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Abstract 

With the fast development of geometrics’ industry, the implementation of digital city and 

digital earth strategy has become an important step for information construction. The 3D spatial 

data are the foundation and precondition for establishing digital earth and intelligent city. The 

binocular vision technology mainly comprising the steps of image acquisition, stereo matching, 

and 3D reconstruction can obtain geographic information quickly. Binocular camera calibration is 

an essential step to obtain 3D information from images. In this paper, a new 1D calibration 

method was proposed based on fundamental matrix. In this calibration method, 1D Object can 

move freely without any limitations, such as the space or prior information of the camera. Then a 

HEIV (Heteroscedastic Error-in-Variables) model was proposed to improve the calibration 

accuracy. Both simulation experiment and real image experiment were conducted to validate the 

feasibility and effectiveness of this algorithm. 
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1. Introduction 

The binocular camera imaging technology has developed rapidly in recent years, especially 

in the field of geometrics’ industry. Binocular camera calibration is an essential step to obtain 3D 

information from images. Generally speaking, binocular camera calibration is mainly targeted at 

two internal parameters (focal length and the optical center) of the camera and the external 
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parameters (relative position of each camera). Current calibration methods include 3D calibration 

method, 2D calibration method [1], 1D calibration method and 0D calibration method [2]. Since 

the 1D calibration accuracy is higher than the 0D calibration accuracy, and 1D calibration object 

is simpler and more portable compared with the 2D and 3D calibration objects, the 1D calibration 

method has received widespread attention since it was first put forward by Zhang in 2004 [3]. 

However, in Zhang’s and many of the relevant methods of 1D calibration, an endpoint of the 

calibration object must be fixed. On this basis, the 1D calibration object can only move in a 

specific space or needs the prior knowledge of the camera parameters [4], which strongly limited 

the rigid motion of the calibration object. 

Given this problem, a one-dimensional calibration method was proposed based on the 

fundamental matrix. In this method, 1D calibration object can move arbitrarily, without 

calculating the vanishing point and any prior knowledge. Then, HEIV (Heteroscedastic Error-in-

Variables) model was proposed to optimize the data, thus improving the calibration accuracy. 

The proposed algorithm considered that all data were affected by noises, and minimized the sum 

of errors between the contaminated data and the estimated data iteratively. After continuous 

iteration, this algorithm significantly increases the accuracy of data. 

 

2. Camera Geometric Model and HEIV Model 

2.1 Geometric Model of Binocular Camera 

Assume that a 3D point was represented by M = [X, Y, Z]T , the homogeneous coordinate 

was represented by M̃ = [X, Y, Z, 1]T , and a 2D point was represented by  m = [u, v]T , ~ as 

homogeneous coordinate (similarly hereinafter). The relationship between M and m is shown as 

below:  

 

sm̃ = K[R, t]M̃K = [

α γ μ
0 β υ
0 0 1

]                                                                                                      (1) 

 

S is a scale factor, P = K[R, t] is camera matrix, K is intrinsic matrix, R is rotation matrix, 

and t is translation vector. α, β are scale factors, [μ, υ] is the main point of the camera, and γ is the 

inclination factor. So, the calculation of the camera matrix P is the core of camera calibration. 

Usually the world coordinate system coincided with the left camera coordinate system. The 

following equation is obtained: 
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{
m1̃ = s1K1[I, 0]M1̃

m2̃ = s2K2[R, t]M2̃

                                                                                                                      (2) 

 

2.2 1D Calibration Object 

Assume that 1D calibration object consists three points A, B and C. The Euclidean distance 

between each point is known. Details are shown in figure 1. Within the vision scope of the 

binocular cameras, move 1D calibration object freely for many times, to complete the camera 

calibration. 

jA jB
jC

1 ja
1 jb 1 jC

2 ja 2 jb
2 jC

1P 2P

camera1

camera2

 

Fig.1. Calibration sketch for binocular camera using a 1D calibration object 

 

2.3 HEIV Model 

HEIV (heteroscedastic Error-in-Variables) model was used to solve the problem of optimal 

estimation of parameters, which is affected by noise. Generally, assume uj  as the jth  actual 

measurement data. And there is some deviation between the measurement data affected by the 

noise and the true value. uj is defined as: 

 

uj = uj̅ + δuj, δuj~GI (μ, Cuj) , j = 1,2, … n                                                                                  (3) 

 

Where uj̅ is the true value of the measurements, δuj is the measuring error,  δuj~GI(μ, Cuj) 

stands for independent probability density with mean μ  and covariance Cuj .The constraint 

between the true value of the measurements and the true value of estimator satisfies: 
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φ(uj̅, β̅) = 0, j = 1,2…n                                                                                                              (4) 

 

The Eq. (4) can be decomposed into two parts, namely, the measurement data matrix Φ(uj̅) 

and estimated parameter vector Θ(β̅) (Matei and Meer, 2006): 

 

φ(uj̅, β̅) = Φ(uj̅)Θ(β̅) = 0                                                                                                           (5) 

 

By the transformation of (5), true value measurements can be separated from Eq. (4) to 

reduce the calculation difficulty of the problem. On the other hand, the estimated parameters can 

be represented as n-dimensional vector. 

