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Abstract  

Wind power companies are increasingly introducing fault diagnosis technologies, however, 

the full use of these technologies mainly depends on expert experience. This paper puts forward a 

fault identification method for the intelligent fault identification of wind turbine based on fault 

knowledge base. The model uses principal component analysis to integrate the eigenvalues of 

vibration and SCADA signals, and then takes the existing fault sample with the highest matching 

rate in the wind farm fault knowledge base as the input to train the least squares support vector 

regression algorithm model optimized by particle swarm optimization. The matching rates of 

fault samples in the fault knowledge base are updated after each diagnosis. Finally, the measured 

data of the wind farm are used to verify the effect of the model. It is proved that, if the fault 

samples are sufficiently trained, this method can accurately diagnose the existing faults from the 

fault base. 
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1. Introduction 

As the main equipment of wind farm, wind turbine takes up 74-82% of the total investment 

on wind farm. What is worse, the wind turbine is also the major contributor to the operating cost 

of the wind farm because of its high failure rate in the poor operating environment and expensive 

maintenance cost. Suffice it to say that the economic benefits of wind farm hinge on the reduction 

of wind power turbine maintenance cost. Thus, wind power companies are increasingly 

introducing technologies such as condition monitoring, fault diagnosis and condition maintenance. 

The problem is most of the condition monitoring and fault diagnosis systems on the market only 

support achieve data acquisition and signal processing functions. For complex functions like fault 

diagnosis, positioning and prediction functions, experienced fault diagnosis experts are needed to 

make judgements based on the frequency domain analysis of the collected signals. In the lack of 

expertise, field maintenance staff often fail to make full use of the software based on expert 

experience. 

Scientific workers at home and aboard have carried out some research on intelligent 

diagnosis of wind turbine. The representative works are listed below. Peng Huadong2011 

presents a flow chart of wind turbine fault diagnosis model based on BP neural network and the 

corresponding software function module [1]. Su (2015) pointed out the main functions of online 

remote fault diagnosis system of wind turbine [2]. Roozbeh (2013) applied Dynamic Weighting 

Ensembles Algorithm in fault identification of doubly-fed asynchronous generators [3]. Adel 

(2014) used Gaussian acyclic graphical models and Lasso to estimate the fault of variable pitch 

system [4]. Gu (2016) preprocessed the original vibration signal by the step ratio sampling 

method and the dimension-factor analysis, sets up the early fault identification model of the wind 

turbine gearbox based on the Mahalanobis distance, and adopts the MLR-improved multiple 

outlier monitoring method to achieve the early fault diagnosis of fan gearbox [5]. For the purpose 

of determining the relationship between the transmission efficiency, temperature and speed signal 

of the wind turbine gearbox, Qiu (2014) established a wind turbine transmission chain model in 

consideration of the heat transfer mechanism in the gearbox lubrication system, thereby offering 

useful information for the design and optimization of the lubrication system [6]. Through 

comparison between the gearbox and generator simulation results and the SCADA data, Qiu 

(2016) proved the validity of the diagnostic method in that it can identify some failure modes 

difficult to be identified by vibration analysis [7]. Hasmat (2015) employed Simulink, FAST and 

TurbSim to establish the permanent magnet synchronous wind turbine simulation model, obtains 

the intrinsic mode frequency of signal through the EMD decomposition of the stator current 
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outputs of the model under normal operation and various imbalance faults, and imports the 

decomposition results to the probabilistic neural network to identify the imbalance faults of the 

wind turbine [8]. Alkhadafe (2016) chooses Taguchi orthogonal array and eigenvalue automatic 

selection method to optimize the selective sensor and signal processing algorithms, and verifies 

the effectiveness of the two algorithms by applying them in the diagnosis of three damage 

degrees of helical gear of single stage gearbox [9-10]. To improve the speed of big data 

processing of fault diagnosis and early warning methods without sacrificing the accuracy. 

