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ABSTRACT 

  
 I present a computational view to generate α-Pareto optimal solutions for the fuzzy multiple 

objective optimization problems based on the α-Level sets method and the weighting 

method using MATLAB® (R2014a) . In this paper, two MATLAB codes based on two 

hybrid algorithms for solving linear multiple objective programming problems involving 

fuzzy parameters in: (1) The right hand side of the constraints, and (2) The objective 

functions are introduced. These fuzzy parameters are characterized as fuzzy numbers. For 

such problems, the α-Pareto optimality is introduced by extending the ordinary Pareto 

optimality on the basis of the α-Level sets of fuzzy numbers. Also, two numerical examples 

are given to clarify the main results developed in the paper. The hand solutions of the 

numerical examples and the solutions by the MATLAB codes are identical.  
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1. INTRODUCTION 

 

Multiple objective optimization problems are a famous 

class in Mathematical programming (MP), [1-3]. It deals with 

the problems that have a conflict multiple objectives under 

constraints. This paper presents a numerical approach using 

MATLAB® , [4-7], to solve linear multiple objective 

optimization problems involving fuzzy parameters. In real life 

problems, it is natural to consider that the possible values of 

these parameters are ambiguously known to experts' 

understanding of the parameters as fuzzy numerical data 

which can be represented by means of fuzzy numbers, [8-13]. 

In the following section, basic definitions are given. A 

hybrid algorithm, an illustrative numerical example and a 

MATLAB®  code to solve linear multiple objective 

optimization problem involving fuzzy parameters in the right 

hand side of the constraints based on the α-Level set mrthod 

and the weighting method are introduced in section (3). In 

section (4), a hybrid algorithm, an illustrative numerical 

example and MATLAB®  code to solve linear multiple 

objective optimization problem involving fuzzy parameters in 

the objective functions based on the α-Level set method and 

the weighting method are presented. 

 

 

2. BASIC DEFINITIONS 
 

Let 𝕏  be a set. The characteristic function 𝜇𝕄  of the 

classical subset 𝕄 of 𝕏 takes its values in the two-element set 
{0 , 1} . A fuzzy set 𝕄 has a characteristic function taking its 

values in the interval [0 , 1]. 𝜇𝕄 is also called a membership 

function. 𝜇𝕄(𝑥) is the grade of membership of 𝑥 ∈ 𝕏 in 𝕄 . 

𝕄 is symbolically denote by {(𝑥 , 𝜇𝕄(𝑥)): 𝑥 ∈ 𝕏} . A fuzzy 

set can be denoted by �̃� , and the ordinary set by 𝕄 , [8-12]. 

There are many different definitions for the fuzzy real 

number. The trapezoidal fuzzy real numbers can be defined as 

follows, [8-12]: 

Definition (1): 

A real fuzzy number �̃� is a fuzzy subset of the real line ℝ 

with membership 𝜇�̃� which have the following properties: 

(I) 𝜇�̃�  is a continuous mapping from ℝ to a closed 

interval [0 , 1],  
(II) 𝜇�̃�(𝑥) = 0, for all 𝑥 ∈ (−∞ ,𝑚1], 
(III) 𝜇�̃�(𝑥) is strictly increasing on [ 𝑚1, 𝑚2], 
(IV) 𝜇�̃�(𝑥) = 1, for all 𝑥 ∈ [ 𝑚2 , 𝑚3], 
(V) 𝜇�̃�(𝑥) is strictly decreasing on [ 𝑚3, 𝑚4], 
(VI) 𝜇�̃�(𝑥) = 0, for all 𝑥 ∈ [𝑚4 , +∞), 

where 𝑚1, 𝑚2 , 𝑚3 , 𝑚4 are real numbers. 

The fuzzy number can be denoted by �̃� =
[𝑚1, 𝑚2 , 𝑚3 , 𝑚4]. 

Definition (2): 

The fuzzy number �̃� = [𝑚1, 𝑚2 , 𝑚3 , 𝑚4] is a trapezoidal 

fuzzy real number, denote by [𝑚1, 𝑚2 , 𝑚3 , 𝑚4] , its 

membership function 𝜇�̃� is given by: 

 

𝜇�̃�(𝑚) =

{
 
 

 
 

0,                       𝑚≤𝑚1,

1−[
(𝑚−𝑚2)

(𝑚1−𝑚2)
],     𝑚1≤ 𝑚≤𝑚2,

1,                 𝑚2 ≤  𝑚 ≤ 𝑚3,

1−[
( 𝑚−𝑚3)

(𝑚4−𝑚3)
],      𝑚3≤ 𝑚≤𝑚4,

0,                     𝑚4≤ 𝑚 .

                               (1) 

 

Another form for the membership function 𝜇�̃�  satisfying 

assumptions (I to VI) of definition (1) is given by: 

 

𝜇�̃�(𝑚) =

{
 
 

 
 

0,                      𝑚≤𝑚1,

1−[
(𝑚−𝑚2)

(𝑚1−𝑚2)
]
2
,    𝑚1≤ 𝑚≤𝑚2,

1,                 𝑚2 ≤  𝑚 ≤ 𝑚3,

1−[
( 𝑚−𝑚3)

(𝑚4−𝑚3)
]
2
,    𝑚3≤ 𝑚≤𝑚4,

0,                       𝑚4≤ 𝑚 .

