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Abstract  

K-anonymity is an effective method to prevent linking attacks and protect privacy. Although 

the k-anonymous dataset guarantees privacy, it must be constantly updated because the original 

dataset updates occasionally after a version of k-anonymous dataset has been exposed. So, how to 

update the k-anonymous dataset simultaneously when the original dataset has been updated 

becomes an urgent problem. To solve this problem, according to the mapping relation between 

tuples of the original dataset and k-anonymous dataset, a kind of tree structure similar to a B-tree 

is proposed, so that the update operations on the original dataset can be converted into the 

corresponding operations of leaf node in the similar-B-tree. Based on this, an incremental 

updating method for the k-anonymous dataset using a similar-B-tree is presented. This method 

can reflect the changes in the original dataset to the k-anonymous dataset in time, and it can 

greatly improve the update efficiency of the k-anonymous dataset. 
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1. Introduction 

Data publishing becomes an effective means of data exchange that is convenient for 

resource sharing. At the same time, the problem of data security becomes a new concern and 

attracts wide attention. The K-anonymity model [1] is an important method to prevent breaches of 
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privacy in data publishing. It defines the attributes of the publishing dataset (the basic form is a 

table) which can connect with other published datasets as a quasi-identifier, and makes each 

tuple(entity) repeat at least k (k≥2) times on the quasi-identifier through generalization operation. 

When the publishing dataset connects with another dataset on some attributes in the quasi-

identifier, each resulting tuple will not be distinguished from other k-1 tuples, so the privacy of 

the entity is protected. However, the original dataset changes dynamically.  For example, new 

tuples are inserted, the outdated tuples are deleted and some erroneous tuples are modified after a 

version of k-anonymous dataset has been released. If the published version cannot be updated in 

time, the validity and availability of k-anonymous dataset will be greatly reduced, and the 

practicability of k-anonymity model is restricted. Therefore, how to update the k-anonymous 

dataset urgently needs to be solved. 

The naive update method for k-anonymous dataset is generating a new k-anonymous version 

for the updated original dataset that is more practical for updating large data. But for small 

updating data, the method will not only increase the system overhead greatly, but also produce a 

number of various k-anonymous versions, which may lead to new security breaches [2]. 

Generally, the size of updating data is relatively small, and if we can update the published k-

anonymous dataset directly according to the update operations (incremental update), it cannot 

only effectively reduce the burden of the system but also avoid the emergence of multiple 

versions of k-anonymous datasets. 

In this paper, we propose an incremental updating method for k-anonymous dataset based on 

a similar-B-tree. The mapping relation between the original dataset and the k-anonymous dataset 

is represented by the similar-B-tree, and the update operations such as add, delete, modify are 

then translated to the corresponding operations on the similar-B-tree. 

 

2. Related Work 

Previous research about the k-anonymity model mainly focused on the k-anonymization 

method and an improved model. In order to improve the accuracy of the k-anonymous tables, the 

Mingen algorithm [3] was proposed. Literature [4] presented a global domain Incognito 

algorithm which generalizes all values of the attribute. Literature [5] proposed the multi-

dimensional k-anonymization algorithm which can generalize multiple attributes. A. 

Machanavajjhala et al. [6] presented an improved ℓ-diversity model. An anonymization algorithm 

suitable for high dimensional sensitive transaction data is presented in [7]. Xiaokui Xiao [8] 

pointed out that ℓ-diverse optimization is also NP-hard problem when there are only three 
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different sensitive values, and proposed a (ℓ,d)-approximate algorithm. Junqiang Liu [9] proposed 

a  ℓ+-diversity model building on  the ℓ-diversity model and presented an anonymization 

algorithm building on  complete sub-tree generalization. Ke Wang [10] pointed out that the 

sensitive information slopes in the temporary data could not meet the ℓ-diversity, and presented a 

tuple arranging strategy for constructing ℓ-diversity. Literature [11] presented a quasi-sensitive-

attribute (QS) concept, and proposed the ℓ-diversity and t-closeness models for QS. Paper [12] 

presented a multi cooperative anonymization algorithm under the half-honest model. Bo WANG 

et al. [13] proposed a personalized (a, k)-anonymity algorithm based on entropy clustering. Gong 

Qiyuan et al. [14] proposed an anonymization method under the absence of data. In order to resist 

the approximate attack, Zhong Zheyun et al [15] proposed a (k, l, e)-anonymity model. 

