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ABSTRACT 

This paper presents a systematic formulation of control-oriented linear fractional 

transformation (LFT) modelling of the linear dynamical system, truly integrates the 

objective of control theory. A novel methodology has been introduced for modeling quality 

improvement to achieve certain performance specification considering the modeling 

uncertainties arising due to the difference between the mathematical model and the actual 

system and the presence of disturbance signal during the formulation of LFT framework. 

For the convenience of compact modelling, the generalized transfer function of the linear 

dynamical system has been represented into the LFT framework by incorporating the real 

parametric uncertainties enter rationally into the system modelling. The generalized LFT 

modeling algorithm is convenient to address the issues like identifiability and persistence of 

excitation for a huge class of system model structures can be accommodated because of its 

general nature. The proposed modelling algorithm has been applied to a benchmarked 

industrial mechatronics system, to verify the effectiveness of control theory. 
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1. INTRODUCTION

In the last few decades, there has been widespread interest 

in the development of the parametric representation of the 

system modeling characterized by the system variations. 

These system variations result from inadequate knowledge 

about the physical systems, changes in the system operating 

conditions and neglecting high-frequency dynamics, time 

delay, nonlinearities, etc. are described as model uncertainties. 

Uncertainties arise in the system model can invariably affect 

the stability and the control system performance. Therefore, 

from the perspective of the design of an appropriate control 

law, substantial research efforts have been directed towards 

the model quality improvement by incorporating the model 

uncertainties in the system modeling. 

The objective of the system modelling is the formulation of 

an appropriate parametric model of a system, which is 

effective for predicting the nature of the system in different 

operating conditions. Therefore, any effort to formulate 

generalized state model for such real dynamical system results 

into a very huge and complex mathematical model. An 

extremely accurate model of a real system may be 

inconvenient due to the high quality of computational 

complexity. The resulting control law will also become 

complicated, and their implementation in the real-time 

platform will be difficult. However, from the perspective of 

the design of appropriate control law for the given system, it 

becomes necessary to select an appropriate mathematical 

model of the system in order to obtain optimum control 

performance. During the design stages, control laws impose 

certain mathematical structure in the system modelling 

otherwise the design becomes impractical or result in a very 

poor control law. Therefore, optimal control performance of a 

physical system is achieved by deriving the generalized 

modelling and identification, instead of deriving the 

complicated mathematical modelling. Moreover, 

implacability of the robust H∞ control strategies and explicit 

set of state-space equations result into a compact and 

manageable control system which gain popularity in various 

applications. A robust H∞ control strategy for a differential 

drive Tractor Trailer system has been derived for output 

feedback control using mu-synthesis, for nominal plant 

subjected to model uncertainties and output disturbances is 

discussed in [1]. A set membership H∞ identification technique 

has been introduced to investigate the model perturbations for 

implementing robust control methodologies in [2]. The robust 

control law of uncertain LPV systems and identification of 

LPV systems has been represented in LFT framework 

discussed in [3]. A paradigm shift in the modelling of the 

dynamic systems has been occurred by introducing robust 

control theory where associated modelling leads to the system 

model in linear fractional transformation (LFT) framework [4]. 

This modelling structure has been considered to be consisting 

of a nominal model and optimal uncertainty set bound around 

a prefixed nominal model in [5]. Uncertainties are inherent in 

all system models and it adversely effects on the stability and 

the performance of the control system, as they are unknown 

during the analysis and design. The information of model 

uncertainties has been included in any form while modelling 

is a great challenge for controller synthesis, mainly based upon 

the uncertainty modelling. The physical systems are generally 

being modelled as unstructured uncertainty, dynamic structure 

uncertainty and parametric uncertainty where parametric 

uncertainty is a part of the structure uncertainty as discussed 

in [5]. Several approaches of uncertainty representation 

towards the characterization and quantization of uncertainty 
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describe the perturbations of the model to be controlled during 

the system identification steps in [6]. An emerging uncertainty 

modelling technique has been successfully implemented to the 

robust control performance in a feedback-like modelling 

structure in linear fractional transformation (LFT) framework, 

where each of the uncertainty relates to physically meaningful 

parameters of the actual system discussed in [7]. A general 

descriptor type LFT model consisting of rational parametric 

matrices in a generalized form in terms of arbitrary rationally 

dependent multivariate function has been proposed in [8]. This 

paper proposes a novel generalized H∞ control oriented LFT 

modelling algorithm of a generic nth order linear dynamical 

system even in the face of the plant uncertainty and 

disturbances to address the robust controller design problem. 