                               (2) 

 

There are many other possible forms for a membership 

function: linear, exponential, hyperbolic, etc. 
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Also, the ordinary subset of level 𝛼  can be defined as 

follows, [8-12]: 

Definition (3): 

Let 𝛼 ∈ [0 , 1], one can call the ordinary subset of level 𝛼 

of a fuzzy subset �̃� , the ordinary subset 𝕄𝛼 = {𝑥 ∶  𝜇�̃�(𝑥) ≥
𝛼}. 

 

 

3. LINEAR MULTIPLE OBJECTIVE OPTIMIZATION 

PROBLEMS WITH FUZZY PARAMETERS IN THE 

RIGHT HAND SIDE OF THE CONSTRAINTS 

 

Consider the following linear multiple objective 

optimization (LMOO) problem involving fuzzy numbers in 

the right hand sides of the constraints (LMOO) �̃�: 

 

(LMOO) �̃� : 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑓1(𝑋), 𝑓2(𝑋), … . , 𝑓𝑘(𝑋))                                   (3) 

 

subject to 

 

𝑋 ∈ 𝕏(�̃�)={ 𝑋 ∈ ℝ𝑛 : ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ �̃�𝑖 , 𝑖 ∈  𝕍,
𝑛
𝑗=1  

                         𝑥𝑗 ≥ 0, 𝑗 ∈ ℕ},  

 

where 

 

𝕍 = {1,2, … . , 𝑣},  
ℕ = {1,2, … . , 𝑛}, 

�̃�𝑖 : represent fuzzy numbers involved in constraints, 𝑖 ∈  𝕍, 
𝑋 : is an n-vector of the variables,  

ℝ𝑛 : is the set of all n-vectors of real numbers. 

 

It is assumed that,  �̃�𝑖  , 𝑖 ∈  𝕍  in problem (3), are fuzzy 

numbers whose membership functions are 𝜇�̃�(𝑏𝑖), 𝑖 ∈  𝕍. 

By introducing the concept of 𝛼-level set or 𝛼-cut of the 

fuzzy numbers �̃�𝑖 , 𝑖 ∈  𝕍,  then problem (3), for a certain 

degree 𝛼 , can be understood as the following nonfuzzy 𝛼-

linear multiple objective optimization (𝛼 − LMOO) 𝑏 

problem: 

 

(𝛼 − LMOO) 𝑏 : 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑓1(𝑋), 𝑓2(𝑋), … . , 𝑓𝑘(𝑋))                                (4-1)  

 

subject to   

 

𝑋 ∈ 𝕏(𝑏)={ 𝑋 ∈ ℝ𝑛 : ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 ∈  𝕍,
𝑛
𝑗=1  

𝑥𝑗 ≥ 0, 𝑗 ∈ ℕ},                                                                  (4-2) 

 

𝑏 ∈ 𝐿𝛼(�̃�)                                                                          (4-3) 

 

where 𝐿𝛼(�̃�) is the 𝛼-level set of the fuzzy numbers, �̃�𝑖 , 𝑖 ∈  𝕍. 
 

Based on the definition of the 𝛼 -level set of the fuzzy 

numbers, the concept of 𝛼-Pareto optimal solution to the 𝛼- 

linear multiple objective optimization problem (4) can be 

introduced in the following definition, [8-12]:  

Definition (4): 

A point 𝑋∗ ∈ 𝕏(𝑏)  is said to be an 𝛼 -Pareto optimal 

solution to the (𝛼 − LMOO) 𝑏 problem (4) , if and only if there 

does not exist another 𝑋 ∈ 𝕏(𝑏) , 𝑏∗ ∈ 𝐿𝛼(�̃�) , such that 

𝑓𝑟(𝑋) ≥ 𝑓𝑟(𝑋
∗), (𝑟 = 1,2, . . . , 𝑘) , with strictly inequality 

holding for at least one 𝑟, where the corresponding value of 

number 𝑏∗ is called 𝛼 − level optimal number. 

To find an 𝛼-Pareto optimal solution to the (𝛼 − LMOO) 𝑏 

problem (4), a hybrid algorithm based on the 𝛼-level set of the 

fuzzy numbers, [8-12], and the weighting method, [1-3], is 

introduced as follows: 

Hybrid Algorithm (I): 

Step (1): Transform problem (3) to the form of problem (4). 