 

3. Fundamental Matrix Algorithm 

The fundamental matrix is a 3x3 matrix, which represents the correspondence of the image 

point coordinate on each binocular camera. The relationship is as follows: 

 

a1
TFa2 = 0                                                                                                                                      (6) 

 

Where a1a2 is the image point coordinate on each binocular camera. 

Move the 1D calibration object containing three feature points for more than five times, and 

then use the projection around the camera’s image point coordinate. Calculate the camera 

fundamental matrix F through the modified eight point-based method [5] 

Fundamental matrix F was used to calculate the projection matrix P of left and right camera. 

The projection matrix P of the two cameras satisfied [6]: 

 

{
P1 = [I, 0]

P2 = [[e]̃× F, ẽ]
                                                                                                                             (7) 

 

Where e is the epipole of the right camera, [e]̃×is the antisymmetric matrix defined by the 

homogeneous vector of point e and I is a 3x3 identity matrix. 

The relationship between the projection matrix and camera matrix under the Euclidean space 

satisfies [7]: 

 

P̅1 = HP1, P̅2 = HP2                                                                                                                       (8) 
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Where P̅1,P̅2are the two cameras’ matrices in Euclidean space. H is denoted by: 

H = a [
K1
−1 0

QT q
]                                                                                                                             (9) 

 

Where H is a 4x4 matrix, and K1 is the intrinsic matrix of the left camera. Assume that: 

  

W = a[QT, q]                                                                                                                               (10) 

 

Where W is a four-dimensional vector coordinate. The key of the problem is to calculate H 

and W by the geometrical constraint conditions of one-dimensional calibration. The relationship 

of the point between the Projected Coordinate System and Euclidean Coordinate System satisfies 

[7]: 

 

Aj̅
̃ = HÃj Bj̅

̃ = HB̃j Cj̅
̃ = HC̃j                                                                                                      (11) 

 

As shown in Figure1, Aj̅
̃ ,Bj̅
̃ ,Cj̅
̃  are three feature points on the 1D calibration object; j is the jth 

movement in Euclidean Coordinate System. 

The relationship between the object point coordinate in the Projected Coordinate System and 

image point coordinate satisfies [8]: 

 

{
ã1j = P1Ãj, b̃1j = P1B̃j, c̃1j = P1C̃j

ã2j = P2Ãj, b̃2j = P2B̃j, c̃2j = P2C̃j
                                                                                             (12) 

 

Where ã1j,ã2j are the measurements. The object point coordinate in the Projected Coordinate 

System can be calculated via (12). 

A̅jB̅jC̅j the three feature points satisfy: 

 

B̅j = d1A̅j + d2C̅j                                                                                                                         (13) 

 

Where d1d2 are the distance scale factors. Assume that‖Aj − Cj‖ = L, ‖Bj − Cj‖ = L1, and it 

is concluded thatd1 = (L − L1)/L, d2 = L1/L, which are the measurements. 

By substituting (9) (11) into (13), the following equation is obtained: 
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1

B̃j
T
W
Bj =

d1

Ãj
T
W
Aj +

d2

C̃j
T
W
Cj                                                                                                         (14) 

The cross product Bj on both sides of the equation is as follows: 

 

d1

Ãj
T
W
(Aj × Bj) +

d2

C̃j
T
W
(Cj × Bj) = 0                                                                                           (15) 

 

Then the dot product (Cj × Bj) on both sides of the equation is:  

 

[Ãj +
d1(Aj×Bj)(Cj×Bj)

d2(Cj×Bj)(Cj×Bj)
C̃j]W = 0                                                                                                   (16) 

 

According to the Eq. (10), W is a four dimensional vector coordinate which is not affected 

by the movement of the 1D object, so we can compute W with the 1D calibration object which 

moved over 3 times. 

