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Abstract 

Based on the SVM inversely optimized by ant colony optimization (ACO), this paper proposes 

a decoupling control approach for the bearingless synchronous reluctance motor (BSRM), a 

multivariable, nonlinear and strong-coupled system. Specifically, the inverse model approximated 

by SVM based on the ACO was cascaded with the original system to obtain three composite 

pseudo-linear subsystems, and the closed-loop controllers were designed for these pseudo-linear 

subsystems. The simulation results proved the effectiveness of the decoupling control strategy, and 

evidenced the dynamic performance and robustness of the control system. 
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1. Introduction 

Over the years, increasing attention has been paid to bearingless motors with built-in magnetic 

bearings, particularly the bearingless synchronous reluctance motor (BSRM). Featuring simple 

structure, low cost, stable temperature, fast speed and high precision [1-3], the BSRM enjoys 

tremendous application potential in special fields like aerospace, life science, new energy and fine 

chemical industry [4]. As a typical multivariable nonlinear system, the BSRM exhibits strong 

coupling among the electromagnetic torque and the radial suspension forces in x- and y-directions, 

making it necessary to develop a dynamic decoupling control strategy. 

Recent years has witnessed the birth of some decoupling methods for the BSRM. The first 

decoupling strategy was proposed in [5-6] based on a series feed-forward compensator. However, 
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the control effect is poor, as the compensator parameters are easily swayed by the magnetic 

saturation. Inspired by this strategy, presented an improved mathematical model that reduces the 

magnetic saturation and the coupling among the electromagnetic torque and two radial forces 

through approximation, online table look-up and real-time parameters detection [7]. Despite the 

fulfillment of the static decoupling, the model fails to achieve the dynamic decoupling control. 

Other decoupling approaches include the inverse system method and the neural network method. 

Nevertheless, the former works only if the mathematical model of the system and the corresponding 

inverse model are given [8], and the latter is weak on generalization owing to inherent defects of 

low learning speed, convergence to local minimum, and over-fitting [9]. 

A possible way to tackle the above problems lies in the support vector machine (SVM). As a 

powerful machine learning technique based on the statistical learning theory, the SVM can resolve 

such problems as small sample size, over-fitting, high dimensionality, poor generalization and 

convergence to local minimum, following the principle of structural risk minimization [10]. The 

learning results and generalization ability of the SVM directly hinge on the accuracy of the 

parameters. Hence, the SVM was inversely optimized by the ant colony optimization (ACO) 

algorithm, a heuristic optimization method that obtains the optimal solutions based on the paths of 

artificial ants. On this basis, the author proposed a dynamic decoupling control method for the 

BSRM. The proposed method identifies the inverse system of the original nonlinear system by the 

SVM, and cascades the inverse model with the original system to form a decoupled pseudo-linear 

system. In light of the single- input single-output system theory, it is possible to design the closed-

loop controller of the decoupled pseudo-linear system. 

 

2. Operation Principle and Mathematical Model of the BSRM 

2.1 Operation Principle of the BSRM  

Figure 1 illustrates the generation of radial suspension forces in the BSRM under no-load 

condition. The BSRM combines torque windings and suspension force windings in one stator.   

As shown in Figure 1, when the current passes 4-pole torque windings Na and 2-pole 

suspension force windings Nx and Ny, the 4-pole torque windings Na generate flux linkage ψa and 

the 2-pole suspension force windings Nx and Ny respectively generate flux linkage ψx and ψy. When 

currents are applied on the suspension force windings, the flux density will increase in area 2 but 

decrease in area 4. The unbalanced magnetic fields will result in the radial force Fx in the positive 

x-direction, and similarly the radial force Fy in the positive y-direction. Thus, the magnitude and 

direction of the radial suspension forces can be controlled by adjusting the currents in the two sets 

of windings, laying the basis for achieving stable suspension of the rotor. 
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Fig.1. Generation of Radial Forces in the BSRM 

 

2.2 Description of the Mathematical Model 

Whereas the BSRM has a salient-pole rotor, only the effective part of the salient regions is 

considered in the calculation of the radial suspension forces. The pole arc is assumed as 30°, the 

pole pair number of torque windings PM as 2, and the pole pair number of suspension force 

windings PB as 1. The magnetic saturation is neglected. The mathematical models of torque 

subsystem and radial force subsystem can be deduced by the Maxwell stress tensor method [11].  