Step (2): Use the weighting method and the 𝛼-level set 

  method to transform problem (4) to the following 

form: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑟𝑓𝑟(𝑋)
𝑘
𝑟=1                                                  (5-1) 

 

subject to       

 

𝑋 ∈ 𝕏(𝑏)={ 𝑋 ∈ ℝ𝑛 : ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 ∈  𝕍,
𝑛
𝑗=1  

𝑥𝑗 ≥ 0, 𝑗 ∈ ℕ},                                                                  (5-2) 

 

𝑏 ∈ 𝐿𝛼(�̃�)                                                                          (5-3) 

 

where 𝑤𝑟 ≥ 0,   𝑟 = 1,2, … . , 𝑘,   ∑ 𝑤𝑟
𝑘
𝑟=1 = 1  . 

 

Step (3): Let 𝛼 =𝛼∗, and use the membership function 𝜇�̃� of 

the form (1) or (2) to transform problem (5) 

to the following form: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑟𝑓𝑟(𝑋)
𝑘
𝑟=1                                                  (6-1)  

 

subject to       

 

𝑋 ∈ 𝕏(𝑏)={ 𝑋 ∈ ℝ𝑛 : ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 ∈  𝕍,
𝑛
𝑗=1  

𝑥𝑗 ≥ 0, 𝑗 ∈ ℕ},                                                                  (6-2) 

 

ℎ𝑖 ≤ 𝑏𝑖 ≤ 𝐻𝑖 , 𝑖 ∈  𝕍                                                         (6-3) 

 

where 𝑤𝑟 ≥ 0,   𝑟 = 1,2, … . , 𝑘,   ∑ 𝑤𝑟
𝑘
𝑟=1 = 1  . 

 

Step (4): Let 𝑤𝑟 = 𝑤𝑟
∗ ≥ 0, then use the simplex (or any 

other method) to solve problem (6). 

Step (5): Let 𝑋∗ is the 𝛼-Pareto optimal solution to problem 

(6): 

(i) If 𝑤𝑟 > 0, for all 𝑟 , thus 𝑋∗ is an efficient solution, 

(ii) If 𝑤𝑟 ≥ 0, for all 𝑟 , and 𝑋∗ is a unique for problem 

(6), thus 𝑋∗ is an efficient solution , 

(iii) If 𝑤𝑟 ≥ 0, for all 𝑟 , and there are alternative 

solutions, thus, use the non-inferiority test. 

Step (6): Stop. 

Example (I): 

Consider the following LMOO problem involving fuzzy 

numbers in the right hand side of the constraints: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓1(𝑥1, 𝑥2) = 6𝑥1 + 𝑥2 ,  𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓2(𝑥1, 𝑥2)  =
𝑥1 + 2𝑥2,   
 

subject to 

 

3𝑥1 + 2𝑥2 ≤ �̃�,  5𝑥1 ≤ 9,   𝑥1, 𝑥2 ≥ 0. 

 

where 𝛼 = 0.33 , �̃� =  (1,6,7,9)  and membership function 

𝜇𝜆(𝜆) of the form (2). 

Use the hybrid algorithm (I):to solve the above problem, (let 

𝑤1
∗ = 𝑤2

∗ = 0.5). 

Solution: 

54



 

𝜇�̃�(𝜆) =

{
 
 
 

 
 
 

0,                    𝜆 ≤ 1,

1 − [
(𝜆−6)
(1−6)

]
2

,     1 ≤  𝜆 ≤ 6 ,

1,               6 ≤  𝜆 ≤ 7,

1 − [
( 𝜆−7)
(9−7)

]
2

,     7 ≤  𝜆 ≤ 9,

0,                         9 ≤  𝜆     .

 

 

𝜇�̃�(𝜆) ≥ 0.33 

 

1 − [
(𝜆−6)

(1−6)
]
2

≥ 0.33 where 1 ≤  𝜆 ≤ 6 ,  

⇒  25 − (6 − 𝜆)2 ≥ 8.25,  ⇒  16.75 ≥ (6 − 𝜆)2,  ⇒  

±√16.75 ≥ (6 − 𝜆)2,  

√16.75 ≥ 6 − 𝜆 ⇒  𝜆 ≥
12−√67

2
 , Accepted 

−√16.75 ≥ 6 − 𝜆 ⇒  𝜆 ≥
12+√67

2
 , Rejected. 

 

1 − [
( 𝜆−7)
(9−7)

]
2

≥ 0.33 where 7 ≤  𝜆 ≤ 9 , 

 ⇒  4 − (𝜆 − 7)
2
≥ 1.32,  ⇒  2.67 ≥ (𝜆 − 7)

2
,  ⇒

 ±√2.68 ≥ (𝜆 − 7)
2
, 

√2.68 ≥ 𝜆 − 7 ⇒  𝜆 ≤
35−√67

5
 , Accepted 

−√2.68 ≥ 𝜆 − 7 ⇒  𝜆 ≤
35+√67

5
 , Rejected. 

 

Thus, 
12−√67

2
≤  𝜆 ≤

35+√67

5
 . 

Apply the weighting method, follows: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹 = [0.5(6𝑥1 + 𝑥2) + 0.5(𝑥1 + 2𝑥2)] 
 

subject to 

 

3𝑥1 + 2𝑥2 ≤ 𝜆, 5𝑥1 ≤ 9, 𝜆 ≥
12−√67

2
 ,𝜆 ≤

35+√67

5
,  𝑥1, 𝑥2, 𝜆 ≥

0. 