It can be seen from the above research that intelligent diagnosis is the mainstream approach 

to diagnose the faults of vibration signals or SCADA signals on key components of wind turbine, 

such as gearbox and generator. Against this backdrop, this paper puts forward a fault 

identification method for the intelligent fault identification of wind turbine based on fault 

knowledge base. The model is constructed as follows: use principal component analysis to 

integrate the eigenvalues of vibration and SCADA signals, and then take the existing fault sample 

with the highest matching rate in the wind farm fault knowledge base as the input to train the 

least squares support vector regression algorithm and gravitational neural network algorithm. 

 

2. Data collection and fusion 

2.1 SCADA data and vibration data 

The supervisory control and data acquisition (SCADA) system of wind turbine data can 

collect and transmit the status parameters of wind turbine, including wind wheel speed, generator 

speed, generator coil temperature, the temperatures of the front and rear bearings of the generator, 

gearbox oil temperature, the temperatures of the front and rear bearings of the gearbox, hydraulic 

system oil temperature, oil pressure, oil level, engine room vibration, cable torsion, and engine 

room temperature. Nevertheless, the SCADA information on temperatures and oil pressures are 

often insufficient to determine the specific type and location of faults on gearbox and some other 

key parts of the wind turbine. 

This paper provides a wind turbine condition monitoring system capable of collecting the 

vibration information and SCADA data of the wind turbine. (Figure 1) The system consists of 

onboard data acquisition system and wind farm data server. The onboard data acquisition system 

contains a controller, a transmission chain vibration data acquisition module, a sensor, a data 

processing module, a data storage module, a SCADA data acquisition module and a data 

communication module. Among them, the SCADA data acquisition module reads data from wind 
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turbine main PLC control, and the data communication module is connected to the wind farm 

data server. 

 

Fig. 1 Data acquisition system 

 

2.2 Data feature extraction 

The raw data collected by the data acquisition system cannot be used directly for fault 

diagnosis. It is necessary to choose proper characteristic parameters, and extract the features of 

the original data. The characteristic parameters are described as follows: 

1) The absolute mean XAM and the range XR. Related to the signal amplitude, the two 

parameters are sensitive to the vibration energy, and their values increase as the fault develops. 

The values are calculated by the following formula: 

                                                                                                                          (1) 

                                                                                                                        (2) 

Where xi  is the value of the i-th data in the data sequence,  Xmax  is the maximum value of 

the data sequence, and Xmin is the minimum value of the data sequence. 

2) The waveform factor XSF. The parameter is sensitive to the slight fluctuation of the shape 

of the vibration signal. Its value is calculated by the following formula: 

                                                                                                        (3) 
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3) Kurtosis XK. The parameter is sensitive to the impact signal response. Its value is 

calculated by the following formula: 

                                                                                                      (4) 

Where  is the average of the data sequence and  is the standard deviation of the data 

sequence. 

4) Frequency centroid BFS. The parameter is sensitive to the spectral variation of the 

vibration signal. Its value is calculated by the following formula: 

                                                                                                     (5) 

Where s(f) is the power spectrum of the signal. 

5) Wavelet packet spectral entropy PSE(k). The parameter is sensitive to the variation in 

information quantity obtained by wavelet packet decomposition of the vibration signal. Its value 

is calculated by the following formula: 

                                                                                                  (6) 

Where pk  is the k-th wavelet packet sequence obtained by wavelet packet decomposition of 

the signal. 

 

2.3 Data fusion 

According to its role in the fault diagnosis algorithm, the data fusion can be divided into: 

data level fusion, feature level fusion and decision level fusion. (Figure 2) 

In data level fusion, the raw data from various sensors are summarized and analyzed directly 

on the layer of the acquired raw data. In feature level fusion, the features extracted from the data 

level are associated and classified, and the system condition is judged by a certain fusion rule. In 

decision level fusion, the preliminary conclusions of the fault diagnosis on sub-systems are 

associated into the decision level judgement to yield the final joint inference results. 

In this paper, the principal component analysis is used to perform feature-level data fusion 

[11]. The method reassembles the numerous partially relevant parameters (e.g. n characteristic 

parameters) into a group of new, irrelevant composite indices to replace the original indices. The 
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data fusion process removes the redundancy in the characteristic parameters, reduces the original 

feature dimensions, and thereby generates the feature-reduced composite indices. 

