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Abstract 

A novel measure of correlation between data sets is proposed based on applying the notion of 

“probabilistic support” to compare the pairwise comparisons of measurements. Probabilistic 

Rank Correlation (PRC) is a crisp instantiation of this idea, in the spirit of traditional rank 

correlations. It is shown that, under broad conditions, Probabilistic Rank Correlations has a 

strong, elegant transitivity property. The practical application of the PRC is also illustrated. 
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1. Introduction 

When the need arises to assess the correlation of two data series whose distributions are 

unknown or expected to be importantly non-normal, analysts often eschew the Pearson 

correlation (Benesty, J. et al, 2009). They and turn to rank correlation measures, such as the 

Spearman correlation (Croux, C., & Dehon, C., 2010) or the Kendall (Abdi, H, 2007; Kendall, M. 

G., 1938) or Goodman-Kruskal correlations (Corder, G.W., D.I., 2009). Recently researchers 
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have also introduced a number of new Rank Correlation measures, including Lee’s measure (Le, 

Chap T., 2007), which is similar to the Kruskal-Wallis test (McKight, P. E., & Najab, J., 2010). 

Also, the measure proposed by Yilmaz et al (Yilmaz et al, 2008) that is specialized for 

information retrieval applications, and a fuzzy version of the Goodman-Kruskal measure 

(Gonzalez-Serna, A. et al. 2012). Here we present another rank correlation coefficient, the 

Probabilistic Rank Correlation, which is based on applying the concept of probabilistic support to 

propositions about pairwise rank comparisons (Popper, K., & Miller, D. W., 1987) (and is 

equivalent to the covariance of a particular pair of Boolean-valued random variables, which 

pertain to pairwise rank comparisons of the original datasets).  

The quantity  is known as the probabilistic support that one event 

 gives to another event . If  then we say that A supports B. We introduce the 

notion of symmetric probabilistic support, 

 

                          (1) 

 

and then, given a random variable  mapping into a poset, construct  as a proposition holding 

true for any pair that  ranks in decreasing order. We then define the Probabilistic Rank 

Correlation of  and  as 

 

                                                                        (2) 

 

(A bit of additional subtlety arises in the context of pairs with equal rank, but the essential 

formula is the above.) 

We show that the Probabilistic Rank Correlation possesses strong and elegant transitivity 

properties, governing when two positive or negative correlations can be chained together to yield 

a positive correlation. In essence, if one knows X is correlated with Y and Y is correlated with Z, 

one can say the following about transitivity to correlation of X with Z: 

• Transitivity holds if the rankings implied by  are independent of the rankings implied by 

, when conditioned on the rankings implied by  
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• Transitivity also holds if this independence is only approximate, assuming the correlations 

involved are strong enough 

The main theorem presented here (Theorem 7.1) quantifies the balance between strength and 

independence involved. 

The symmetric probabilistic support is equal to the covariance, in the case of Boolean-

valued random variables. Since the standard Pearson correlation is also defined in terms of 

covariance, it might seem we are not doing anything radically different from usual here. 

However, the normalization factor in the definition of covariance (which is necessary if using 

non-Boolean, numerical random variables, as in the case of Pearson and Spearman correlation) 

makes transitivity conditions dramatically more complicated. In the Probabilistic Rank 

Correlation, we avoid this normalization factor by taking the covariance of appropriately defined 

Boolean-valued random variables, which results in a correlation measure with an elegant 

transitivity condition. 

We then give some potentially useful extensions to the basic Probabilistic Rank Correlation 

formulation. First, we note that our results also apply to a modified version of the Probabilistic 

Rank Correlation, in which attention is restricted to certain pairs only. In the Restricted 

Probabilistic Rank Correlation,  is defined as a proposition-holding true for any pair that  

ranks in decreasing order that also fulfills some other given criterion . For instance,  could be 

used to restrict attention only to those pairs  fulfilling  for some  and some 

metric  on . This may be useful in time series analysis (Quenouille, M. H., 1949; Tsay, R. S., 

2005) in order to restrict attention only to pairs occurring nearby in time, as judged by threshold 

duration . 

