑈𝑈

𝑑𝑑𝑅𝑅
� − 𝑈𝑈

𝛾𝛾𝑓𝑓𝐴𝐴𝐷𝐷𝑎𝑎𝑓𝑓
= − 1

𝛾𝛾𝑓𝑓𝐴𝐴
                                          (19) 

 
1
𝐴𝐴
1
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑈𝑈

𝑑𝑑𝑅𝑅
� − 𝑈𝑈

𝛾𝛾𝑝𝑝𝐴𝐴𝐷𝐷𝑎𝑎𝑝𝑝
= − 1

𝛾𝛾𝑝𝑝𝐴𝐴
                                          (20) 

 
Adding and simplifying these equations give:  

 
1
𝐴𝐴
1
𝑅𝑅

𝑑𝑑
𝑑𝑑𝑅𝑅
�𝑅𝑅 𝑑𝑑𝑈𝑈

𝑑𝑑𝑅𝑅
� − 𝑈𝑈

2𝐴𝐴
[𝑑𝑑7] = − 1

2𝐴𝐴
�𝛾𝛾𝑓𝑓+𝛾𝛾𝑝𝑝
𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝

�                               (21)                        

 
Solving Eq(21) subject to Eq(6) yields the expression for 

the fluid momentum when 𝜂𝜂 → ∞ as: 
 

𝑈𝑈 = 𝐷𝐷𝑎𝑎𝑓𝑓𝐷𝐷𝑎𝑎𝑝𝑝�𝛾𝛾𝑓𝑓+𝛾𝛾𝑝𝑝�

𝐷𝐷𝑎𝑎𝑓𝑓𝛾𝛾𝑓𝑓+𝐷𝐷𝑎𝑎𝑝𝑝𝛾𝛾𝑝𝑝
�1 − 𝐼𝐼0�𝑅𝑅�𝑑𝑑7�

𝐼𝐼0��𝑑𝑑7�
�                                      (22)                                   

 
 
 

3. SKIN FRICTION 
 

By differentiating Eqs (14) and (15) and subtituting 𝑅𝑅 = 1, 
the expressions for the skin frictions �𝜏𝜏1 = 𝑑𝑑𝑈𝑈𝑓𝑓

𝑑𝑑𝑅𝑅
│𝑅𝑅=1 and 

𝜏𝜏1 = 𝑑𝑑𝑈𝑈𝑓𝑓
𝑑𝑑𝑅𝑅

│𝑅𝑅=1� for the two phases are:  
 
𝜏𝜏1 =  1

(𝐴𝐴1− 𝐴𝐴2)
�
𝛾𝛾𝑓𝑓+𝐴𝐴1𝛾𝛾𝑝𝑝
𝛿𝛿2𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝

�𝐼𝐼1(𝛿𝛿2)
𝐼𝐼0(𝛿𝛿2)

� −  
𝛾𝛾𝑓𝑓+𝐴𝐴1𝛾𝛾𝑝𝑝
𝛿𝛿1𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝

�𝐼𝐼1(𝛿𝛿1)
𝐼𝐼0(𝛿𝛿1)

��                   (27) 

 

𝜏𝜏1 = 1
(𝐴𝐴1− 𝐴𝐴2)

�
𝐴𝐴2�𝛾𝛾𝑓𝑓+𝐴𝐴1𝛾𝛾𝑝𝑝�

𝛿𝛿1𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝
�𝐼𝐼1(𝛿𝛿1)
𝐼𝐼0(𝛿𝛿1)

� −
𝐴𝐴1�𝛾𝛾𝑓𝑓+𝐴𝐴1𝛾𝛾𝑝𝑝�

𝛿𝛿2𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝
�𝐼𝐼1(𝛿𝛿2)
𝐼𝐼0(𝛿𝛿2)

� �         (28)                  

 
 
4. RESULTS AND DISCUSSION 
 

In this work, the effects of the Darcy numbers �𝐷𝐷𝑎𝑎𝑓𝑓 
and 𝐷𝐷𝑎𝑎𝑝𝑝�, ratio of viscosities �𝛾𝛾𝑓𝑓  and 𝛾𝛾𝑝𝑝� and coefficient of 
momentum transfer (𝜂𝜂) on the fluid momentum and the skin 
friction at the fluid-surface region are investigated. 
Accordingly, in order to effectively discuss the effects of 
these controlling parameters on the velocities as well as on 
the resulting skin frictions in both the fracture and porous 
phases, numerical simulation over a reasonable range of 
values of these parameters have been conducted. Furthermore, 
for the purpose of comparison, the range of values considered 
are carefully selected so as to include the values Nield and 
Kuznetsov [16] refers to as “representative values”.  