 

Fig. 2 The role of data fusion in fault diagnosis algorithm 

 

This paper extracts a total of 12 characteristic parameters through a 3-layer wavelet packet 

decomposition of vibration data samples. The parameters include 8 wavelet packet energy 

spectral entropies, 3 time domain characteristic parameters (absolute mean, waveform factor, 

kurtosis) and 1 frequency domain characteristic (frequency centroid). The 12 characteristic 

parameters, coupled with the 2 time field eigenvalues (absolute mean and range) extracted from 

the SCADA information, constitute a 14-dimensional eigenvector of the condition of wind 

turbine. Finally, the 14-dimensional eigenvector receives data fusion by principal component 

analysis. 

 

3. Fault knowledge base 
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The known fault types and the corresponding characteristic parameter samples must be 

imported to the fault knowledge base before the intelligent fault diagnosis of wind turbine. Any 

new fault should be compared with the characteristic parameter samples of the known faults in 

the fault knowledge base by the intelligent diagnosis algorithm, and the type of the new fault 

should be determined based on the successful matching rate. 

 

Fig. 3 The structure of fault knowledge base 

As time goes, there will be a gradual increase in the training samples of the same fault taken 

from different wind turbines in the fault knowledge base. This gives rise to the question of how to 

choose proper training samples. The answer is to take the fault data of the wind turbine with high 

successful matching rate as the training samples of the intelligent diagnosis. Figures 3 & 4 

illustrate the structure of fault knowledge base and the matching rate update algorithm, 

respectively. 

 

Fig. 4 Matching rate update algorithm 
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The base records every type of fault occurred to each component, and saves the historical 

conditions of each fault type monitored at different times and of different wind turbines under 

each fault type of each component. These monitoring data are called training samples, each of 

which carries the attribute of successful matching rate. The matching rate update algorithm goes 

as follows: 

1) When a new fault occurs, the training samples are sorted by successful matching rate; 

2) All samples with the highest successful matching rates are selected to form the training 

samples for this diagnosis, together with the corresponding fault types. For example, sample A1 

is selected for the fault type A, and sample B4 is selected for fault type B; 

3) The intelligent diagnostic model trained by the sample is applied to this fault diagnosis; 

4) The diagnostic results indicate which of the fault types in the fault knowledge base the 

new fault belongs to (e.g. fault type A). The judgment is verified by the maintenance personnel. 

5) Update the successful matching rate. If the judgment is correct, the successful matching 

rate of the sample A1, corresponding to the fault type A, and the inverse is true. 

 

4. Fault knowledge base 

Supported by the fault knowledge base, the training samples are used to train the intelligent 

fault diagnosis model. In this paper, the firefly algorithm is used to optimize the least squares 

support vector regression algorithm. The algorithms are described as follows. 

 

4.1 Least squares support vector regression algorithm 

With multidimensional vector as the input and one-dimensional vector as the output, the 

least squares support vector regression (LS-SVR) is, in essence, a nonlinear mapping from 

original space to the high dimensional space and the construction of the optimal linear regression 

function. In the principle of structural risk minimization, the dot product operation in high 

dimensional feature space is replaced by the kernel function in the original space. In this way, the 

solution to the nonlinear estimation function is transformed into that to the linear estimation 

function in the high-dimensional feature space [12]. 

Suppose the training set has m samples,  xiRm is the input data and yiR is the output data. 

The problem is optimized by LS-SVR into [13]: 
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                                                                                              (7) 

                                                                      (8) 

Where J is the loss function; w is the weight vector;  is the empirical error; b is the offset 

amount; C is the penalty coefficient;  is the non-linear mapping of the input data to the high-

dimensional feature space. 

The Lagrange polynomial of the dual problem is: 

                                                   (9) 

Where  is a Lagrange multiplier. 

By the KKT condition, seek partial derivative of w, , b and , respectively, and make it 

equal to 0. Eliminate w and  to get: 

                                                                      (10) 

Where ; E is a  dimensional unit 

matrix; is a kernel function that satisfies the Mercer condition. 