The radial suspension forces on the rotor can be derived as 
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In addition, when the rotor deviates from the stator centre, the rotor will produce Maxwell 

stress which is directly proportional to the eccentric displacement: 
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where k is the motor structure factor; B is the flux density amplitude in the airgap. 

Assume that Fzx and Fzy are the interference forces on the rotor in x- and y-direction, 

respectively. Considering the two forces and gravity, the motion equations of the radial force 

subsystem are expressed as  
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Then, the electromagnetic torque can be obtained by: 
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Hence, the motion equation of the torque subsystem is expressed as: 
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where Te is the electromagnetic torque; PM is the pole pair number of the torque windings; Ld and 

Lq are respectively the inductances of the torque windings along the two axes in d-q synchronous 

reference frame; ω is the synchronous electrical angular speed; J is the moment of inertia; TL is the 

load torque.  

 

3. Decoupling Control Based on SVM Inversely Optimized by ACO  

3.1 Reversibility Analysis for the Original System of the BSRM 

Based on the above mathematical model, it is known that the BSRM is a multi-input- mult i-

output (MIMO) nonlinear system. The system state is defined as: 
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First, the input state is defined as: 
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Then, the output state is given as: 
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 
Y                                                                                                       (8) 

 

According to the mathematical model, the state equation of the BSRM can be derived as: 
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Based on the interactor algorithm, the reversibility of the system is analysed by differentiat ing 

the output function y=h(x)=[x1 x2 x5]T  until it explicitly includes the input state U. The Jacobian 

matrix can be calculated as: 
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The determinant of the Jacobian matrix A is: 

 
2

2 2 2 2M

1 2 12

3
det = ( )( )

2

d

d q m d m

P i
L L K i K u

m J
  A                                                                               (11) 

 

It is obvious that det A≠ 0, indicating that the matrix A is non-singular. The relative degrees 

of the system are α=(α1,α2,α3)=(2,2,1), where α1+α2+α3=5=n (the dimension of the system). Thus, 

the system is reversible. 

 

3.2 SVM Training and ACO-based Optimization 

Following the statistic learning theory and the principle of structural risk minimization, the 
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SVM can overcome the problems like small sample size and convergence to local minima. The 

basic idea of the SVM is to map the training data to a high-dimensional feature space. To make the 

undivided linear sample space linearly separable, the constructive nonlinear kernel mapping is 

employed to map the original data space to a high-dimensional feature space. 

The output of the SVM is obtained as 
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where K(x, xi) is the kernel function of the SVM; αi
* and αi are the Lagrange multipliers; b is 

threshold obtained by combining KKT conditions.  

There are many different kernel functions, which form the various algorithms in the SVM. In 

this research, the Gaussian function below is taken as the kernel function. 

 
2 2( , ) exp( 2 )i ix x   K x x                                                                                             (13) 

 

The SVM-based identification of the inverse model of the original system is detailed in [12].  

In spite of the perfect theoretical basis, the SVM still faces some problems in practice, such as the 

determination of parameters like the penalty factor C and the parameter of kernel function σ, two 

key determinants of the classification accuracy. Thus, the ACO was introduced to optimize these 

parameters. 

The ACO offers an effective tool to solve multi-objective optimization problems [13]. The 

novel heuristic optimization method is known for intelligent search, global optimization and strong 

robustness [14]. In this paper, the optimal solutions of C and σ are obtained in continuous space 

domain. The SVM parameters are optimized in the following steps: 

(1) Initialize the parameters C and σ, denote the number of ants as m, and set the maximum 

iteration and initial value ranges of the parameters. 

(2) Mesh the parameter optimization region into grids, so that the ants are able to move in 

each grid point and leave behind pheromones. 

(3) Train the SVM, compute the objective function, and update the amount of pheromone. 

(4) Figure out the state transition probability of the ants, transfer the ants to grid points with 

the maximum probability, and record the amount of pheromone at these points. 

(5) Repeat Step (4) until reaching the maximum iteration. 

(6) Narrow down the range of variables as far as the high pheromone points are concerned, 

and perform ant colony migration within the scope of small grids. 
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(7) Repeat Steps (2) ~ (6) until the difference of objective functions satisfies the relevant 

requirements and a global optimal path can be obtained.  

(8) Calculate the corresponding optimal parameters (C & σ) and use the optimized parameters 

to train SVM. 

Figure 2 details the steps of the ACO-based SVM parameter optimization. 