A systematic approach for casting the generic nth order transfer 

function representation of a dynamical system in terms of LFT 

framework not only makes it convenient for the application of 

modern robust control technique like µ-synthesis-based H∞ 

controller design but also a compact and manageable 

modelling representation considering the parametric 

uncertainties. The proposed generalized uncertainty-

modelling algorithm has been motivated by the fact that for 

any linear physical system model structure of any order can be 

accommodated in the LFT framework due to its generic 

modelling structure has never been addressed in the literature. 

Finally, this paper successfully implements the proposed 

uncertainty-modelling algorithm on a benchmark industrial 

platform, namely Brushless Direct Current (BLDC) motor and 

validates the performance of the H∞ control law in real time 

environments. Moreover, the effectiveness of LFT modelling 

of the BLDC motor has been verified by realizing the robust 

stability and performance. 

The rest of the paper is organized as follows: Section 2 

represents the stepwise derivation of the uncertainty-modeling 

algorithm for a generalized nth order linear dynamical system. 

Section 3 describes the H∞ control oriented LFT modeling of 

BLDC motor. Section 4 describes H∞ controller design 

specification and section 5 represent the H∞ controller design. 

Section 6 describes the performance analysis of the proposed 

modeling algorithm on BLDC motor with a simulation study. 

Finally, section 7 draws the conclusions. 

 

 

2. H∞ CONTROL ORIENTED MODELLING OF NTH 

ORDER LINEAR DYNAMICAL SYSTEM 

 

Linear dynamical systems represented by the mathematical 

operational method in order to express in terms of the transfer 

function to determine the performance of the system. A 

conventional way of representation studies the effect of the 

different components and predicts the system behavior. The 

transfer function can be derived by simple mathematical 

manipulation of the differential equations that describes the 

real physical systems. The system transfer function is the 

mathematical representation in between system input and 

output, i.e., it indicates the input signal that faces the dynamic 

elements before appearing on the system outputs. 

Consider a single-input-single-output linear system 

represented by the nth – order differential equation 

 

          (1) 

where y is the output and u is the input of the system and 

𝛽𝑖  and 𝑎𝑖  for 𝑖 = 1,2, . . . . . . . , 𝑛 
 

Derivation of the LFT of modeling of nth order system: 

An nth order differential equation is considered to represent 

the linear dynamical system to formulate the control-oriented 

LFT modeling. The formulation of the H∞ control oriented 

LFT modeling of nth order transfer function can be derived by 

the following steps. 

Step 1: The transfer function representation of the linear 

dynamical system is obtained from the differential equation in 

(1). 

If the initial conditions are zero, its complex counterpart is 

obtained simply by a substitution of 
𝑑𝑖

𝑑𝑡𝑖  by 𝑠𝑖   and 𝑦(𝑡) →

𝑌(𝑠) and 𝑢(𝑡) → 𝑈(𝑠). The generalized transfer function of 

the system is 
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The state space representation of the transfer function can 

be expressed as 

 

                       (3) 

 

                           (4) 

 

The block diagram representation of the linear time-variant 

system can be drawn from the equation (3) and (4) is shown in 

Fig. 1. 