Although the above algorithms and improved models have some strengths, most of them 

assumed the dataset to be static dataset. Literature [16-19] considered the k-anonymization 

method under the case of the original tuples increasing monotonically. Literature [20] proposed 

the m-invariance updating method of the k-anonymous dataset for insert and delete operations, 

but it drew into a pseudo generalization technique, which is contrary to the original intention of k-

anonymity. Literature [21] presented the update method of k-anonymous dataset for insert, delete, 

and modify operations, which is consistent with the discussion in this paper. However, it locates, 

splits, and merges QI groups based on the information loss, which can guarantee the data quality 

of k-anonymous dataset but lead to high time complexity and low update efficiency. Guo Kun et 

al. [22] proposed a k-anonymization method for data stream based on the clustering method. 

 

3. Basic Definition 

The dataset in this paper is a relational table modeled as R (AQI, AS), where AQI= 

{A1
QI,A2

QI,…, An
QI} is quasi-identifier attributes, AS is sensitive attribute. For simplification, the 

dataset is denoted as R in below. To any attribute set A AQIAS, R[A] denotes the projection 

with duplication of table R on attribute set A, t[A] denotes the values of tuple t on attribute set A. 

Definition 1: k-anonymity constraint. For dataset R (AQI, AS), if each tuple in R [AQI] repeats 

at least k-1(k≥2), then the dataset R satisfies k-anonymity constraint. 

 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Liu:Junqiang.html
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Fig.1. GTree of Disease 

Definition 2: Generalizing Tree (GTree). Let D be a finite attribute domain, GTree is a tree 

which indicates the relations between attribute values of D and their generalized values. The 

leaves are attribute values. Each father node is a general value generalizing all children, and the 

root is a generalized value of all leaves. Fig.1 is a GTree of disease attribute. 

Definition 3: Generalization. For an attribute, Ai, it’s generalizing tree is Gtree, the 

generalization of Ai is a process of mapping a value v on Ai to an ancestor of v in the Gtree.  

Definition 4: k-anonymous Dataset. For dataset R (AQI,AS), generalize the values of AQI and 

get the dataset R* in which each tuple satisfies k-anonymity constraints on AQI，then the dataset 

R* is a k-anonymous dataset of R. The generalization process from R to R* is called k-

anonymization. 

Definition 5 (QI Group) For a k-anonymous dataset R* (AQI, AS), a group of tuples in 

R*[AQI] with same values are called a QI group, i.e. QG. 

Tab.2 is a 2-anonymous table of Tab.1, where the quasi-identifier AQI= {Sex, Age, 

Zipcode}, t1, t2 belong to one QI group, t3, t4, t5 belong to another QI group. 

 

Tab.1. Table R 

Sex Age Zipcode Disease 

Female 11 101 gastric ulcer 

Female 20 105 gastritis 

Male 21 106 pneumonia 

Male 26 107 bronchitis 

Male 30 110 flu 
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Tab.2. A 2-anonymity table R* of table R 

Sex Age Zipcode Disease 

Female [11-20] [101-105] gastric ulcer 

Female [11-20] [101-105] gastritis 

Male [21-30] [106-110] pneumonia 

Male [21-30] [106-110] bronchitis 

Male [21-30] [106-110] flu 

 

Definition 6: Tuple-Generalized_Tuple Mapping.  Let the original dataset and its k-

anonymous dataset are R and R* respectively. To any tuple tR, if there is t*R* which makes 

t[Ai 
QI]  t* [Ai 

QI] (1≤i≤n) and t[AS]= t*[AS], then t* is the generalized tuple of t. Because the 

count of tuples in R and R* is invariant, it is one-to-one mapping from tuple to generalized tuple. 

 

4. Description of Similar-B-Tree 

A B-tree [23] has some characteristics of a balanced sorting tree, such as being able to 

quickly locate and easily add, delete, and modify leaves, as well as being able to split the nodes. 

If we can construct a B-tree between the generalized tuples in k-anonymous dataset and their 

original tuples, then the insert, delete and modify operations on the k-anonymous dataset can be 

transformed into insert, delete and modify leaves on the B-tree.  