These ideas may be extended beyond rank correlation per se, to take into account the 

magnitude of difference between two elements, rather than just the rank ordering. When 

correlation is known to be transitive this can accelerate certain computational algorithms 

(Mahmood, A., & Khan, S., 2010), it may be valuable to explore the utility of the probabilistic 

rank correlation in this context. The notion of Probabilistic Rank Correlation and the simple 

examples given herein may also be useful in an educational context, either as part of a discussion 

of the transitivity and other properties of correlation measures (e.g. Castro Sotos et al, 2007). 

Alqo, it is part of a more general treatment of uncertainty and its role in quantifying relationships 

(e.g. Li, Wei., 2016; Liu, D. et al., 2017). 
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2. Transitivity of Correlation 

It is a typical error of naive statistics students to assume that positive Pearson correlation is 

transitive: that if  and  are positively correlated, and  and  are positively correlated, so as  

and . However, simple counterexamples abound for instance, tigerhood is positively correlated 

with cathood, and lionhood is positively correlated with cathood, but tigerhood and lionhood are 

anti-correlated. 

For a mathematical example, let  and  be i.i.d.  random variables and  be 

a constant. Let 

 

                                                                         (3) 

 

Then the variance of  is easily seen to be , so that 

 

                                                            (4) 

 

as  and  are i.i.d by construction. Similarly, . So we see that  and  

have nonzero correlation, and  and  have nonzero correlation, but the correlation of  and  is 

zero. Transitivity of non-zero correlation is violated, and in a way that does not depend on the 

specific value of the constant . 

The intransitivity of correlation is not a fluke of any particular formalization; it is a 

fundamental qualitative property of the correlation concept (Castro Sotos et al, 2007). However, 

oftentimes correlation is transitive. One would like to have a correlation measure that is transitive 

as often as possible, consistent with capturing the intuitive notion of correlation; and one would 

like to have a simple, elegant condition identifying a broad range of cases where transitivity 

holds. 

Probabilistic support, like correlation, is not generally transitive: If  supports  and  

supports , this does not necessarily mean that  supports . However, there are known 

conditions under which probabilistic support is transitive. In the main work of this paper, we 
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derive a broader set of conditions than those previously described; and we then show that 

Probabilistic Rank Correlation inherits an elegant, pragmatic transitivity property from the 

transitivity properties of probabilistic support. 

The contrast between Probabilistic Rank Correlation and standard Pearson correlation, 

regarding the simplicity of known transitivity conditions, is striking. It is known (Langford, E., et 

al. 2001) that Pearson correlation is transitive if , but this is a very severe 

condition. It is a sufficient but not necessary condition, and there are many other cases where 

Pearson correlation does turn out to be transitive, but there is no conceptually simple relationship 

characterizing these cases. To get a little more insight into the situation, suppose there are two 

series of  values,  and  where . If you replace  with 

, and treat  correspondingly, then the Pearson correlation of 

 and  is the cosine of the angle between  and  (the mean-centered versions of  and ). If 

you then consider 3 vectors , then: intuitively, the worst scenario for  comes about 

when the projections of  are in a geodesic on the unit sphere. In this case, if the angle 

between  and , and the angle between  and , then  and a 

Taylor expansion yields 

 

                                                     (5) 

 

Which is meaningful (and can be refined further), but certainly lacks the conceptual 

simplicity of the results we present here for the Probabilistic Rank Correlation. In harmony with 

the above comments on covariance, we suggest that the culprit, underlying the complexity of 

these transitivity related calculations, is ultimately the fact that the  are real-valued rather than 

Boolean. 

The Spearman correlation simply applies the Pearson correlation to ranks, and hence doesn’t 

change the situation fundamentally. 

The Kendall  correlation takes a different approach, somewhat related to the Probabilistic 

Rank Correlation, but appears not to solve the “transitivity condition” problem in a particularly 

elegant way either. We will explore this point in detail in section 5. 



481 

3. Probabilistic Rank Correlation 

Let  be a probability space (here  is a sample space,  is a -algebra on this 

sample space, and  is a probability measure), and  is a measurable space (here  is a -

algebra over ). Let  and  denote two random variables so that , . Let  

possess the partial ordering . 