 

By solving the above linear programming problem, the 𝛼-

Pareto optimal solution is: 𝐹∗ ≅ 6.93 , 𝑥1
∗ ≅ 1.8 , 𝑥2

∗ ≅
1.62  , 𝜆∗ ≅ 8.64. 

Also, to find an 𝛼-Pareto optimal solution to example (I), A 

MATLAB code (I) based on hybrid algorithm (I) is introduced 

as follows: 

 

MATLAB Code (I):  

 
%weight of the first objective 

w1=0.5;  

%weight of the second objective 

w2=0.5;  

%first objective 

obj1=[6, 1 ,0]; 

%second objective 

obj2=[-1, 2 ,0 ];  

%LHS of the constraints 

LHS_C=[3 2 -1; 5 0 0]; 

%RHS of the constraints 

RHS_C=[0;9];  

alpha=0.33; 

%intervals of the fuzzy number 

fznum1=[1,6,7,9];  

syms x; 

%The following is solving the  

%member ship function using  

%the alpha cut in order to get 

%the ranges of the fuzzy number 

%Array that carries only  

%the accepted ranges 

  accepted=[]; 

  %The first part of the 

  % membership function 

  s=solve((1-((x - fznum1(2))/(fznum1(1)-fznum1(2)))^2)>= 

alpha,x); 

  %converts symbolic answer to double 

  interval=double(s(1));  

  %I have to make sure that  

  %the ranges falls in the  

  %interval of the membership  

  %function 

  if interval(1)>= fznum1(1)&& interval(1) <= fznum1(2) 

  %Add to the end of  

  %the accepted array 

    accepted(end+1)=interval(1);  

  end 

  if interval(2)>= fznum1(1)&& interval(2) <= fznum1(1) 

    accepted(end+1)=interval(2); 

  end 

  %The second part of the 

  % membership function 

  s2=solve((1-((x-fznum1(3))/(fznum1(4)-fznum1(3)))^2)>= 

alpha,x); 

  %Converts symbolic  

  %answer to double 

  interval2=double(s2(1));  

  %I have to make sure 

  %that the ranges falls  

  %in the interval of the 

  %membership function 

  if interval2(1)>= fznum1(3)&& interval2(1) <= fznum1(4) 

    accepted(end+1)=interval2(1); 

  end 

  if interval2(2)>= fznum1(3)&& interval2(2) <= fznum1(4) 

    accepted(end+1)=interval2(2); 

  end 

  fprintf('The final range of the fuzzy number #1') 

  accepted   

%Multiply the objective functions  

%by the weights and -1, 

% since they are 

%maximization, and  

%add them together to 

%have a single objective 

obj=-1*w1*obj1 +-1*w2*obj2;  

%add two new constraints  

%containing the fuzzy  

%numbers ranges 

N_LHS_C=cat(1,LHS_C, [0 0 -1],[0 0 1 ]); 

N_RHS_C=cat(1,RHS_C,[-1*accepted(1);accepted(2)]); 

%solve the new problem  

%using linear programming  

%function 

lb = zeros(3,1); 

[x,fval]=linprog(obj,N_LHS_C,N_RHS_C,[],[],lb); 

fprintf('The optimal objective function value :') 

z=-fval 
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fprintf('The optimal values of the decision variables') 
x 

 

RUN 

 

The final range of the fuzzy number #1 

accepted = 

  1.9073  8.6371 

Optimization terminated. 

The optimal objective function value : 

z = 

  6.9278 

The optimal values of the decision variables 

x = 

  1.8000 

  1.6185 

  8.6371 
 

 

4. LINEAR MULTIPLE OBJECTIVE OPTIMIZATION 

PROBLEMS WITH FUZZY PARAMETERS IN THE 

OBJECTIVE FUNCTIONS  

 

Consider the following LMOO problem involving fuzzy 

numbers in the objective functions (LMOO) 𝜆: 

 

(LMOO) 𝜆 : 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑓1(𝑋, �̃�1), 𝑓2(𝑋, �̃�2), … . , 𝑓𝑘(𝑋, �̃�𝑘))                 (7) 

 

subject to                                

 

𝑋 ∈ 𝕏={ 𝑋 ∈ ℝ𝑛 : ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 ∈  𝕍,
𝑛
𝑗=1  

                     𝑥𝑗 ≥ 𝑑𝑗 > 0, 𝑗 ∈ ℕ},  

 

where 

 

𝑓𝑟(𝑋, �̃�𝑟) = ( 𝐶𝑟 + �̃�𝑟𝐶𝑟
/
 )𝑡𝑋,   𝑟 ∈  𝕂,                                 (8) 

 

𝕂 ∶ = {1,2, … . , 𝑘}, 

�̃�𝑟 : are n-vector of fuzzy numbers involved in the objective 

functions, 𝑟 ∈  𝕂, 
𝑡  ∶ denotes transpose, 

𝐶𝑟 ∶ is n-vector of the coefficients, 𝑟 ∈  𝕂 , 

𝐶𝑟
/
∶ is a diagonal matrix of dimension n. 