A B-tree with m order is an empty tree or an m order tree satisfying the following 

characteristics: 

(1) Each node in the tree has at most m sub-trees, and m>2; 

(2) If the root is not a leaf, then it has at least two sub-trees; 

(3) Other nodes, except root and leaves, have at least m/2 sub-trees; 

(4) Each non leaf node contains the information (n, P0, K1, P1, K2, P2, …, Kn, Pn), where: 

① n is the count of keys in the node, except the root, the keys in each other nodes satisfy 

m/2 ≤n≤m-1 

② Ki is a key and Ki<K(i+1); 

③ Pi is a pointer pointing to the sub-tree root, where P0 points to the sub-tree whose keys 

are less than K1, Pn points to the sub-tree whose keys are greater than Kn, each other pointer Pi 

points to the sub-tree whose keys are between (Ki, K(i+1)); 



 

194 

 

(5) All leaves are at the same level and with no information. 

In k-anonymity model, each QI group in the k-anonymous dataset correspond to a certain 

number of tuples in the original table. The number of tuples in QI group is more than k and less 

than 2k, which is consistent with the number of keys in the B-tree with 2k order, so the B-tree can 

represent the mapping relationship between QI group and the original tuples. 

When a QI group (i.e., the generalized tuples) is denoted by a sub-tree root and original 

tuples are denoted by leaves, the mapping of QI group to the original tuples is expressed by a 

sub-tree. All sub-trees can be connected to a root and then a three-layer tree is formed. In order to 

facilitate the following updating operations, each leaf in the tree should express an original tuple. 

Additionally, the number of QI groups in k-anonymous dataset is uncertain and QI groups cannot 

be sorted; namely, sub-trees are unordered, so the leaves and root in the tree do not possess the 

characteristics of a B-tree. To solve these problems, we improve the traditional B-tree to a new 

tree where leaves in each sub-tree are arranged in order only, but the sub-trees maybe disordered. 

We call the new tree similar-B-tree (SBT). The characteristics of the similar-B-tree are as follows: 

(1) The similar-B-tree consists of three layers of nodes: root, middle nodes (sub-tree root), 

and leaves; 

(2) The information in each leaf is (SPi(Ai1
QI,Ai2

QI,…,Aid
QI),Ai

s), where SPi(Ai1
QI,Ai2

 

QI,…,Aid
QI) is the spatial point of the original tuple, Ai

s is the sensitive attribute value of the 

original tuple; 

(3) The middle node has at least k and at most 2k-1 children. Each middle node contains the 

information: (n, SPe(Ae1
QI, Ae2

QI,…,Aed
QI), SPg(Ag1

QI, Ag2
QI,…,Agd

QI), K1, P1,K2, P2, …, Kn, Pn).  

① n is the number of keys (that is child nodes) in the node, which satisfies k≤n≤2k -1; 

② SPe(Ae1
QI, Ae2

QI,…,Aed
QI) is the center point of the space rounded by all the children of the 

middle node, where Aei
QI

 = n QI

1

1
A

n
j ji= , Aji

QI is the ith dimension value of the jth child of the node; 

③ SPg(Ag1
QI,Ag2

QI,…,Agd
QI) is the generalized coordinate of all children of the middle node, 

Agi
QI is the generalized value of the ith dimension of all children of the middle node； 

④ Ki(1≤i≤n) is the ith key, and Ki<K(i+1); 

⑤ Pi(1≤i≤n) is the pointer of one child, Pi points to the child whose key is Ki; 

(4) The children of the root is not limited, and the root contains the following information:(n, 

SPe1(Ae1, Ae2,…,Aed), K1, P1,…, SPen(Ae1, Ae2,…,Aed), Kn, Pn), where n is the number of sub-

trees of the root, SPei(Ae1, Ae2,…,Aed) (1≤i≤n) is the center coordinate of ith middle node(root of 

ith sub-tree), Ki(1≤i≤n) is the max key of the ith middle node, Pi(1≤i≤n) is the pointer of ith 
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middle node.  

In the similar-B-tree, the keys in middle nodes are arranged in order to represent the order of 

leaves, so keys are important information in the middle nodes. Considering each middle node (i.e., 

QI group) represents a spatial region, the distance from each spatial point (a leaf) to the region 

center is different, which indicates the degree of proximity or compactness of the point with the 

center. So, we use the distance as the key of a leaf, which cannot only contribute to sort leaves 

but also facilitate the later split operation. Considering different attributes play distinct roles in 

practical application, we add a weight Wj to each attribute (i.e., each dimension in the space) 

where 0≤Wj≤1. The greater the weight, the more important the attribute is, so the generalized 

value on the attribute will be as close to the original data as possible. The distance from any 

spatial point SPi(Ai1
QI, Ai2

QI, …, Aid
QI) to a center can be expressed as QI QI 2

i j j ejj 1

d

i
DSP W ( A A )

=
= − . 