Most of the results about Probabilistic Rank Correlation presented here will assume  is a 

total ordering, yet the Probabilistic Rank Correlation is also meaningful over posets lacking total 

ordering, and we plan to explore this aspect in future work. 

Next, let for instance  denote a random variable  defined via 

 

                                                              (6) 

 

Similarly, we define LX via 

 

                                                              (7) 

 

Note that iff < is a total ordering, we have  as a general identity (a fact we will 

use frequently in the following). If < is not total then there may be cases where that 

because ω and ω2 are not comparable according to <. It will 

never be the case, though, that .  

Let that , and define   similarly. We define: 

DEFINITION 1.  The Probabilistic Rank Correlation between  and  is given by 

 

                                                                               (8) 

 

Next, suppose we have two series of  values drawn from the space ,  and  

where . We then let e.g. , and define 



482 

DEFINITION 2. The Probabilistic Rank Correlation between  and  is given by 

 

                                                                                 (9) 

 

(Where the probabilities involving  and , inside the definition of , are 

taken relative to the universal set defined as the set of pairs  for ) If the 

 and  are interpreted as samples drawn from random variables  and , then one 

can ask the usual probability-theoretic questions about the convergence of Probabilistic Rank 

Correlation based on samples to Probabilistic Rank Correlation based on the underlying 

distributions of the random variables. However, we will not concern ourselves with such issues 

here, focusing instead on the properties of Probabilistic Rank as applied to finite series of values. 

Note that, if there are no equally ranked pairs in the dataset , then , because half 

of the total set of pairs  will be increasing and the other half will be decreasing. Where  

is the probability that a randomly chosen pair  has , the general formula is 

, since we have arbitrarily assigned the equally ranked pairs to  rather than . 

We will revisit this issue in Section 8 below, suggesting a more complex approach that is more 

practical in cases where there are many equally ranked pairs. 

 

3.1 Algorithm for Calculating Probabilistic Rank Correlation between Time Series 

We now describe a practical methodology for calculating the Probabilistic Rank Correlation 

between two time series. This algorithm does not exhaust the general theory presented above, but 

merely constitutes an initial practical realization. 

Assume one has two data series, written as , , with . Assume a 

certain window size . Then, we will calculate the Probabilistic Rank Correlation, restricted so as 

to compare only values lying within the same window. Let  denote the set of pairs  so 

that ; and define  similarly. Then, we will calculate  and  based on these 
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restricted sets of pairs, thus deriving a rank-based measure of whether the local movements of  

and  correlate. 

The practical procedure here is simply: 

1) Start with  

2) Iterate through all pairs  with  and  

3) For each such pair  

a) increment  by  if  

b) increment  by  if  

c) increment  by  if  

d) increment  by  if  

e) increment  by 1 if both  and  

f) increment  by 1 if both  and  

4) Then the Probabilistic Rank Correlation is calculated as the difference 

 

                                                                             (10) 

 

This procedure deals with equally-ranked cases via the simple heuristic of averaging the 

results obtained via the two methods of pushing them into the “greater than” category, and 

pushing them into the “less than” category. Of course, in the case of no equally ranked cases we 

have 

 

                                                 (11) 

 

4. Algebraic Properties of Symmetric and Asymmetric Probabilistic Support 

Now we begin some mathematical work, aimed at elucidating the transitivity properties of 

the correlation measures introduced above. As a preliminary, we first present some elementary 

algebraic facts relating the symmetric and asymmetric probabilistic support. These facts will be 

used in the following section to explore the transitivity of Probabilistic Rank Correlation and 

Probabilistic Comparison Correlation. Firstly, a single step of algebra shows that 

                                                (12) 



484 

from which we see that 

 

                                      (13) 

 

It is also clear from the definition of ssupp that 

 

                                                                    (14) 

 

and it is easy to see that 

 

                                                                  (15) 

 

Since 

                                   (16) 

 

Putting the above together, we find that the following are all equivalent criteria: 

 

                                                              (17) 

 

We will also have use for the following observation: 

LEMMA 1. 