The next step is to calculate the a and K1 in (9). The depth of the relationship between the 

image point coordinates of the left camera and the point coordinates of the object in Euclidean 

space satisfies: 

 

{

A̅j = Zj
aK1

−1ã1j

B̅j = Zj
bK1

−1b̃1j

C̅j = Zj
cK1

−1c̃1j

                                                                                                                           (17) 

 

By substituting (17) into the (14), we have:  

 

{
 
 

 
 Zj

a =
aAj

Ãj
TWã1j

Zj
b =

aBj

B̃j
TWb̃1j

Zj
c =

aCj

C̃j
TWc̃1j

                                                                                                                               (18) 

 

The distance between the three point which can be measured in Euclidean space satisfies: 

 

{
‖B̅j − A̅j‖ = d3

‖C̅j − B̅j‖ = d4
                                                                                                                          (19) 



339 

 

By substituting (17) (18) into (19), we have: 

{
 
 

 
 ‖aK1

−1(
Bj

B̃j
T
W
−

Aj

Ãj
T
W
)‖ = d3

‖aK1
−1(

Cj

C̃j
T
W
−

Bj

B̃j
T
W
)‖ = d4

                                                                                                     (20) 

 

The former equations are equivalent to: 

 

{
gj
TNgj = d3

2

qj
TNqj = d4

2
                                                                                                                                (21) 

 

Where gj = (
Bj

B̃j
T
W
−

Aj

Ãj
T
W
) , qj = (

Cj

C̃j
T
W
−

Bj

B̃j
T
W
) , N = a2K1

−TK1
−1, N is a 3*3 symmetric 

matrix. 

From (21), a set of matrix equation group was obtained: 

 

Djn = d
′                                                                                                                                       (22) 

 

Where n = [n11n12, n22, n13, n23, n33], with nxyequaling to the element of the x-th row and 

y-th column of N. d′ = [d3
2, d4

2]T and Dj is a 2*6 matrix, whose elements are dependent on the 

vectors gj and qj . 

So, we can compute aK1
−1 by moving 1D calibration object for over 5 times. Finally, the 

parameter K can be calculated by the Cholesky decomposition. 

 

4. HEIV-Based 1D Calibration Algorithm 

In fact, all variables are affected by noises. The calibration parameters were optimized by 

HEIV algorithm, which can optimize the sum of errors between the contaminated data and the 

estimated data iteratively. 

Eq. (16) can be transformed as follows: 

 

Vj = [Ãj +
d1(Aj×Bj)(Cj×Bj)

d2(Cj×Bj)(Cj×Bj)
C̃j] then, φ = VjW = 0                                                                   (23) 
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Since Eq. (23) is similar to (5), the problem of computing W can be treated as HEIV model. 

Mahalanobis distance is a kind of statistical distance measurement, which can fully express the 

distribution characteristics of the image noises. Thus, Markov distance is suitable for the error 

calculation, and the cost function satisfies: 

 

J =
1

2
∑ (uj − uj

′)TCuj
− (uj − uj

′)N
j=1                                                                                                  (24) 

 

Where uj=[Aj1 Aj2 Bj1 Bj2 Cj1 Cj2] are the measurements; Aj1 and Aj2 are the coordinate 

components in the Projected Coordinate System; Cuj = σ2I6 is the covariance matrix of uj. 

Considering Eq. (23), the parameter W can be calculated by optimizing the cost function as 

follows: 

 

Js = J + ∑ ηj
N
j=1 φ                                                                                                                         (25) 

 

Where ηj is the Lagrangian multiplier. The estimated parameter W satisfies: 

 

∂Js

∂uj
′ = 0                                                                                                                                          (26) 

∂Js

∂W′ = 0                                                                                                                                         (27) 

 

With Eq. (26), the following equation is obtained: 

 

Cuj
− (uj − uj

′)= 
∂φ

∂uj
′ ηj                                                                                                                      (28) 

 

With Eq. (28), then: 

 

uj
′ = uj − Cuj

∂φ

∂uj
′ ηj                                                                                                                      (29) 

 

With Eq. (26)(28)(29), the Lagrangian multiplier ηj satisfies: 

 

ηj = Cφ
+φ                                                                                                                                     (30) 
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Where Cφ = (
∂φ

∂uj
′)
TCuj

∂φ

∂uj
′ , and Cφ

+ is the pseudo-inverse. 

Likewise, from Eq. (27), the following equation is obtained: 

∂Js

∂W′ = (SW − CW)W = 0                                                                                                             (31) 

 

The scatter matrix satisfies: 

 

SW = ∑ ΦTCφ(uj)
+N

j=1 Φ                                                                                                                 (32) 

 

WhereΦ = [Vj 1]. 