 

5. Conversion of tuple to multidimensional spatial point 

To construct a similar-B-tree, the tuples in the original dataset R need to be mapped into 

spatial points at first. Since the k-anonymity model protects privacy by generalizing the quasi-

identifier attributes, each attribute in the quasi-identifier can be regarded as one dimension of 

space, and the values of each tuple on the quasi-identifier can be taken as the coordinates of all 

dimensions and form a spatial point. Based on this principle, any tuple ti can be transformed into 

a spatial point SPi= (ti[A1
QI], ti[A2

QI], …, ti[Ad
QI]). Since each coordinate value is numerical, every 

attribute should be converted to numeric before the tuple is transformed into a spatial point: 

(1) Numeric: no need to process because it accords with the coordinate type of a spatial 

point. 

(2) Non-numeric: must be converted to numeric by combining the relevant mathematical 

knowledge and semantic mapping techniques. But it should ensure: 

①  Uniqueness. The different values of an attribute should be converted to different 

numericals value as well, while ensuring the mapping is unique. 

② Reversibility. The non-numerical value and the converted value is one-to-one mapping, 

which can guarantee the reverse conversion. 

③ Similarity. In the conversion process, the attribute value with a similar semantic should 

be converted to a close numeric value.  

Note: The conversion from tuple to a spatial point can be converted back too according to 

the above principles. 
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6. Creating a Similar-B-Tree 

With the method mapping the tuple to a multidimensional spatial point, we can create the 

SBT based on the original dataset R and its k-anonymous dataset R*. According to the definition 

of the similar-B-tree in Section 4, the creating method of SBT is as follows: 

(1) Create some sub-trees according to each QI group (taken as middle node) in a k-

anonymous dataset and their original tuples (taken as leaves). One sub-tree SubTreei is created as 

follow: Create the middle node Mi, where the tuple count (number of leaves) in QI group QGi is 

taken as n value, the generalized value (QGi[A1
QI], QGi[A2

 QI],…, QGi[Ad
 QI]) of QGi on the quasi-

identifier is taken as the generalized spatial coordinate SPg(Ag1
QI, Ag2

QI,…,Agd
QI); calculate the 

average coordinates of all points corresponding to the original tuples in QGi and thus obtaining 

the spatial center coordinates SPe(Ae1
QI, Ae2

QI,…,Aed
QI); create leaf rl according to the jth (1≤j≤n) 

original tuple in QGi: take the distance from the spatial point SPj converted by the jth tuple to the 

center SPe of middle node Mi as the key of rl, and insert the key into Mi by order denoted as Kl，

then points Pl to leaf rl. Repeat the above steps until all leaves have been created. 

(2) Create root RN, where the sub-tree count is taken as n value, the center coordinates 

SPei(Ae1
QI, Ae2

QI,…,Aed
QI) of the SubTreei root Mi is taken as SPei, the max key Kn in SubTreei 

root Mi is taken as a key Ki in RN, and points Pi to Mi. 

The storage structures of nodes in the similar-B-tree are described as following: 

Typedef struct rootnode  /* Structure of root */ 

{ int n;  /*count of sub-trees*/ 

single SPe[n][d]; /*spatial center coordinates array SPe[1,2,…,n] [1,2,…,d]/ 

single K[n] ;  /*K[1,2,…,n] key array K[1,2,…,n]*/ 

SBTMNode * P[n]; /*child node pointer array P[1,2,…,n]*/ 

} SBTRNode; 

Typedef struct middlenode  /*Structure of middle node */ 

{int n;  /*count of keys*/ 

single SPe[d]; /*center coordinates array SPe[1,2,…,d]*/ 

string SPg[d] ;  /*generalized point coordinates array SPg [1,2,…,d]*/ 

SBTRNode * parent; /*pointer of father node*/ 

single K[2k] ;  /* key array K[1,2,…,n]*/ 

struct SBTLNode * P[2k]; /*child node pointer array K[1,2,…,n]*/ 

} SBTMNode; 

Typedef struct leafnode  /* Structure of leaf */ 
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{ SBTMNode * parent;  /*pointer of father node */ 

single SP[d];  /*SP [1,2,…,d] point coordinates array SP [1,2,…,d] */ 

string S ;  /* sensitive attribute value*/ 

} SBTLNode; 

 

7. Incremental updating method basing on Similar-B-Tree for k-anonymous 

dataset 

7.1 Insert Operation 

When a tuple t is inserted into the original table R, the generalized tuple t* of tuple t must be 

inserted into the k-anonymous dataset R* of table R. If a similar-B-tree SBT is created based on R 

and R*, then the tuple t is converted into a leaf L (here the spatial point corresponding to t is SP) 

of SBT, and the operation inserting t* into R* can be transformed to inserting leaf L into SBT. 