                                                        (18) 

Proof of LEMMA 1 is attached in the Appendix. 
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5. Comparison with Kendall Correlation 

It is interesting to compare the Probabilistic Rank and Kendall  correlations via formulating 

the latter in the mathematical framework we have introduced here. For simplicity, in this section 

we will restrict ourselves to the case where  is a total order. We will also follow the previous 

section and lump cases where  into ; this is sometimes though not usually done in the 

context of the Kendall correlation, but it doesn’t affect the analysis fundamentally and simplifies 

the formulas a bit. 

The Kendall correlation, like the Probabilistic Rank Correlation, is based on the sets of 

ranked pairs  and . It is typically described as “the number of pairs on whose ranking x and 

y agree, minus the number of pairs on whose ranking x and y disagree.” In the formalism we’re 

using here, this means 

 

                                                    (19) 

 

From this definition, it follows that 

 

                                       (20) 

                                                   (21) 

 

So, we have 

 

                                                          (22) 

 

and it thus suffices to show that, in general, 

                                             (23) 

 

This follows via 
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                                                              (24) 

 

Compared to the relevant condition for the Probabilistic Rank Correlation, the Kendall 

positive correlation condition is more awkward to work with mathematically, and lacks an 

equally natural connection with probability theory.  

It’s easy to check that 

 

                                                                  (25) 

 

occurs iff one of  is  and the other is not. So for values of 

 falling into this category, there will be some cases where  and 

 will give different answers regarding whether or not  and  are positively correlated. 

 

6. A Simple Sufficient Condition for Transitivity of the Probabilistic Rank Correlation 

As with any other sensible correlation measure, the Probabilistic Rank Correlation will not 

always be transitive. However, there exist simple and forgiving sufficient conditions under which 

transitivity will hold. 

In this section, we give a sufficient condition for transitivity of Probabilistic Rank 

Correlation, which is overly severe and not likely to be applicable in realistic situations. Then in 

the following section we extend this theorem into a more forgiving one, according to which the 

requirements for transitivity are easier to fulfill. 

The key point we make in this section is that the transitivity properties of Probabilistic Rank 

Correlation follow from the transitivity y properties of probabilistic support. Define 

DEFINITON 3.    Screens off  with respect to  if  and 
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Basically, what is meant by “B screens off A with respect to C” is that C is independent of A, 

when conditioned on B. Shogenji (Shojenji, Tomoji., 2003) has shown using elementary 

calculations that under this condition, probabilistic support is transitive (a simple result that is 

closely related to the ideas underlying Bayes networks). 

Using this result of Shogenji’s, it is direct to conclude that 

THEOREM 6.1.     Suppose we have three data series, written as , , 

 where  and the values are drawn from some totally ordered space . Then 

if 

1)  

2)  

3)  screens off  with respect to , 

it follows that 

 

PROOF.  Recall that . 

But, in the text above, it was shown that . 

Thus, the result follows from Shogenji’s result regarding the transitivity of probabilistic 

support. In fact, the calculations Shogenji presents in his paper show something a little, stronger, 

namely that if 

 

1)  

2)  screens off  with respect to , 

 

Then  

 

This covers the situation: two negative correlations chain together to yield a positive 

correlation. We will cover this case below in Theorem 7.1 whose main business, however, is 

generalizing Theorem 6.1 to handle the case where the screening is only approximate. 
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7. A Less Stringent Transitivity Condition 

Now we present our main theorem, an extension of the above result that is sufficiently strong 

to be useful in practical situations. In extending the result, we not only make the condition less 

stringent, but also generalize it to the case where one has two negative correlations and wishes to 

combine them transitively to get a positive correlation. We define 

DEFINITION 4.    screens off  with respect to  with error  if 

 and  

This is a kind of screening that is far more likely to be observed in actual datasets, as 

opposed to the ideal, complete screening that Shogenji considers. 