The weighted covariance matrix satisfies: 

 

CW = ∑ (ηj
TN

j=1 ⊗ I7)Cϕ(uj)(ηj⊗ I7)                                                                                          (33) 

 

Where ϕ(uj) = υecΦT，meaning that a row vector is generated by Matrix Φ in accordance 

with the order of the column vectors. ⊗ is the Kronecker product. 

Finally, detailed steps of this algorithm are given as follows: 

(1) Calculate the initial values of Vj, W and Cϕ(uj) by Eq. (16). 

(2) Calculate the scatter matrix SW and the weighted covariance matrix CW with Eq. (32) and 

(33), then construct the generalized eigenvalue problem: 

 

SWW = λCWW                                                                                                                            (34) 

 

(3) Update parameters. Compute new W’ with Eq. (34). Update the estimated measurements  

uj
′ with Eq. (29) and the estimated Vjwith Eq. (16). 

(4) Back to step 2 until the smallest eigenvalue λ = 1 in Eq. (34). 

(5) Calculate aK1
−1  with Eq. (17,18,19,20,21,22). Finally compute K by the Cholesky 

decomposition. 

 

5. Experimental Results 

5.1 Simulation Experiment 

The left camera simulation parameters are as follows: α = β = 1000,  [μ, υ] = [512,384], 
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 γ = 0 . The right camera simulation parameters are as follows: α = β = 1100 ,  [μ, υ] =

[512,384],  γ = 2. Each image point added Gaussian noise with mean 0 and variance σ2. The 

noise level varied from 0 to 1.2 pixels with a step of 0.15 pixels. Do 200 times test for each noise 

level to make the results more statistically meaningful. To make comparisons, the RMS errors 

between the results of the HEIV and those based on the fundamental matrix algorithms are 

computed. Results were shown in Figure 2 and Figure 3. 
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Fig.2. The RMS errors of the fundamental matrix algorithm 
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Fig.3. The RMS errors of the HEIV algorithm 

 

Synthetic data experiment results show that, the HEIV algorithm is obviously consistently 

superior to the fundamental matrix algorithm. With the increase of noise, the noise suppression 

effect is obvious by HEIV algorithm. Both algorithms are almost not affected by the radial 

distortion. 
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5.2 Real Image Experiment 

 

Fig.4. 1D object in experiment 

 

This experiment adopts CCD binocular camera of Microvision Inc., with the model of MV-

VS220 and resolution of 1280x960.  

The 1D object is a stick with three feature points. The distance between the adjacent two 

points is 15cm. Details are shown in Figure4. 

Move the one dimensional calibration object for 20 times, then use the fundamental matrix 

algorithm and HEIV to calibrate the camera. Since the coordinates of such correspondences are 

obtained accurately, the fundamental matrix F will be calculated. Details are shown in Eq. (35). 

We also adopt Zhang’s 2D algorithm to calibrate the camera. And the results of Zhang’s 2D 

algorithm serve as the real value for comparison. Calibration data of each algorithm was shown in 

figure 1. 

 

F = [
−3.620471e − 009
1.224463e − 006
−5.141536e − 004

     
−4.119046e − 007 1.400931e − 004
3.395123e − 009 1.579353e − 002
−1.683020e − 002 1.000000e + 000

 ]                                 (35) 

 

 

Fig.5. Results of real image experiment 

 

The results indicate that calibration precision of HEIV algorithm is matched with Zhang’s 

2D algorithm. And the HEIV algorithm is prior to the fundamental matrix algorithm. 

 

 

fundamental matrix algorithm 3224.5 3245.1 2.3216 619.46 484.09

 HEIV algorithm 3359.6 3331.1 1.2235 637.48 515.16

Zhang's 2D algorithm 3476.2 3479.5 0.669 662.33 533.54

fundamental matrix algorithm 3648.5 3719.1 -3.3603 712.36 547.32

 HEIV algorithm 3580.8 3637.6 -1.7325 693.02 534.29

Zhang's 2D algorithm 3476.6 3480.7 -1.0545 667.37 509.31

left camera

right camera
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Conclusions 

This paper proposed a 1D calibration method based on the fundamental matrix. In this 

method, one dimensional calibration object can move arbitrarily without any prior information of 

the cameras or motion. Then an HEIV optimization algorithm was proposed. The algorithm can 

greatly improve the calibration accuracy compared with previous algorithms. The method is 

suitable for outdoor real-time calibration. Both Simulation experiment and real image experiment 

validate the feasibility and effectiveness of this algorithm. 
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