In inserting a new leaf into a similar-B-tree, we comply with the rules that the tree is still a 

similar-B-tree after inserting, which indicates that all nodes should satisfy their characteristics in 

the similar-B-tree. Since the leaves are orderly in each sub-tree, the leaf L must be inserted into 

one sub-tree by order. The steps of inserting a new leaf L into a similar-B-tree are: ① Choose the 

sub-tree should be inserted into; ② Determine the insertion position; ③ Insert leaf L.  

Algorithm 1. Insert algorithm (InsertLeafNode). 

Input: the inserted tuple t, the root pointer RN of similar-B-tree SBT; 

Output：the root pointer RN of SBT after inserting tuple t. 

InsertLeafNode(SBTRNode *RN, t) 

(1) SBTLNode L; Result1 RS1; int w; 

(2) Create leaf L; 

(3) FOR i=1 TO d /*Create the spatial point SP corresponding to tuple t */ 

(4)   L->SP [i]=t[Ai
QI]; L->S= t[As]; 

(5) RS1=SearchSubTree(RN, L); /*Pick up the sub-tree to be inserted and the key of leaf L */ 

(6)  w=SearchPosition(RS1->M, RS1->K); /*Fix the inserting key position of the leaf L*/ 

(7)  RS1->M=InsertNode(RS1->M, RS1->K,w,L) ; /*Insert leaf L to the sub-tree root */ 

(8) return(RN); 

The method of choosing sub-tree is as follows: Check each spatial center coordinate 

SPei(Aei1, Aei2,…,Aeid) in root RN, and calculate the distance DSPi (which is also the key of leaf L) 

from SP to spatial center SPei (Ae1, Ae2,…,Aed); if DSPi is no more than Ki, indicating that the 
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spatial point SP belongs to the region represented by the center node, then the sub-tree pointed by 

Pi (root is Mi) is the objective sub-tree; otherwise find the minimum DSPi indicating that the 

region represented by the center node is nearest to the spatial point SP, and the sub-tree pointed 

by Pi (root is Mi) is the objective sub-tree.  

Typedef struct /*The returning result structure of algorithm picking up the sub-tree to be 

inserted and the key of leaf L */ 

{struct SBTMNode *M;  /*The root pointer of sub-tree which leaf L to be inserted */ 

single K;  /*The key of leaf L */  

} Result1; 

Procedure 1: The SearchSubTree algorithm of picking up the inserted sub-tree. 

Input: the root pointer RN of similar-B-tree SBT, the leaf L to be inserted; 

Output: The root pointer of the sub-tree, the key corresponding to leaf L. 

Result1 SearchSubTree(SBTRNode *RN, SBTLNode *L) 

(1) Result1 RS1; single DSP=0; int min; 

(2) FOR i=1 TO n  

(3) {  DSPi= DSP(RN->SPe[i], L-> SP); /*Calculate the distance from the spatial point SP of 

leaf L to SPei in RN */ 

(4)     IF(DSPi<= RN->K[i]) THEN 

(5)    {  RS1->M= RN-> P[i]; 

(6)        RS1->K= DSPi; 

(7)        return(RS1); 

(8)     } 

(9)    ELSE 

(10) {  IF (i=1) THEN { DSP=DSP1; min=1;} 

(11)      ELSEIF (DSP>DSPi) THEN {DSP=DSPi; min=i;} 

 (12)  } 

(13) } 

(14) RS1->M= RN-> P[min]; 

(15) RS1->K= DSPmin; 

(16) return(RS1); 

The worst time complexity of the algorithm is O(n), where n is the QI group count in k-

anonymous dataset. 

To a sub-tree rooted as Mi, the essence of determining the insertion position of leaf L is to 
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find the insertion position of key K of leaf L in the root Mi: If K<=Kn. then compare K with each 

keyword Kj in the root Mi from the beginning of K1. If the key Kj is more than K, then the 

position of Kj is the insertion position; otherwise, the insertion position of key K is behind Kn.  

Procedure 2: The SearchPosition algorithm to determine the insertion position of the key of 

leaf L in the sub-tree root M. 