Select the following radial basis function kernel: 

                                                                   (11) 

Where  is the width parameter of the kernel function;  is the 2-norm. 

The following LS-SVR decision function is obtained as: 

                                                                   (12) 

The accuracy of LS-SVR model is determined by the penalty coefficient C and the kernel 

parameter σ. To avoid the blindness of manual selection, the author relies on the superior global 

search capability of the Particle Swarm Optimization (PSO) to find the optimal combination of 

penalty factor C and kernel parameter σ. 
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4.2 PSO algorithm 

 

Fig. 5 Flowchart of PSO-optimized LS-SVR algorithm 

 

In the PSO algorithm, the potential solution of the optimization problem is regarded as a 

particle in the n-dimensional search space. A number of randomly distributed initial particles are 

moving at a certain speed in the search space. The speed depends on their own inertia, optimal 

position and the optimal position of the population. To put it in another way: In an n-dimensional 

search space, there are m examples making up population . For the i-th 

particle, the position is , the speed is , and the 

current optimal position is for the individual. The current optimal position 

of the population is . The speed and position of each particle are updated 

according to the following formulas: 

                                       (13) 
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                                                                                                          (14) 

Where rand( ) is a random number in (0, 1); and  are the speed and position of 

particle i in the d-th dimension in the k-th iteration;  is the optimal position of particle i in the 

d-th dimension in the k-th iteration;  is the optimal position of the population in the d-th 

dimension in the k-th iteration. 

Figure 5 is the flow chart of PSO-optimized LS-SVR algorithm. 

 

5. Application and analysis 

5.1 Application case data and algorithm initial setting 

The monitoring data of a wind farm in Jilin Province are used to verify the proposed 

algorithm. The data are collected from four 1.5MW wind turbines. The first wind turbine has 

worn gear at the end of high speed shaft; the second has fractured gear at the end of high speed 

shaft; the third has loosened bearing at the end of high speed shaft; the fourth one is operating in 

the normal condition. The four wind turbines are diagnosed separately with the intelligent 

diagnosis method supported by the fault base. 

In LS-SVR, the penalty coefficient C falls in the range of [1, 1000] and the kernel parameter 

σ falls in the range of [0.01, 10]. In the PSO algorithm, the number of particles is set to 100, and 

the initial position and the speed are random numbers. The author uses the PSO algorithm to 

obtain the optimal combination of the penalty coefficient and kernel parameter of LS-SVR model, 

and substitutes the optimal combination into the model to diagnose the faults of the gearboxes of 

the wind turbines. 

 

5.2 Fault diagnosis example 

As mentioned above, for the training samples automatically organized by the fault 

knowledge base, 12 characteristic parameters are extracted from the vibration signal, including 8 

wavelet packet energy spectral entropies, 3 time domain characteristic parameters (absolute mean, 

waveform factor, kurtosis) and 1 frequency domain characteristic (frequency centroid); Besides, 

2 time domain eigenvalues (absolute mean and range) are extracted from the information on rear 

bearing temperature of the gearbox out of the SCADA information. The resulting 14-dimensional 

eigenvector of wind turbine conditions receives data fusion by the principal component analysis. 

Table 1 presents some of the extracted characteristic parameters. Given the limited space 
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available, the table only listed 1 of the 8 wavelet packet energy spectral entropies. Table 2 

displays the input training samples obtained through the principal component analysis. The 

principal component analysis threshold is 0.95. The PSO-optimized LS-SVR model is used to 

optimize and train the input parameters. In this way, the intelligent diagnosis model is 

constructed with C = 150.466 8 and σ = 0.1532. 

The measured data of the four different wind turbines are processed with the above data 

processing method and imported to the above-mentioned trained intelligent diagnosis model. The 

diagnosis results and errors are shown in Table 3. 