𝑑𝑗 ∶ are certain lower bounds for the decision 𝑥𝑗 , 𝑗 ∈ ℕ. 

   

It is assumed that, �̃�𝑟 , 𝑟 ∈  𝕂  in problem (7), are fuzzy 

numbers whose membership functions are 𝜇𝜆(𝜆𝑟), 𝑟 ∈  𝕂 . 

By introducing the concept of 𝛼-level set or 𝛼-cut of the 

fuzzy numbers �̃�𝑟 , 𝑟 ∈  𝕂  , then problem (7), for a certain 

degree 𝛼 , can be understood as the following nonfuzzy 𝛼-

linear multiple objective programming (𝛼 − LMOO) 𝜆 

problem: 

 

(𝛼 − LMOO) 𝜆 : 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒(𝑓1(𝑋, 𝜆1 ), 𝑓2(𝑋, 𝜆2 ), … . , 𝑓𝑘(𝑋, 𝜆𝑘))              (9-1)  

 

subject to   

                                                     

𝑋 ∈ 𝕏(𝑏)={ 𝑋 ∈ ℝ𝑛 : ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 ∈  𝕍,
𝑛
𝑗=1  

𝑥𝑗 ≥ 𝑑𝑗 > 0, 𝑗 ∈ ℕ},                                                         (9-2) 

 

𝜆 ∈ 𝐿𝛼(�̃�)                                                                          (9-3) 

 

where 𝐿𝛼(�̃�) is the 𝛼-level set of the fuzzy numbers, �̃�𝑟 , 𝑟 ∈
 𝕂 . 

Based on the definition of the 𝛼 -level set of the fuzzy 

numbers, the concept of 𝛼-Pareto optimal solution to the 𝛼- 

linear multiple objective optimization problem (9) can be 

introduced in the following definition, [8-12]:  

Definition (5): 

A point 𝑋∗ ∈ 𝕏 is said to be an 𝛼-Pareto optimal solution to 

the (𝛼 − LMOO) 𝜆 problem (9) , if and only if there does not 

exist another 𝑋 ∈ 𝕏(𝑏) , 𝜆∗ ∈ 𝐿𝛼(�̃�) , such that 𝑓𝑟(𝑋, 𝜆 ) ≥
𝑓𝑟(𝑋

∗, 𝜆∗), (𝑟 = 1,2, … . . , 𝑘), with strictly inequality holding 

for at least one 𝑟 , where the corresponding value of number 

𝜆∗  is called 𝛼 − level optimal number and 𝐿𝛼(�̃�)  is the 

𝛼 −level set of the fuzzy number �̃�. 

To find an 𝛼-Pareto optimal solution to the (𝛼 − LMOO) 𝜆 

problem (9), a hybrid algorithm based on the 𝛼-level set of the 

fuzzy numbers and the weighting method is introduced as 

follows: 

Hybrid Algorithm (II): 

Step (1): Transform problem (7) to the form of problem (9). 

Step (2): Use the weighting method and the 𝛼 -level set 

method to transform problem (9) to the following 

form: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑟𝑓𝑟(𝑋, 𝜆𝑟  )
𝑘
𝑟=1                                          (10-1)        

 

subject to 

 

𝑋 ∈ 𝕏={ 𝑋 ∈ ℝ𝑛 : ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 ∈  𝕍,
𝑛
𝑗=1  

𝑥𝑗 ≥ 𝑑𝑗 > 0, 𝑗 ∈ ℕ},                                                       (10-2) 

 

𝜆 ∈ 𝐿𝛼(�̃�)                                                                        (10-3) 

  

where 𝑤𝑟 ≥ 0,   𝑟 = 1,2, … . , 𝑘,   ∑ 𝑤𝑟
𝑘
𝑟=1 = 1  . 

 

Step (3): Let 𝛼 =𝛼∗, and use the membership function 𝜇𝜆 of 

the form (1) or (2) to transform problem (5) to the 

following form: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑟𝑓𝑟(𝑋, 𝜆𝑟  )
𝑘
𝑟=1                                          (11-1) 

           

subject to 

                                               

𝑋 ∈ 𝕏={ 𝑋 ∈ ℝ𝑛 : ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 ∈  𝕍,
𝑛
𝑗=1  

𝑥𝑗 ≥ 𝑑𝑗 > 0, 𝑗 ∈ ℕ},                                                      (11-2) 

 

𝑙𝑟𝑗 ≤ 𝜆𝑟𝑗 ≤ 𝐿𝑟𝑗, 𝑟 ∈  𝕂, 𝑗 ∈ ℕ .                                     (11-3) 

 

where 𝑤𝑟 ≥ 0,   𝑟 = 1,2, … . , 𝑘,   ∑ 𝑤𝑟
𝑘
𝑟=1 = 1  . 