Input: the root pointer M of sub-tree which leaf L to be inserted, the key K of leaf L; 

Output: The inserting position w of the key of leaf L to be inserted in the sub-tree root. 

int SearchPosition(SBTMNode *M, single K)  

(1) int w ; 

(2) IF (K<=K[n]) THEN  

(3)   FOR j=1 TO M->n 

(4)      IF (K[j]>K) THEN w=j; 

(5) ELSE  

(6)   w= M->n+1; 

(7) return(w); 

The worst time complexity of the algorithm is O(k). 

Once the insertion position w of leaf L has been determined in the sub-tree root, according to 

the key count (i.e., the value of n) in sub-tree root (middle node) Mi, the operation of inserting 

leaf L into sub-tree can be divided into two cases: 

(1) The key count in the node Mi is less than 2k-1. 

If key count n<2k-1 in node Mi, then the children of Mi are still less than or equal to 2k-1 

after the leaf L is added. This does not violate the requirement of the middle node of similar-B-

tree, so the key K can be added at the position of Kw in node Mi directly. Then update the key 

count, the spatial center coordinates, the generalizing spatial point coordinates in node Mi and Mi 

information in root RN. The inserting operation is shown in Fig.2. 

 
 

Fig. 2 The children of L’s parent are less than 2k-1 before L is inserted 
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 (2) The key count in node Mi is equal to 2k-1. 

If key count n=2k-1in node Mi, then the children of Mi will reach 2k after leaf L is added. 

This violates the requirement of the middle node of similar-B-tree, so Mi must be split into two 

middle nodes including k children respectively after leaf L is inserted. 

The inserting method is: First add key K at the position of Kw in node Mi firstly, then split 

the node Mi. Because the keys of Mi are in order, we can retain front k keys (which have a more 

intense connection) in Mi to be a middle node directly, and split the last k keys to be a new 

middle nodes Mj; finally, update the node information in Mi and Mj, update the sub-tree count 

and corresponding information of Mi in the root, add the corresponding information of the Mj in 

the root. The inserting operation is shown in Fig.3. 

 

Fig.3. The children of L’s parent node are 2k-1 before L is inserted 

 

Procedure 3: The InsertNode algorithm of inserting leaf L to a sub-tree root. 

Input: the root pointer M of sub-tree to be inserted, the key K of leaf L, the insert position w 

of leaf L, the inserting leaf L; 

Output: the root pointer M of sub-tree after inserting leaf L. 

InsertNode (SBTMNode *M, single K, int w, SBTLNode *L)   

(1) IF (w>M->n) THEN {M->K[n+1] = K; M->P[n+1]= L;} 

(2) ELSE 

(3) {Move K[n], P[n],…, K[w], P[w] back to next position in turn; 

(4) M->K[w]= K; M->P[w]= L; 

(5) } 

(6) M->n= M->n+1 ; 

(7) IF (M->n <=2k-1) THEN 

(8) {Calculate and replace the information M-> SPe[1,…,d], M-> SPg[1,…,d] in M; 

(9) RN= M->Parent; 

(10)   Replace the information RN->SPe[1,…,d], RN->K[i] of node M in RN; 
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(11) } 

(12) ELSE 

(13) {Create a new middle node Mj; 

(14) Split the behind k keys of M and put into node Mj; 

(15 M->n=k; Mj->n=k; 

(16) Calculate and replace M-> SPe[1,…,d], M-> SPg[1,…,d]; 

(17) Calculate and replace Mj->SPe[1,…,d], Mj-> SPg[1,…,d]; 

(18) RN= M->Parent; 

(19) RN->n= RN->n+1; 

(20) Replace the information RN->SPe[1,…,d], RN->K[i] of node M in RN; 

(21) Add the information RN->SPen[1,…,d], RN->K[n], RN->P[n] of node Mj in RN; 

(22) } 

(23) return(M); 

The worst time complexity of InsertNode algorithm is O(k). In summary, the worst time 

complexity of InsertLeafNode algorithm is O(n+k), where n is QI groups in the k-anonymous 

dataset. 

 

7.2 Delete Operation 

When a tuple t is deleted from the original table R, the generalized tuple t* of tuple t must be 

deleted from the anonymous dataset R*. If a similar-B-tree SBT is created based on R and R*, 

then the tuple t is converted into a leaf L of SBT, and the deleting operation transforms to delete 

leaf L from SBT. 