 

Table 1. Some of the extracted characteristic parameters 

Healthy 

conditions 

Vibration data SCADA data 

Absolute 

mean 

Waveform 

factor 
Kurtosis 

Frequency 

centroid  

Energy spectral 

entropy of wavelet 

packet 

Absolute 

mean 
Range 

Normal 

0.0541 1.1905 2.2247 1245.8413 6.7984 63.6606 0.8200 

0.0903 1.2305 2.6851 1413.3221 6.7203 66.2157 3.4000 

0.2040 1.2451 2.8301 1445.3789 6.9342 67.3535 1.8000 

Worn gear 

at the end 

of high 

speed shaft 

7.0757 1.3657 2.5418 571.3286 6.9615 63.7185 0.4800 

14.8514 1.3155 2.2570 943.0045 7.1044 66.3377 1.4600 

19.5166 1.3331 2.4506 781.7550 7.0390 63.9918 2.9300 

Fractured 

gear at the 

end of high 

speed shaft 

25.7708 1.4294 7.3398 1303.1139 7.5145 62.2949 3.0400 

35.0609 1.3996 7.6343 1344.1135 7.3756 64.2483 0.5800 

41.5687 1.5110 8.9068 1378.7435 7.3503 64.7028 2.5000 

Loosened 

bearing at 

the end of 

high speed 

shaft 

0.3447 1.2849 3.7505 1410.6124 6.1864 73.4782 1.3300 

0.3719 1.2727 3.4801 1411.0069 6.3094 75.4625 1.3800 

0.4207 1.2985 3.9361 1368.3230 6.0836 79.9989 3.0500 

 

Table 2. Some of the training samples after data fusion 

Healthy 

conditions 

Condition 

code 

Main 

component 

1 

Main 

component 

2 

Main 

component 

3 

Main 

component 

4 

Main 

component 

5 

Main 

component 

6 

Normal 1 
22.143 -48.823 -97.409 -35.176 -146.949 53.173 

20.940 -47.015 -93.260 -35.116 -141.151 50.232 
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17.471 -41.985 -81.023 -30.960 -121.798 41.486 

Worn gear at 

the end of 

high speed 

shaft 

2 

-44.275 67.895 153.946 57.169 244.314 -102.512 

-38.494 58.975 133.201 51.146 211.003 -88.075 

-36.259 53.483 125.165 46.439 198.699 -84.306 

Fractured 

gear at the 

end of high 

speed shaft 

3 

18.787 3.436 -51.824 -21.730 -84.400 53.882 

14.225 8.017 -38.142 -15.557 -64.187 45.649 

19.961 4.7139 -56.815 -24.077 -91.877 56.293 

Loosened 

bearing at 

the end of 

high speed 

shaft 

4 

11.390 -29.602 -33.624 -11.738 -53.400 14.797 

10.456 -27.410 -28.265 -8.5266 -44.061 10.821 

14.411 -33.468 -43.557 -14.770 -68.708 21.610 

 

Table 3. Fault diagnosis results and errors 

Test no. Actual condition Target output Actual output Error 

1 Normal 1 1.0703 0.0703 

2 
Worn gear at the end of high 

speed shaft 
2 2.0842 0.0842 

3 
Fractured gear at the end of high 

speed shaft 
3 2.9445 -0.0555 

4 
Loosened bearing at the end of 

high speed shaft 
4 3.8698 -0.1302 

 

6. Conclusion 

This paper offers a complete fault diagnosis method of wind turbine supported by fault 

knowledge base: 

1) The training samples of the intelligent fault diagnosis model are the samples with the 

highest successful matching rate in the fault knowledge base. 

2) According to the vibration data and SCADA data in the training samples, the main feature 

analysis method is used to fuse the characteristic parameters of conditions. 

3) The integrated composite indices are imported to the intelligent diagnosis model, and the 

PSO-optimized LS-SVR algorithm serves as the intelligent fault diagnosis method for the wind 

turbine. 

The proposed method achieves excellent identification effect when it is applied to the fault 

diagnosis at the high-speed shaft end of wind turbines demonstrates. It provides a promising 
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solution to the problem that wind farm maintenance personnel do not have the expertise required 

for correctly reading the monitoring information of wind turbine. 
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