 

The constraint (10-3) is replaced by the constraint (11-3), 

where 𝑙𝑟𝑗 and 𝐿𝑟𝑗 represent the lower and upper bound on 𝜆𝑟𝑗 

respectively. 

Step (4): (I) The nonlinearity in the objective functions of 

problem (11) can be treated using the 

following transformation: 

 

𝑦𝑟𝑗 = 𝜆𝑟𝑗𝑥𝑗  , 𝑟 ∈  𝕂, 𝑗 ∈ ℕ.                                                (12) 

 

(II) Consequently, problem (11) becomes:  
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ 𝑤𝑟 (
𝑘
𝑟=1 𝐶𝑟

𝑡  𝑋 + 𝐶𝑟
/𝑡
𝑦𝑟)                             (13-1)  

 

subject to          

 

𝑋 ∈ 𝕏={ 𝑋 ∈ ℝ𝑛 : ∑ 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 ∈  𝕍,
𝑛
𝑗=1  

𝑥𝑗 ≥ 𝑑𝑗 > 0, 𝑗 ∈ ℕ},                                                       (13-2)         

 

𝑙𝑟𝑗𝑥𝑗 ≤ 𝑦𝑟𝑗 ≤ 𝐿𝑟𝑗𝑥𝑗 , 𝑟 ∈  𝕂, 𝑗 ∈ ℕ.                               (13-3) 

           

where 𝑤𝑟 ≥ 0,   𝑟 = 1,2, … . , 𝑘,   ∑ 𝑤𝑟
𝑘
𝑟=1 = 1  . 

Step (5): Let 𝑤𝑟 = 𝑤𝑟
∗ ≥ 0, then use the simplex (or any 

other method) to solve problem (11). 

Step (6): Let 𝑋∗ is the 𝛼-Pareto optimal solution of problem 

(13) and the corresponding 𝛼  -level optimal 

numbers: 

 

𝜆𝑟𝑗
∗ =

𝑦𝑟𝑗
∗

𝑥𝑟𝑗
∗  , 𝑟 ∈  𝕂, 𝑗 ∈ ℕ,                                                   (14) 

 

(I) If 𝑤𝑟 > 0, for all 𝑟 , thus 𝑋∗ is an efficient solution, 

go to step (7). 

(II) If 𝑤𝑟 ≥ 0, for all 𝑟 , and 𝑋∗ is a unique for problem 

(13), thus 𝑋∗ is an efficient solution, go to step (7). 

(III) If 𝑤𝑟 ≥ 0, for all 𝑟 , and there are alternative 

solutions, thus, use the non-inferiority test. 

Step (7): Stop. 

Example (II): 

Consider the following linear multiple objective 

optimization problem involving fuzzy numbers in the 

objective functions: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓1(𝑥1, �̃�1) = −2𝑥1 + (3 + �̃�12)𝑥2, 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑓2(𝑥1, �̃�2)  = (−2 + �̃�21)𝑥1 + 𝑥2,   

 

subject to 

 

2𝑥1 ≤ 7,    4𝑥2 ≤ 9,   𝑥1 ≥ 1, 𝑥2 ≥ 1 . 
 

where 𝛼 = 0.36 , �̃�12 = 90,1,3,5) , �̃�21 = (1,6,7,9)  and 

membership function  𝜇𝜆(𝜆) of the form (2).  

Use the hybrid algorithm (II) to solve the above problem, (let 

𝑤1
∗ = 𝑤2

∗ = 0.5). 

Solution: 

 

𝜇𝜆12(𝜆12) =

{
  
 

  
 

0,                    𝜆12 ≤ 0,

1 − [
(𝜆12−1)

(0−1)
]
2

,    0 ≤  𝜆12 ≤ 1 ,

1,             1 ≤  𝜆12 ≤ 3,

1 − [
( 𝜆12−3)

(5−3)
]
2

, 3 ≤  𝜆12 ≤ 5,

0,                        5 ≤  𝜆12     .

 

𝜇𝜆(𝜆) ≥ 0.36 

 

1 − [
(𝜆12−1)

(0−1)
]
2

≥ 0.36 where 0 ≤  𝜆 ≤ 1 , 

 ⇒  1 − (−𝜆12 + 1)
2 ≥ 0.36,  ⇒  1 − 036 ≥ (1 − 𝜆12)

2,  ⇒
 064 ≥ (1 − 𝜆12)

2, ⇒ ±0.8 ≥ 1 − 𝜆12, 
  0.8 ≥ 1 − 𝜆12  ⇒  𝜆12 ≥ 0.2 , Accepted 

−0.8 ≥ 1 − 𝜆12  ⇒  𝜆12 ≥ 1.8 , Rejected. 

1 − [
( 𝜆12−3)

(5−3)
]
2

≥ 0.36 where 3 ≤  𝜆 ≤ 5 , 

 ⇒  4 − (𝜆12 − 3)
2 ≥ 1.44,  ⇒  2.56 ≥ (𝜆12 − 3)

2,  ⇒
 ±1.6 ≥ 𝜆12 − 3, 

1.6 ≥ 𝜆12 − 3 ⇒ 𝜆12 ≤ 4.6 , Accepted 

−1.6 ≥ 𝜆12 − 3 ⇒  𝜆12 ≤ 1.4 , Rejected. 