 

 

Fig.2. ACO-based SVM Parameter Optimization 

 

3.3 Construction and Control of the Inverse System 

100 groups of input and output data were obtained by adding uncorrelated white noise to the 

input ports. These data were taken as the training sample sets. 

The fitting factors are assumed as below: 
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bj of the input vector uj. Based on the current input, the inverse system of the BSRM can be 

expressed as: 
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Then, the ACO was introduced to optimize the SVM parameters. The ACO parameters are set 

as follows: the number of ants m=20, the maximum cycle index Nmax=100, the value range of C [0, 

10,000], the value range of σ [0.1, 100], and the pheromone density ρ=0.7. With the k-fold cross 

validation error as the target value, three SVMs were trained with the ACO, and the optimal 

solution C and σ were obtained as: C1=2,300, σ1=2.16, C2= C3=4,500 and σ2=σ3=6. 

The identified inverse system of the BSRM was then cascaded with the original system, 

forming a compound pseudo-linear system. Under the effect of multiple factors, the compound 

pseudo-linear system is not an ideal linear system in practice. With this consideration, an additiona l 

controller was designed to compose a feedback control system. In this research, the PID controller 

is adopted to design closed-loop linear controller (Figure 3). 
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Fig.3. Structure of The Closed-Loop Linear Controller 

 

4. Simulation Research 

In order to verify the effectiveness of the proposed decoupling control method, a simulat ion 

model was constructed based on MATLAB Simulink platform. The motor parameters are as 

follows: motor power 300W, rotor mass m=1kg, moment of inertia of motor J = 0.002kg·m2, airgap 

length δ0=0.25mm, stator resistance Rs1=0.25Ω, pole pair number of torque winding PM=2, 

inductance of torque winding Ld=0.035H and Lq=0.0042H, pole pair number of suspension force 

winding PB=1, inductance of suspension force winding Lx=Ly=0.02H, and stator resistance 
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Rs2=0.15Ω. 
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Fig.4. Simulation Results of Decoupling Control on the BSRM 
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According to the step response curve of speed in Figure 4(a), the adjustment time of speed 

was about 0.023s, and the overshoot is about 1.5%. It indicates that the system has good speed 

performance. 

The torque response curve is shown in Figure 4(b). When the motor started in the no-load 

condition, the torque jumped to 0 after the motor entered the smooth operation. The torque 

TL=5N·m was given at t=0.04s.  In the event of transient small fluctuations, the pre-set torque was 

achieved very quickly. This means the torque subsystem has a good dynamic and static 

performance. 

Figure 4(c) and 4(d) present the displacement curves in x- and y-directions, respectively. The 

initial values of the rotor position were set as x0= -0.1 mm and y0= -0.1 mm, and the reference rotor 

displacements were configured as x* = 0 mm and y* =0 mm. As shown in the two figures, the rotor 

arrived at the reference positions from start-up, and achieved stable suspension in the central 

position. The torque change at t=0.04s had virtually no impact on the displacements in x- and y-

directions. It is clear that the proposed decoupling method removes the coupling between the 

electromagnetic torque and radial suspension forces. 
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Fig.5. Simulation Results with External Disturbance 

 

Figure shows the simulation results with external disturbance. The reference speed of rotor 

varies from 2,500r/min to 3,000r/min at t=0.05s. As shown in Figure 5(a), the speed reached the 

given reference of 3,000r/min in 4ms. According to Figure 5(b) and 5(c), the displacements 

fluctuated slightly at 0.05s in both x- and y-directions. When the motor rotated smoothly at the 

speed of 3,000r/min, the external disturbances in x- and y-directions Fzx
’=20Nm, Fzy

’=20Nm were 

added on the rotor at t=0.06s and t=0.07s, respectively. As shown in Figure 5, when the radial 

displacements in x- and y-directions were disturbed, respectively, the displacements quickly 

returned to the pre-set values, and seldom affected each other. The phenomenon reveals that the 

electromagnetic torque and the radial suspension forces are decoupled successfully, and that the 

proposed control method boasts good disturbance resistance. 

 

Conclusion 

Based on the SVM inversely optimized by ACO, this paper presents a decoupling control 

approach for the BSRM. The method manages to achieve the dynamic decoupling control among 

the electromagnetic torque and the radial suspension forces in x- and y-directions. The simulat ion 

results demonstrate that the proposed control strategy boasts quick response, good dynamic and 

static characteristics, and disturbance resistance despite external disturbance. 
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