This allows us to state our main theorem: 

THEOREM 7.1. Suppose we have three data series, written as , ,  

where  and the values are drawn from some totally ordered space . Let . Let 

 denote the probability of equally-ranked cases for . Then if 

1)  

2)  screens off  with respect to , with error  

It follows that 

 

 

 

This theorem follows easily from 

LEMMA 2. Suppose we have three subsets A, B and C of the set , and . Then if 

1)  (1-P(B)) 

2)  screens off  with respect to , with error  

It follows that 

 

 

Proofs of THEOREM 7.1 and LEMMA 2 are attached in the Appendix. Finally, we note that: 

COROLLARY 1. The conclusions of Theorem 7.1 also hold for Restricted Probabilistic 

Rank Correlation, in which  is defined as a proposition holding true for any pair that  ranks 
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in decreasing order, that also fulfills some other given criterion . ) The probability  must of 

course be interpreted as the probability of equally ranked pairs under the assumption of criterion 

.) 

The corollary follows via the same proof as Theorem 7.1. This proof doesn’t actually care 

about the particulars of how  is defined, since Lemma 2 holds in any case. The conclusions of 

Section 8 regarding equally ranked values also apply unproblematically to the Restricted 

Probabilistic Rank Correlation. 

 

8. Handling Equally Ranked Values 

In the above we simply lumped the case  into . From a mathematical perspective 

this may seem unproblematic since the odds of drawing two samples precisely equal to each other 

are very low for any reasonably large space . In practical data analysis, though, the situation 

arises reasonably often. So from the perspective of applying  to real datasets we need to 

explicitly address this case. 

Let  denote the modified sets obtained by putting the equally-ranked pairs into  

instead of . We then have 

 

                        (26) 

 

Where 

1) as above,  ( ) is the probability that a randomly selected element of  ( ) is an 

equally-ranked pair 

2)  is the probability that a randomly selected element of  is an equally-ranked 

pair 

Note that these probabilities will generally be quite small; if a proportion  of data items are 

equally ranked, then the number of equally ranked pairs will be of order . However, if a large 
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percentage of the data items are equally ranked, then the extra terms in the above expression for 

 may become significant. 

A simple approach to handling equally ranked values is to calculate two different 

correlations, i.e.  as defined above, and 

 

                                                                  (27) 

      

One could then look at a correlation value as consisting of an interval 

 

                                                       (28) 

 

or as a heuristic one could look at the midpoint of this interval. Note that the theorems derived 

above apply equally well to  as to . So, if we let 

 

                                                               (29) 

 

We then have: 

THEOREM 8.1.   Suppose we have three data series, written as , ,  

where  and the values are drawn from some totally ordered space . Let  Then 

if 

1) ; or else (a weaker condition) both 

a)  

b)  

2)  screens off  with respect to , with error  

3)  screens off  with respect to , with error  

it follows that 

 

        



491 

 More experimentation on real-world datasets may lead to different ways of coping with 

datasets having a large number of equally-ranked pairs. We note that Kendall correlation also 

deals with equally-ranked pairs in a manner that is not fully conceptually satisfactory (typically, a 

pair that is equally-ranked in dataset  and unequally-ranked in dataset  is ignored and counted 

as neither a “mismatch” or a “match”, but there is some variation in how this is handled). 

 

9. Practical Examples 

In this section, we illustrate the practical application of the PRC, in the context of examples 

from the literature illustrating non-transitivity of Pearson correlation. In one of these, the PRC is 

transitive; in the other, it is intransitive, but less severely so than the Pearson correlation. 

Table 1 compares Pearson correlation and PRC on data from (Langford, E., et al. 2001) 

regarding triples, home runs and base hits among 2000 New York Yankees with at least 300 at-

bats. Here, according to Pearson correlation, triples and base hits are positively correlated, and 

base hits and home runs are positively correlated, but triples and home runs are negatively 

correlated. PRC on the other hand shows all pairs as positively correlated, with the correlation 

between base hits and home runs being very weak but still positive. 

Conceptually, what is happening here is that there are some types of players for whom 

getting a lot of base hits correlated with getting a lot of triples, and other types of players for 

whom getting a lot of base hits correlated with getting a lot of home runs. But few players for 

whom getting a lot of triples is correlated with getting a lot of home runs. The "triples versus 

home runs" correlation aggregates statistics over multiple player types in a way that masks 

interesting distinctions that appear if one looks only at players who get a lot of triples, or only at 

players who get a lot of home runs. 