 

 
 

Figure 2. Velocity profile for different values of η and 
Daf=0.1, Dap=0.01 & γf=γp=1.0 

 

 
 

Figure 3. Velocity profile for different values of γf and γp 
and Daf=0.1, Dap=0.01 & η=1.0 
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Figure 4. Velocity profile for different values of Daf and Dap 
and γf=γp=1.0, & η=1.0 

 

 
 

Figure 5. Velocity for different values of γf and γp with 
Daf=0.1, Dap=0.01 

 

 
 

Figure 6. Velocity for different values of Daf and Dap with 
γf=γp=1.0 

 
Figure 2.0 shows the velocity distribution for different 

values of coefficient of momentum transfer (𝜂𝜂) with Nield 
and Kuznetsov’s [16] representative values:  𝐷𝐷𝑎𝑎𝑓𝑓 = 0.1, 
𝐷𝐷𝑎𝑎𝑝𝑝 = 0.01 𝛾𝛾𝑓𝑓 = 1.0 and 𝛾𝛾𝑝𝑝 = 1.0. It is found that the fluid 
momentum is higher in the fracture phase as expected. 
Furthermore, there is a decrease in the fluid velocity in the 
fracture phase of the BDPM as the momentum transfer 
coefficient (𝜂𝜂)  is increased while a converse trend is 
observed in the porous phase of the BDPM with respect to 
the increase in 𝜂𝜂. The reasons for this opposing flow patterns 
in the two phases can be clearly seen from Eqs (4 and 5). The 

measure of permeability in the fracture phase is higher than 
that in the porous phase (𝐷𝐷𝑎𝑎𝑓𝑓 > 𝐷𝐷𝑎𝑎𝑝𝑝) as a result, the velocity 
distributions; 𝑈𝑈𝑓𝑓 > 𝑈𝑈𝑝𝑝. From Eq(4), it is clear that �𝑈𝑈𝑓𝑓 −
𝑈𝑈𝑝𝑝� > 0  so that increasing the momentum transfer 
coefficient (𝜂𝜂 > 0)  on the fluid momentum will naturally 
attenuate the velocity strength of the fluid in the fracture 
phase. On the other hand, from Eq(5), it is observed that the 
quantity �𝑈𝑈𝑝𝑝 − 𝑈𝑈𝑓𝑓� < 0  so that the overall effect resulting 
from the increase in 𝜂𝜂  enhances the fluid velocity in the 
porous phase of the BDPM. To further validate these flow 
patterns, the numerical values generated from the work on 
normal mode analysis of high speed channel flow in a BDPM 
(Magyari [20]) are compared with those in this present 
research (table 1.0) using 𝐷𝐷𝑎𝑎𝑓𝑓 = 0.1, 𝐷𝐷𝑎𝑎𝑝𝑝 = 0.01 and 𝛾𝛾𝑓𝑓 = 
𝛾𝛾𝑝𝑝 = 1.0. From the table, it is observed that the flow patterns 
in the fracture and porous phases in Magyari [20] favourably 
agree with the flow patterns in the present work.  

 
 

Figure 7. Velocity profile for different values of γf and γp 
and Daf=0.1, Dap=0.01 

 

 
 

Figure 8. Velocity profile for different values of Daf and Dap 
and γf=γp=1.0 

 
The velocity distribution with respect of the ratio of 

viscosity of the fluid is displayed in figures 3.0 (general case), 
5.0 (weak coupling) and 7.0 (strong coupling). If the ratio of 
the viscosity of the fluid is high, the fluid becomes thicker. 
Hence, the resistance of the fluid to motion resulting from the 
applied constant pressure gradient is increased. Therefore, a 
decrease in the fluid velocity is observed in all the three 
figures. Also, the effect of the variations of 𝛾𝛾𝑓𝑓 and 𝛾𝛾𝑝𝑝 in the 
porous phase (figures 3.0 and 5.0) from the centerline of the 
tube (𝑅𝑅 = 0) up to near 𝑅𝑅 = 0.4 is seen to be insignificant as 
evidently seen from the strength lines in the graphs. Close to 
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the curved surface of the cylinder (after 𝑅𝑅 = 0.6), the effects 
of the variation of the fluid’s ratio of viscosities become 
visibly noticed. The velocity distribution for different values 
of Darcy numbers with fix values of  𝛾𝛾𝑓𝑓 = 𝛾𝛾𝑝𝑝 = 1.0  are 
depicted in figure 4.0 when 𝜂𝜂 = 1.0, figure 6.0 when 𝜂𝜂 = 0 
and figure 8.0 when  𝜂𝜂 → ∞ . From these figures, it is 
observed that the velocity distribution in the fracture and 
porous phases of the BDPM increases with increase in Darcy 
numbers. This is expected because increasing the measure of 
permeability (𝐷𝐷𝑎𝑎) of the BDPM lead to increasing the pores 
of the porous passages. This result to the decrease in the 
frictional force between the porous matrix and the flowing 
fluid hence the increase in velocity strength of the fluid. 