Step 2: The uncertain parameters 𝑎𝑖  and 𝛽𝑖  characterize the 

model uncertainties and lead to the variation in the system 

nature. Therefore, it is assumed that the parameter values are 

lying within a known interval. Now system parameters 𝑎𝑖  and 
𝛽𝑖  expressed as  
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and 

 

(1 ) for 1,2, ,     
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                               (6) 

 

 
 

Figure 1. Block diagram representation of nth order linear 

dynamical system 

 

where 𝑎̄𝑖  and 𝛽̄𝑖  are the nominal value of the 

parameters, 𝑎𝛽𝑖
 and 𝑝𝛽𝑖

 are to represent the possible 

perturbations of the parameters respectively and 𝛿𝑎𝑖
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𝛿𝛽𝑖
 are assumed to be unknown and lie within the interval 

[−1,1]. 
The upper LFT representation of the parameter 𝑎𝑖  can be 

expressed as  

 

( , ) for 1,2, , 
i ii U a aa F M i n

                                 (7) 

where Note that 𝑀𝑎𝑖
∈ ℜ2×2 

Similarly, 𝛽𝑖  can be expressed as an upper LFT 

representation  

 

                                 (8) 

 

where note that 𝑀𝛽𝑖
∈ ℜ2𝑛×2. The upper LFT representations 

of the system parameters are described individually and 

system states are represented by 𝑥𝑗  where 

 are shown in Fig. 2 and Fig. 3 

respectively. 

 

 
 

Figure 2. Representation of uncertain parameter 𝛿𝛽𝑖
 in upper 

LFT framework 

 

 
 

Figure 3. Representation of uncertain parameter 𝛿𝛽𝑖
 in upper 

LFT framework 

 

Step 3: The block diagram representation of the nth order 

linear dynamical system is shown in the Fig. 1 can be redrawn 

with uncertain parameters 𝛿𝑎𝑖
 and 𝛿𝛽𝑖

in the upper LFT 

framework as shown in the Fig. 4. Treating 𝑢𝑎𝑖
 and 𝑢𝛽𝑖

 are the 

outputs of the uncertainty blocks 𝛿𝑎𝑖
 and 𝛿𝛽𝑖

 are fed as an 

input to 𝑀𝑎𝑖
 and 𝑀𝛽𝑖

 respectively. 

 

 
 

Figure 4. Block diagram representation with uncertain 

parameters 

Similarly, 𝑦𝑎𝑖
 and 𝑦𝛽𝑖

 are the outputs of 𝑀𝑎𝑖
 and 𝑀𝛽𝑖

 that 

are fed to the uncertain blocks 𝛿𝑎𝑖
 and 𝛿𝛽𝑖

 respectively. 

The output expressions of augmented vectors of the upper 

LFT structures from the Fig. 4  
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Note that 𝑦𝑎𝑖
∈ ℜ𝑛×1 and 𝑣𝑎 ∈ ℜ𝑛×1  
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Note that 𝑦𝛽𝑖
∈ ℜ𝑛×1 and y ∈ ℜ𝑛×1  

The mathematical expression of the system states 𝑥̇𝑗 and the 

output 𝑦 can be expressed from the Fig.4.  
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                                                           (12) 

 

The upper LFT representation of the linear dynamical 

system  
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The input output relationship of the open loop linear 

dynamical system  

 

                                                          (14) 

 

where 

 

 
 

The input outputs representation of the uncertainty block  

 

                                                           (15) 
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The upper LFT representation of perturbed linear dynamical 

system is described by 

 

                                                             (16) 

 

The state space representation of the LFT modeling is 

expressed as  

 

                                           (17) 

 

where, 
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Figure 5. Upper LFT representation of the linear dynamical 

system 

 

 

3. REAL TIME IMPLEMENTATION OF THE 

PROPOSED MODELLING ALGORITHM 

 

The effectiveness of proposed modeling algorithm has been 

verified on a Brushless DC motor. The BLDC motor is a very 

useful test platform to validate the feasibility of different 

industrial applications, especially in the areas of aeronautics, 

industrials automation, production, electrical vehicles, 

computer peripherals, etc. Generally, the BLDC motor is a 

permanent magnet synchronous motor driven by dc voltage, 

usually applied in many high-performance industrials 

applications. In order to design precise and stable control, 

substantial research efforts have been devoted to improving 

the model quality by incorporating the all unmodeled 

dynamics occurred due to imperfect or incomplete knowledge 

about the physical systems [9].  