To delete leaf L from SBT, first, locate leaf L, then delete the leaf. The method of locating 

the leaf L si: First, check each center coordinate in the root, calculate the distance DSPi between 

spatial point SP of leaf L and each spatial center SPei (Ae1, Ae2,…,Aed) respectively. If DSPi is no 

more than the maximum key Ki, then turn to the middle node Mi pointed by a Pi. Check each key 

in middle node Mi reversely and find the key Kj which is the same as DSPi. The leaf 

corresponding to Kj is L. 

When a leaf L is to be deleted, according to the key count in its father Mi, the deleting 

operation can be divided into two cases: 

①The number of children of Mi is more than k before deletion.  

Under this circumstance, deleting the leaf L will lead to the number of children of Mi no less 

than k, so the deleting operation is: delete the leaf L and the information of it in the Mi directly, 
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then replace the center coordinate and generalized coordinate in the Mi node, and replace the 

corresponding information in the root M. 

②The number of children of Mi is equal to k before deletion. 

Under this circumstance, deleting the leaf L will lead to the number of children of Mi to be 

fewer than k, so Mi should be merged to other middle nodes after deletion. Delete operation is as 

follows: first remove leaf L, then merge the leaves of Mi to another middle node and delete Mi. 

Algorithm 2: The deleting algorithm DeleteLeafNode. 

Input: the root pointer RN of similar-B-tree SBT, the tuple t to be deleted; 

Output: the root pointer RN of similar-B-tree SBT after deleting tuple t. 

DeleteLeafNode(SBTRNode *RN, t) 

(1) SBTLNode L; Result1 RS1; SBTMNode *M ; int w; 

(2) Create a leaf L; 

(3) FOR i=1 TO d 

(4) L->SP [i]=t[AQI
i]; 

(5) L->S= t[As]; 

(6) RS1=SearchSubTree(RN, L); /*Pick up the sub-tree containing leaf L */ 

(7)   DeleteNode(RS1->M, RS1->K) ; /*Delete leaf L*/ 

(8) return(RN); 

Procedure 4. The DeleteNode algorithm of deleting leaf L. 

DeleteNode(SBTMNode *M, single K)  

(1) FOR j=1 TO M->n 

(2)  IF (M->K[j]= K) THEN w=j; 

(3) Move K[w+1], P[w+1],…, K[n], P[n] ahead a position in turn; 

(4) M->n= M->n-1 ; 

/*While the children of M are less than k, seek a middle node with k children and is nearest 

to it */ 

(5) IF (M->n<k) THEN 

(6) {RN= M->parent;  j=0; 

(7) FOR i=1 TO RN->n 

(8) {N=RN->P[i];  

(9) IF (N->n=k) THEN {j=j+1; DSPj = DSP(RN-> SPei, M->SPe);} 

(10) } 

(11) N=the middle node with least DSP; 
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/*Insert each child of M into N in turn*/ 

(12) FOR EACH child node LM; 

(13) {K= DSP(N->SPe, L-> SP); 

(14) w=SearchPosition (N, K); /*Ascertain the inserting position of the key of leaf L */ 

(15) InsertNode (N,K,w,L) ; /*Insert leaf L into N */ 

(16) } 

(17) Replace the information of middle node N in root RN, and delete the information and 

pointer of M; 

(18) } 

(19) else 

(20) {Calculate and replace M-> SPe[1,…,d], M-> SPg[1,…,d]; 

(21) RN= M->parent; 

(22) Replace the information RN->SPe[1,…,d], RN->K[i] of node M in root RN; 

(23) } 

The worst time complexity of this algorithm is O(n+k2), where n is QI group count in the k-

anonymous dataset. In summary, the worst time complexity is O(n+k2). 

 

7.3 Update Operation 

When a tuple t in the original table R is updated to t′, the corresponding generalizing tuple t* 

in k-anonymous dataset R* need to be updated to t*′. If a similar-B-tree SBT is created based on 

R and R*, then tuple t and t′ can be converted into leaf L and L′ of SBT, and the updating 

operation transforms to delete leaf L from SBT and insert leaf L′ into SBT. 

The method of deleting leaf L from SBT and inserting leaf L′ into SBT is: Locate L at first, 

then calculate the distance DSP from leaf L′ to the center coordinates of parent node M of L. If 

DSP is less than the maximum key of M, which indicates that L and L′ belong to one middle node, 

then delete L from M directly and insert new key and pointer of L' into M based on DSP. 

Otherwise delete leaf L firstly, and insert the modified L' into similar-B-tree again. The algorithm 

is omitted. 