 

Thus, 0.2 ≤  𝜆12 ≤ 4.6. 

 

𝜇𝜆21(𝜆21) =

{
  
 

  
 

0,                     𝜆21 ≤ 1,

1 − [
(𝜆21−6)

(1−6)
]
2

,    1 ≤  𝜆21 ≤ 6 ,

1,              6 ≤  𝜆21 ≤ 7,

1 − [
( 𝜆21−7)

(9−7)
]
2

,   7 ≤  𝜆21 ≤ 9,

0,                     9 ≤  𝜆21     .

 

1 − [
(𝜆21−6)

(1−6)
]
2

≥ 0.36 where 1 ≤  𝜆 ≤ 6 , 

 ⇒  1 − [
(𝜆21−6)

(−5)
]
2

≥ 0.36,  ⇒  25 − (6 − 𝜆21)
2 ≥ 9,  ⇒

 16 ≥ (6 − 𝜆21)
2, ±4 ≥ 1 − 𝜆21, 

  4 ≥ 1 − 𝜆21  ⇒  𝜆21 ≥ 2 , Accepted. 

−4 ≥ 1 − 𝜆21  ⇒  𝜆21 ≥ 10 , Rejected. 

 

1 − [
( 𝜆21−7)

(9−7)
]
2

≥ 0.36 where 7 ≤  𝜆21 ≤ 9 , 

 ⇒  4 − (𝜆21 − 7)
2 ≥ 1.44,  ⇒  2.56 ≥ (𝜆21 − 7)

2,  ⇒
 ±1.6 ≥ 𝜆21 − 7, 

  1.6 ≥ 𝜆21 − 7 ⇒ 𝜆21 ≤ 8.6 , Accepted. 

−1.6 ≥ 𝜆21 − 7 ⇒  𝜆21 ≤ 5.4 , Rejected. 

 

Thus, 2 ≤  𝜆12 ≤ 8.6 . 

Apply the weighting method, follows: 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹 = [0.5(−2𝑥1 + (3 + 𝜆12)𝑥2)
+ 0.5((−2 + 𝜆21)𝑥1 + 𝑥2)] = 

     = [−2𝑥1 + 2𝑥2 + 0.5𝜆12𝑥2 + 0.5𝜆21𝑥1] 
 

subject to 

 

 2𝑥1 ≤ 7,     4𝑥2 ≤ 9,    𝑥1 ≥ 1, 𝑥2 ≥ 1 ,  𝜆21𝑥1 ≥ 2𝑥1  , 

𝜆21𝑥1 ≤ 8.6𝑥1 , 𝜆12𝑥2 ≥ 0.2𝑥2 , 𝜆12𝑥2 ≤ 4.6𝑥2, 

 𝜆12, 𝜆21 ≥ 0. 

 

Let 𝑦12 = 𝜆12𝑥2, 𝑦21 = 𝜆21𝑥1. 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹 = [−2𝑥1 + 2𝑥2 + 0.5𝑦12 + 0.5𝑦21] 
 

subject to 

 

 2𝑥1 ≤ 7,     4𝑥2 ≤ 9,    𝑥1 ≥ 1, 𝑥2 ≥ 1 , 𝑦21 −  2𝑥1 ≥ 0  , 

𝑦21 − 8.6𝑥1 ≤ 0  , 𝑦12 − 0.2𝑥2 ≥ 0  , 𝑦12 − 4.6𝑥2 ≤ 0 ,  

𝑦12, 𝑦21 ≥ 0. 

 

By solving the above linear programming problem, the 𝛼-

Pareto optimal solution is: 𝐹∗ ≅ 17.73  , 𝑥1
∗ ≅ 3.5 , 𝑥2

∗ ≅
2.25  , 𝑦12

∗ ≅ 10.35 , 𝑦21
∗ ≅ 30.1   , 𝜆12

∗ =4.6, 𝜆21
∗ =8.6. 

To find an 𝛼-Pareto optimal solution for example (II), A 

MATLAB code (II) based on hybrid algorithm (II) is 

introduced as follows: 

 

MATLAB Code (II):  

 

%weight of the first objective 

w1=0.5;  

%weight of the second objective 

w2=0.5;  

%first objective, max 
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obj1=[-2,3,1,0];  

%second objective, max 

obj2=[-2,1,0,1];  

%LHS of the constraints 

LHS_C=[2 0 0 0; 0 4 0 0; -1 0 0 0; 0 -1 0 0];  

%RHS of the constraints 

RHS_C=[7;9;-1;-1];  

alpha=0.36; 

%intervals of the  

%first fuzzy number 

fznum1=[0,1,3,5];  

%intervals of the 

%second fuzzy number 

fznum2=[1,6,7,9];  

syms x; 