 

3.1 A mathematical model of a BLDC motor 

 

The mathematical representation of the BLDC motor based 

on the parameters is illustrated below [10] 

                                      (18) 

 

where  

 

 

 
 

The mathematical modeling of BLDC motor express in (18) 

can be represented as 

 

                                             (19) 

 

where 𝜔𝑚(𝑠)  is the angular velocity and Vs(s) is source 

voltage. 

 

3.2 LFT modelling of BLDC motor 

 

A systematic formulation for the uncertainty modeling of 

BLDC motor represents the mathematical modeling of the 

system that results into a control oriented linear fractional 

transformation (LFT) modeling framework and characterized 

the system uncertainties in terms of maximum possible 

relative error around the nominal value can be lumped into a 

perturbation block ∆. 

Now consider the state variables, 
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Figure 6. The block diagram representation of BLDC motor 
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The block diagram representation of the BLDC motor is 

shown in Fig.6. 

Based on the practical realization, parameters of the BLDC 

motor 𝜏1 = 𝜏𝑒 =
𝐿

3𝑅∅
 and 𝜏2 = 𝜏𝑚𝜏𝑒 =

𝐽𝐿

𝐾𝑒𝐾𝑡
 are considered as 

uncertain parameters. However, it is assumed, 𝜏1 and 𝜏2  are 

constants with a possible relative error of 10% around the 

nominal values [11]. 

The actual system parameter 𝜏1  of BLDC motor can be 

expressed as 

 

                   (21) 

 

where, 𝜏1̅ is the nominal value of the parameter, 𝑝𝜏1
= 0.1 is 

the maximum relative uncertainty in the parameter and −1 ≤
𝛿𝜏1

≤ 1. 

Therefore, the parameter 
1

𝜏1
 of BLDC motor can be 

represented in the upper LFT framework  
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where, Note that 𝑀𝜏2
∈ ℜ2×2 

 

       (23) 

 

where, 𝜏2̅ is the nominal value of the parameter, 𝑝𝜏2
= 0.1 is 

the maximum relative uncertainty in the parameter and can 

represent as an upper LFT framework 
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where, Note that 𝑀𝜏2
∈ ℜ2×2  

Using the above mathematical expression of 𝜏1
−1 𝑎𝑛𝑑 𝜏2

−1 

in (23) and (25) the block diagram in Fig. 6 can be redrawn in 

Fig.7. Treating 𝑢𝜏1
 and 𝑢𝜏2

 to be the output of the uncertain 

block 𝛿𝜏1
 and 𝛿𝜏2

, which are fed as input to 𝑀𝜏1
 and 𝑀𝜏2

 

block respectively. 

Similarly, 𝑦𝜏1
 and 𝑦𝜏2

 are the output of 𝑀𝜏1
 and 𝑀𝜏2

which 

are fed as an input to the 𝛿𝜏1
 and 𝛿𝜏2

 block respectively. 

Now, augmenting the outputs vectors of upper LFT 

framework of 𝑀𝜏1
 and 𝑀𝜏2

 can be express as, 
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∈ ℜ1×1 

and 
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Note that 𝑦𝜏2
∈ ℜ1×1 and 𝑣𝜏2

∈ ℜ1×1. 

The state vector of BLDC motor can be defined as 
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where  

The output expression of the BLDC motor  
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Figure 7. Block diagram of BLDC motor with uncertain 

parameters 

 

The upper LFT representation of BLDC motor can be 

expressed as  
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where,  

 

 
 

Now, upper LFT representation of BLDC motor further can 
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where,  

 

 
 

Input-output expression of the uncertainty blocks can be 

represented as 

 

 
 

where,  

 

The upper LFT representation of perturbed BLDC motor is 

described by  

 

                                                          (30) 

 

State space representation of BLDC motor is 
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Figure 8. Upper LFT representation of BLDC motor 

 

 

Table 1. Nominal values of the parameters of BLDC motor 

 

Sl. 