 

Table 1. Baseball Data: Here PRC is transitive while Pearson is not 

 Triple 

vs 

Base Hits 

Base Hits 

vs 

Home Run 

Triple 

vs 

Home Run 

Pearson 0.52 0.29 -0.09 

PRC 0.36 0.39 0.03 
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Figure 1. Scatterplot matrix of Rating, Length and Release Year of films 

 

Figure 1 shows the scatterplot matrix of length, rating and release year of films, regarding to 

the film data from (Moore, Thomas L., 2006). Table 2 compares Pearson correlation and PRC on 

the data that shows in Figure 2. The Pearson correlation shows a strong intransitivity: length and 

rating are positively correlated, and so are length and release year, but rating and release year are 

negatively correlated. The PRC shows this same intransitivity, but much less strongly. 

 

Table 2. Film Data: Here PRC is less intransitive than Pearson 

 Length vs Rating Length vs Year Rating vs Year 

Pearson 0.32 0.51 -0.15 

PRC 0.26 0.37 -0.06 

          

        Table 3 shows a synthetic example; here we see that the Pearson correlation gives a highly 

intransitive result (high correlation A vs B and A vs C, but very low correlation B vs C). The 

PRC gives results similar to what would be found via probability multiplication (A vs B and B vs 

C are correlated around .48, and A vs C is correlated around .19).    

 

Table 3. Synthetic Data: Here PRC is transitive while Pearson is not 

 A vs B A vs C B vs C 

Pearson 0.68 0.68 0.12 

PRC 0.48 0.48 0.19 
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These examples illustrate that the theoretical advantages of the PRC regarding transitivity, 

actually translate into less perverse behavior regarding transitivity on real-world datasets. Further 

exploration on more diverse datasets will also be valuable, of course.  

 

10. Conclusion  

We have proposed a novel correlation measure, the Probabilistic Rank Correlation, and 

shown that it possesses elegant and pragmatic transitivity criteria. The Probabilistic Rank 

Correlation’s close connection with the notion of probabilistic support provides it with a solid 

conceptual and intuitive basis. It is closely, mathematically and conceptually, related to the 

Pearson and Spearman correlations, as one might expect; but via calculating the covariance of an 

appropriately defined set of Boolean random variables, its transitivity criteria avoid the 

complexities associated with the transitivity of Pearson or Spearman correlations. It shares with 

the Kendall correlation a foundation in rank comparisons, but seems more intuitive than the 

Kendall correlation, due to its foundation on covariance. We have also proposed the Probabilistic 

Comparison Correlation, which extends the ideas underlying Probabilistic Rank Correlation to 

form a correlation measure taking into account the magnitude of differences between elements, 

not merely the rank. We suggest that the Probabilistic Rank and Comparison Correlations should 

be viewed as viable alternatives to the standard correlation measures, in both theoretical and 

practical contexts. We have shown that the PRC measure gives more sensible results than 

Pearson correlation on some simple standard test problems. Finally, we conjecture that our novel 

correlation measures may be especially applicable for measuring correlation between data series 

with strongly non-normal distributions, e.g. fractal distributions, and/or to cases where the rank or 

comparative relations between data items are more important than their precise magnitude. 
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Appendix 

PROOF OF LEMMA 1 

                                                                    (30) 

 

PROOF OF THEOREM 7.1. Let . We know that 

, and that . 

So Lemma 2 yields the condition 

                                     (31) 

 

PROOF OF LEMMA 2.  The proof follows the course of the proof of the theorem in (Shojenji, 

Tomoji., 2003), but with the addition of the error , which must be propagated through all the 

calculations appropriately. We have 

                                              (32) 

Where the last step comes from the “screening off” assumption. Meanwhile, 

 

                          (33) 
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Let  denote the interval , and interpret equations involving quantities of 

the form  using standard interval arithmetic. 

Then, from the above two equations it follows that 

 

                      (34) 

 

Using Lemma 1 from earlier, we then have 

 

                            (35) 

 

So, to have 

 

                                                  (36) 

 

it suffices to have 

 

                                    (37) 

 

This is equivalent to stating that 

 

                                                  (38) 

 

and hence completes the proof. 