%The following is solving  

%the member ship function  

%using the alpha cut in 

%order to get the ranges 

%of the fuzzy number 

%Array that carries only  

%the accepted ranges of  

%the first fuzzy number 

   accepted=[]; 

  %The first part of  

  %the membership function 

  s=solve((1-((x- fznum1(2))/(fznum1(1)-fznum1(2)))^2)>= 

alpha,x); 

  interval=double(s(1));%converts symbolic answer to double 

  %we have to make sure  

  %that the ranges falls  

  %in the interval of the 

  %membership function 

  if interval(1)>= fznum1(1)&& interval(1) <= fznum1(2) 

    accepted(end+1)=interval(1); %add to the end of the 

accepted array 

  end 

  if interval(2)>= fznum1(1)&& interval(2) <= fznum1(1) 

    accepted(end+1)=interval(2); 

  end 

  %the second part of  

  %the membership function 

  s2=solve((1-((x- fznum1(3))/(fznum1(4)-fznum1(3)))^2)>= 

alpha,x); 

  %converts symbolic answer to double 

  interval2=double(s2(1));  

  %we have to make sure that 

  %the ranges falls in the  

  %interval of the 

  %membership function 

  if interval2(1)>= fznum1(3)&& interval2(1) <= fznum1(4) 

    accepted(end+1)=interval2(1); 

  end 

  if interval2(2)>= fznum1(3)&& interval2(2) <= fznum1(4) 

    accepted(end+1)=interval2(2); 

  end 

  fprintf('The final range of the fuzzy number #1') 

  accepted 

  %array that carries only 

  %the accepted ranges of 

  %the second fuzzy number 

  accepted2=[];   

  %The first part of the 

  %membership function 

  s=solve((1-((x- fznum2(2))/(fznum2(1)-fznum2(2)))^2)>= 

alpha,x); 

  %converts symbolic answer to double 

  interval=double(s(1));  

  %we have to make sure  

  %that the ranges falls  

  %in the interval of the 

  %membership function 

  if interval(1)>= fznum2(1)&& interval(1) <= fznum2(2) 

    accepted2(end+1)=interval(1); %add to the end of the 

accepted array 

  end 

   

  if interval(2)>= fznum2(1)&& interval(2) <= fznum2(1) 

    accepted2(end+1)=interval(2); 

  end 

  %the second part of  

  %the membership function 

  s2=solve((1-((x- fznum2(3))/(fznum2(4)-fznum2(3)))^2)>= 

alpha,x); 

  %converts symbolic answer to double 

  interval2=double(s2(1));  

  %we have to make sure that 

  %the ranges falls in the interval of the 

  %membership function 

  if interval2(1)>= fznum2(3)&& interval2(1) <= fznum2(4) 

    accepted2(end+1)=interval2(1); 

  end 

  if interval2(2)>= fznum2(3)&& interval2(2) <= fznum2(4) 

    accepted2(end+1)=interval2(2); 

  end 

  fprintf('The final range of the fuzzy number #2') 

  accepted2 

%multiply the objective functions 

%by the weights and -1, 

%since they are 

%maximization, and add them  

%together to have a single objective  

obj=-1*w1*obj1 +-1*w2*obj2; 

%add four new constraints containing 

%the two fuzzy numbers ranges 

N_LHS_C=cat(1,LHS_C, [0 accepted(1) -1 0],[0 -

1*accepted(2) 1 0],[ accepted2(1) 0 0 -1],[ -1*accepted2(2) 0 

0 1]); 

N_RHS_C=cat(1,RHS_C,[0;0;0;0]); 

%solve the new problem using 

%linear programming function 

lb = zeros(4,1); 

N_RHS_C 

N_LHS_C 

[x,fval]=linprog(obj,N_LHS_C,N_RHS_C,[],[],lb); 

fprintf('The optimal objective function value :') 

z=-fval 

fprintf('The optimal values of the decision variables') 

x 

 

RUN 

 

The final range of the fuzzy number #2 

accepted2 = 

  2.0000  8.6000 

 

N_RHS_C = 

   7 
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-1

-1

0

0

0

0

N_LHS_C = 

  2.0000  0  0     0 

 0  4.0000     0     0 

-1.0000     0     0     0

0  -1.0000     0     0

0  0.2000  -1.0000     0

0  -4.6000  1.0000     0

2.0000     0     0  -1.0000

-8.6000     0     0  1.0000

Optimization terminated. 

The optimal objective function value : 

z = 

 17.7250 

5. CONCLUSIONS

The provided MATLAB codes use the α-Level sets method 

to transform the fuzzy LMOO problems to non-fuzzy LMOO 

problems and the weighting method to obtain an 𝛼 -Pareto 

optimal solution to the non-fuzzy LMOO problems. 

The hand solutions of the numerical examples by the hybrid 

algorithms and the solutions by the MATLAB codes are 

identical.  

The scientists and the engineers can apply the presented 

codes and the hybrid algorithms to different practical fuzzy 

LMOO problems to obtain numerical solutions.  
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