No. 

BLDC Motor 

Parameter 
Symbol Value Unit 

1. 
Terminal resistance 

phase to phase 
𝑅∅ 1.2 Ω 

2. 
Terminal inductance 

phase to phase 
L 0.560 mH 

3. Torque Constant Kt 25.5 mNm/A 

4. Rotor Inertia J 92.5 gcm2 

5. 
Mechanical Time 

Constant 
𝜏𝑚 17.1 ms 

6. 
Electrical Time 

Constant 
𝜏𝑒  

155.56
× 10−6 

 

7. 
Nominal input 

Voltage 
V 12 Volts 

 

The singular value plot of the perturbed BLDC motor is 

shown in Fig.9 

 

 
 

Figure 9. Singular value plot of BLDC motor 

 

 

4. FREQUENCY DOMAIN VALIDATION OF LFT 

MODELLING 

 

Frequency domain validation of LFT modeling has been 

investigated in the context of robust control theory. The 

objective of the uncertainty modeling validation in LFT 

framework has been performed by designing H∞ controller to 

achieve certain performance specification even in the presence 

of all possible uncertainties.  

 

4.1 H∞ controller design specification 

 

H∞ controlled BLDC motor in LFT framework is obtained 

the best possible performance even in the presences of outside 

disturbance and plant uncertainty. The H∞ controller of the 

closed-loop system makes the system internally stable. The 

closed loop structure of the BLDC motor with controller K is 

shown in figure 10, where 𝐺 = 𝐹𝑈(𝐺𝑏𝑙𝑑𝑐 , ∆)  in upper LFT 

framework. 

Further, the closed loop BLDC motor achieves certain 

nominal performance criteria if it satisfies the given 

performance objective for the nominal model 𝐺𝑏𝑙𝑑𝑐 . 
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where Wp and Wu are selected as weighting functions.  The 

selection of the weighting function is such that the H∞ 

controller will not track high-frequency disturbance. The 

performance weighting function for BLDC motor is selected 

as 𝑤𝑝 = 0.095
10𝑠+100

100𝑠+10
 and control weighting function is a 

scalar function can be considered as 𝑤𝑢 = 10−2. 

 

 
 

Figure 10. Closed loop structure of BLDC motor 

 

Again, closed loop BLDC achieves robust stability with all 

possible perturbation and maintain robust performance with 

the performance objective 

 

                                                                  (33) 

 

where S(G) is the sensitivity function of 𝐺 = 𝐹𝑈(𝐺𝑏𝑙𝑑𝑐 , 𝛥). 

 

4.2 H∞ controller design 

 

A control system is robust if it remains stable and achieves 

certain performance criteria in all possible uncertainties. The 

demand for robust stability means H∞ norm of the controller-

less than 1 for the uncertainty input/output relationship. The 

weighting filters are attached to scale the outputs. The H∞ 

controller has been designed for the interconnected structure 

shown in Figure 10 to minimizes the ‖. ‖∞  norm over the 

stabilizing controllers K, where P is the transfer function 

matrix of the system. The FL(P, K) is the nominal closed-loop 

system transfer matrix from disturbance to the errors e as 

shown in the Fig. 11, where e=[
𝑒𝑝

𝑒𝑢
] 

 

 
 

Figure 11. Close loop BLDC motor with H∞ controller 

 

The H∞ controller design has been conducted by using 

MATLAB function hinfsyn, which determine the (sub) 

optimal H∞ control law. The design H∞ controller for the 

closed loop system achieves H∞ norms equal to 1.0000. The 

controller K has one input and one output with three states. The 

most desirable property of the designed controller is that it 

consists of all stable poles, which makes the system more 

favorable in practices.  