 

7.4 Conversion from Similar-B-tree to the K-anonymous Dataset after Update  

After updating the similar-B-tree SBT it must be converted to a k-anonymous dataset. The 

following method: each leaf in SBT is mapped to a generalizing tuple, which is obtained by 

attribute values of the quasi-identifier. These values are obtained from each coordinate of the 
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generalizing spatial point in the corresponding middle node, and the sensitive value is obtained 

from the sensitive value of each leaf. According to the discussion in preceding sections, the k-

anonymous dataset only needs to be updated incrementally according to the changed nodes in 

similar-B-tree, so the update efficiency is greatly enhanced. 

 

8. Experimental Analysis 

In this section, we test our algorithms by experiments. We mainly compare the execution 

time and data quality between InsertLeafNode, DeleteLeafNode algorithms, naive update 

algorithm (denoted as Static) and IЗM+, IЗM- algorithm [23] when the original dataset inserts, or 

deletes tuples. With the naive update method we selected the classic multidimensional k-

anonymity algorithm [5]. The data quality is measured by the information loss formula [21]. 

 

8.1 Experimental Setup 

We use Windows 7 operating system, 2.4GHz dual core processor, 2G memory. The 

experimental data is selected from the Adult dataset [24], quasi-identifiers are {Age, Work-class, 

Education, Marital-status, Native-country, Race, Sex, Occupation}, the sensitive attribute is 

Capital-gain. 

 

8.2 Experimental Result Analysis 

(1) Let k=5; when the tuples in the dataset vary from 5000 to 50000, we insert 500 tuples 

into the dataset sequentially. The update time of Static、IЗM+ and InsertLeafNode algorithm in 

the k-anonymous dataset are shown in Fig. 4. 

Figure 4 shows that while the tuples inserted is fixed, the time expended by Static algorithm 

increases sharply with the tuple increase, which relies on Static algorithm recalculating the k-

anonymous dataset, and the expended time is linear with the number of tuples in the dataset. With 

the InsertLeafNode and IЗM+ algorithms, the updating time is relatively small and increases 

slowly. The reason is InsertLeafNode and IЗM+ algorithms adopt incremental updates and the 

execute time relates to the insert tuples, QI group count and k value, but not the tuples in original 

dataset. In addition, the execute time of InsertLeafNode algorithm is less than IЗM+. This means 

that the InsertLeafNode algorithm has significantly improved the performance with the help of 

similar-B-tree. The performance comparison in the case of fixing deleted tuples and increasing 

tuples in the original dataset is similar.  
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Fig.4. Inserting Time with Variation of Dataset Size 

 

(2) Let the tuples in the original dataset be 20000 and k=5; the update time and data quality 

comparison of Static、IЗcM+ and InsertLeafNode algorithms when the inserted tuples varies 

from 1% to 50% are shown in Fig.5 and 6 respectively. The update time and data quality 

comparison when the deleted tuples vary from 1% to 50% are shown in Fig.7 and 8 respectively. 

Fig.5 and 7 illustrates that the InsertLeafNode/DeleteLeafNode algorithm is clearly more 

efficient than both the IЗM+/IЗM and Static algorithms. In addition, when the inserted/deleted 

tuples is fewer less, the execution time of the InsertLeafNode/DeleteLeafNode algorithm changes 

slowly, but the execution time increases quickly when the amount of inserted/deleted tuples 

increases to a certain number, indicating that the InsertLeafNode/DeleteLeafNode algorithm is 

suited to small  amount of update data but not a large amount. Fig.6 and 8 show that with the 

increasing of inserted/deleted tuples, the difference between the level of information loss in the k-

anonymous dataset with InsertLeafNode/DeleteLeafNode and IЗM+/IЗM- algorithms is close, and 

the information loss is clearly similar with the Static algorithm when the amount of 

inserted/deleted tuples is small, indicating that the InsertLeafNode/DeleteLeafNode algorithm can 

guarantee the data quality of the k-anonymous dataset when the amount of update data is small. 

 

 

Fig.5. Time expended with Data Increment 



 

206 

 

 

Fig.6. Information Loss with Data Increment 

 

 

Fig.7. Time expended with Data Decrement 

 

 

Fig.8. Information Loss with Data Decrement 
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9. Conclusion 

In this paper, we propose an incremental updating method for a k-anonymous dataset based 

on the similar-B-tree. Later research will focus on verifying the extent of incremental updating of 

a k-anonymous dataset with high data quality and without new disclosure by other datasets, and 

improve the algorithm to fit other improved k-anonymous models. 
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