 

 
 

Figure 9. Skin fiction for different values of γf and γp and 
Daf=0.1, Dap=0.01 

 

 
 

Figure 10. Skin fiction for different values of Daf and Dap & 
γf=γp=1.0 

 
Eqs (27) and (28) express the skin friction at the fluid-wall 

region for any arbitrary value of the coefficient of velocity 
transfer (𝜂𝜂). The effects of the controlling parameters on the 
skin friction in the two phases of the BDPM are depicted in 
figures 9.0 and 10.0. For  𝐷𝐷𝑎𝑎𝑓𝑓 = 0.1  and 𝐷𝐷𝑎𝑎𝑝𝑝 = 0.01,  the 
skin friction is noticed to decrease with increase in  𝛾𝛾𝑓𝑓 and 𝛾𝛾𝑝𝑝 
in both phases. In addition, the skin friction is also observed 
to be decreasing steeply in the fracture phase as the 
coefficient of momentum transfer (𝜂𝜂) is increased.  In figure 
10.0, at fix values of  𝛾𝛾𝑓𝑓 = 𝛾𝛾𝑝𝑝 = 1.0,  the influence of the 
variation of Darcy numbers on the skin friction in the two 
phases is displayed. It is observed that the skin friction 
decreases with  𝜂𝜂  but increases with   𝐷𝐷𝑎𝑎𝑓𝑓  and  𝐷𝐷𝑎𝑎𝑝𝑝   in the 
fracture phase of BDPM.  In both figures 9.0 and 10.0, the 
effect of the variation of coefficient of momentum 

transfer  (𝜂𝜂)  on the skin friction in the porous phase is 
negligible as can be notice from the straight line parallel to 
the 𝜂𝜂 −axis. 

 
 
4. CONCLUSION 
 

In this paper, the mathematical model for fluid flow inside 
a cylindrical tube filled with Bidisperse Porous Material has 
been developed and exact solution obtained in terms of 
modified Bessel functions. Special interest has been placed 
on the effect of the parameter that couples the velocities of 
the fluid in the two phases together. D’Alembert method was 
used to obtain the expressions for the velocity profiles for 
any arbitrary value of the momentum transfer coefficient. 
This investigation establishes that the ratio of viscosities of 
the fluid 𝛾𝛾𝑓𝑓 and 𝛾𝛾𝑝𝑝 generally suppresses the fluid momentum 
while the coefficient of momentum transfer (𝜂𝜂) is found to 
attenuates the fluid velocity in the fracture phase and aids the 
velocity distribution in the porous phase of the BDPM. 
Furthermore, the increase in the measure of permeabilities of 
the porous medium enhance the fluid momentum. It is further 
found that skin friction increases with 𝐷𝐷𝑎𝑎𝑓𝑓  and 𝐷𝐷𝑎𝑎𝑝𝑝  but 
decreases with increase in 𝛾𝛾𝑓𝑓  and 𝛾𝛾𝑝𝑝  and the coefficient of 
momentum transfer (𝜂𝜂). 
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NOMENCLATURE 
 
𝐺𝐺  applied pressure gradient                                 [𝑁𝑁𝑚𝑚−2] 
𝑘𝑘𝑓𝑓  permeability of the fracture phase                  [𝑚𝑚2] 
𝑘𝑘𝑝𝑝 permeability porous phases                             [𝑚𝑚2] 
𝑟𝑟ʹ dimensional radial coordinate measured from  
    the axis of the tube           [m] 
𝑅𝑅 dimensionless radial coordinate measured from  
    the axis of  the tube          [-] 
𝑎𝑎 the radius of the tube                         [m] 
𝑈𝑈𝑓𝑓 dimensionless velocity in the fracture phase   [-] 
𝑈𝑈𝑝𝑝 dimensionless velocity in the porous phase    [-] 
𝑈𝑈𝑓𝑓´  dimensional velocity in the fracture phase      ⌈𝑚𝑚𝑠𝑠−1⌉ 
𝑈𝑈𝑝𝑝´  dimensional velocity in the porous phase       ⌈𝑚𝑚𝑠𝑠−1⌉ 
𝐷𝐷𝑎𝑎𝑓𝑓 Darcy number of the fracture phase             [-] 
𝐷𝐷𝑎𝑎𝑝𝑝 Darcy number of the porous phase               [-] 
 