Robust stability test of the BLDC motor is based on the 𝜇-

analysis conducted on the 2 × 2 diagonal block of the transfer 

matrix and computes upper and lower bounds for the 

structured singular value. The system is robust enough to 

provide stability over the uncertainty. Therefore, the frequency 

response of the closed-loop system with H∞ controller 

achieves the robust stability with a maximum value of 𝜇  is 

equal to 0.12031 in 1.7 rad/sec and less than 0.1174 for all 

frequencies is shown in the Fig. 12. The maximum value of 𝜇 

shows the allowable structured perturbation norms less than 
1

0.12031
 i.e., the stability maintains for ‖𝛥‖∞ <

1

0.12031
. 

The robust performance of the closed-loop system with H∞ 

controller is also verified by 𝜇  - analysis. The closed-loop 

transfer function has one input one output. The robust 

performance of the designed system is achieved, if and only if 

𝜇∆𝑃
(. ) is less than 1 in all frequencies. The closed-loop system 

achieved robust performance with H∞ controller since the 

maximum value of 𝜇 is equal to 0.10906 for low frequency 

and further decreases for higher ranges of frequency is shown 

in the Fig.13.  

 

 
 

Figure 12. Robust stability test BLDC motor with of H∞ 

controller 

 

 
 

Figure 13. Robust performance of BLDC motor with H∞ 

controller 

 

While performing the transient response standard input 

signal (input step signal with final value of 12) has been 

considered to verify the effectiveness of the proposed 

modelling structure in time domain. Open loop transient 

response of the perturbed BLDC motor is shown in the Fig 14. 

It is observed that the transient response reaches the steady-

state value with a small settling time (approximately equal 

to .0.8 s) is shown in the Fig 15. 

It is clearly evident from the outcomes of the simulation 

studies that the proposed control law yields satisfactory 

performance in the frequency domain as well as in the time 

domain. However, the abovementioned outcomes of the H∞ 

control law make the closed-loop structure of the candidate 

system robust enough than the other control-oriented 
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modelling structure. Therefore, it should be remembered that 

proposed control-oriented LFT modeling approaches are 

capable of ensuring robust stability and performance, that, in 

turn, makes it more versatile and acceptable than any other 

application-oriented modeling approaches. 

 

 
 

Figure 14. Open loop transient response of the perturbed 

BLDC motor 

 

 
 

Figure 15. Closed-loop transient response of the system with 

H∞ controller 

 

 

5. CONCLUSIONS 

 

This paper presents a control oriented LFT modeling 

framework for the nth order linear dynamical system. At the 

outset of the modeling, parametric uncertainties have been 

introducing to transform the generalized transfer function of 

the linear dynamical system into a comprehensive model 

consisting of the nominal system model and transfer function 

matrix to account for the various model uncertainties to 

represent the system model in LFT framework. The proposed 

modeling algorithm is essential for the application of the 

modern robust control technique like µ-analysis and synthesis 

in addition to H∞ -Control and H∞-Loop Shaping in order to 

obtain optimal control performance. The uncertain physical 

parameters are not known precisely and it is assumed that the 

parameter values are known within an interval to express in 

terms of possible relative error. The LFT modeling realization 

of a dynamical system is a minimal representation refers to the 

smallest possible dimension of the uncertainty matrix. The 

model of dynamical systems varies due to changes in the 

system configuration and the operating conditions. This 

system variable characterized as model uncertainties to 

facilitate and improve the effect that incorporates in the system 

modeling to improve the model quality, increase the system 

reliability and better utilization of appropriate control law. 

The effectiveness of the proposed modeling algorithm has 

been verified on a BLDC motor to validate the feasibility of 

the modeling technique. This mathematical framework 

permits the desired accuracy of the proposed modeling 

structure based on the availability of reliable model parameter 

values and establishes the fact that the generalized modeling 

algorithm is suitable for real-time applications. H∞ control law 

has been implemented to the upper LFT structure of the BLDC 

motor and it has been observed that the closed loop system 

achieves the robust stability as well as robust performance 

even in the presence of all parametric uncertainties and 

disturbances. Moreover, closed loop system exhibits 

satisfactory transient response in time domain analysis.  

Finally, it has been observed that the generalized H∞ control-

oriented modeling technique is a very convenient and quite 

effective approach for robust control law. 
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