Greek symbols     
 
𝜇𝜇  fluid viscosity                                                   ⌈𝑘𝑘𝑘𝑘𝑚𝑚−1𝑠𝑠−1⌉ 
�̅�𝜇𝑓𝑓 effective viscosity of the fluid in the fracture ⌈𝑘𝑘𝑘𝑘𝑚𝑚−1𝑠𝑠−1⌉  
�̅�𝜇𝑝𝑝 effective viscosity of the fluid in the porous phase  
                                                                             ⌈𝑘𝑘𝑘𝑘𝑚𝑚−1𝑠𝑠−1⌉      
𝜁𝜁  dimensional coefficient of momentum transfer between  
    fracture and the porous phases                         [𝑘𝑘𝑘𝑘𝑚𝑚−3𝑠𝑠−1]  
𝜂𝜂  dimensionless coefficient of momentum transfer between  
    fracture and the porous phases                         [-] 
                                                                           
𝛾𝛾𝑓𝑓 ratio of viscosities of the fracture  phases      [-] 
𝛾𝛾𝑝𝑝 ratio of viscosities of the porous phases         [-] 
 
Superscript 
 
ʹ                  dimensionless quantity 
 
Subscripts  
 
f                 fracture phase  
p                porous phase 
     
Table 1. Flow pattern in channel and tube with respect to the  

variation 𝜂𝜂 
 
𝜂𝜂                     𝑅𝑅 Magyari [20] 

p-phase      f-phase 
Present work 

p-phase        f-phase 
1.0 0.2 

0.4 
0.6 
0.8 

 
2.0 0.2 

0.4 
0.6 
0.8 

 
3.0                0.2 

0.4 
0.6 
0.8 

0.0837        0.0107 
0.0784        0.0106 
0.0670        0.0104 
0.0443        0.0090 

 
0.0785       0.0113 
0.0738       0.0112 
0.0635       0.0108 
0.0423       0.0093 

 
0.0741      0.0118 
0.0699      0.0117 
0.0604      0.0112 
0.0406      0.0095 

0.0757      0.0106 
0.0702      0.0105 
0.0590      0.0102 
0.0381      0.0087 

 
0.0718     0.0112 
0.0668     0.0110 
0.0564     0.0106 
0.0367     0.0090 

 
0.0683     0.0116 
0.0638     0.0115 
0.0542     0.0110 
0.0355     0.0092 
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APPENDIX  
 
𝑑𝑑1 = �1

𝐴𝐴
� 𝛾𝛾𝑓𝑓
𝛾𝛾𝑝𝑝𝐷𝐷𝐷𝐷𝑝𝑝

− 1
𝐷𝐷𝑎𝑎𝑓𝑓

� + 𝛾𝛾𝑓𝑓−𝛾𝛾𝑝𝑝
𝛾𝛾𝑝𝑝

�  

 

𝑑𝑑2 = ��1
𝐴𝐴
� 𝛾𝛾𝑓𝑓
𝛾𝛾𝑝𝑝𝐷𝐷𝐷𝐷𝑝𝑝

− 1
𝐷𝐷𝑎𝑎𝑓𝑓

� +  𝛾𝛾𝑓𝑓−𝛾𝛾𝑝𝑝
𝛾𝛾𝑝𝑝

�
2

+ 4𝛾𝛾𝑓𝑓
𝛾𝛾𝑝𝑝

     

 
𝑑𝑑3 = 𝛾𝛾𝑓𝑓+𝐴𝐴1𝛾𝛾𝑝𝑝

𝛿𝛿1
2𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝

  

𝑑𝑑4 = 𝛾𝛾𝑓𝑓+𝐴𝐴2𝛾𝛾𝑝𝑝
𝛿𝛿2
2𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝

  

 
𝑑𝑑5 = 1

�𝛾𝛾𝑓𝑓𝐷𝐷𝑎𝑎𝑓𝑓
    

 
𝑑𝑑6 = 1

�𝛾𝛾𝑝𝑝𝐷𝐷𝑎𝑎𝑝𝑝
   

 
𝑑𝑑7 = �𝛾𝛾𝑓𝑓𝐷𝐷𝑎𝑎𝑓𝑓+𝛾𝛾𝑝𝑝𝐷𝐷𝑎𝑎𝑝𝑝

𝛾𝛾𝑓𝑓𝛾𝛾𝑝𝑝𝐷𝐷𝑎𝑎𝑓𝑓𝐷𝐷𝑎𝑎𝑝𝑝
�   
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