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The Regularized Least Square (RLS) method is one of the fastest function estimation 

methods, but it is too sensitive to noise. Against this, ε-insensitive Support Vector 

Regression (ε-SVR) is robust to noise but doesn’t have a good runtime. ε-SVR supposes 

that the noise level is at most ε. Therefore, the center of a tube with radius ε, which is used 

as the estimated function, is determined in a way that the training data are located in that 

tube. Therefore, this method is robust to such noisy data. In this paper, to improve the 

runtime of ε-SVR, first, an initial estimated function is obtained using the RLS method. 

Then, unlike the ε-SVR model, which uses all the data to determine the lower and upper 

limits of the tube, our proposed method uses the initial estimated function for determining 

the tube and the final estimated function. Strictly speaking, the data below and above the 

initial estimated function are used to estimate the upper and lower limits of the tube, 

respectively. Thus, the number of the model constraints and, consequently, the model 

runtime are reduced. The experiments carried out on 15 benchmark data sets confirm that 

our proposed method is faster than ε-SVR, ε-TSVR and pair v-SVR, and its accuracy are 

comparable with that of ε-SVR, ε-TSVR and pair v-SVR. 
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1. INTRODUCTION

One of the most commonly used eager learning method is 

least-square method (LS) [1], which first was proposed by Carl 

Friedesh Gauss. In the LS method, the best estimated function 

is a function that the sum of square of the difference between 

the observed values and the corresponding estimated values 

with the estimated function is minimum. Later, on the basis of 

the LS method, the Regulation Least Square (RLS) method 

was proposed [2, 3]. The RLS uses a regularization term to 

reduce the complexity of estimated function and to increase its 

generalization ability. 

ε-insensitive Support Vector Regression (ε-SVR) [4] 

supposes that the noise in the output variable is at most ε. 

Therefore, the center of a tube with radius ε, which is used as 

the estimated function, is determined in a way that the training 

data are located in that tube. Therefore, this method is robust 

to such noisy data. In v-SVR [5], the maximum noise level or 

the tube radius is considered as a model variable, which is 

determined in the process of solving the model. In both ε-SVR 

and v-SVR, the maximum noise level or the radius of the tube 

is considered to be constant or independent in terms of the 

training data characteristics. To alleviate this shortcoming, 

Support Vector Interval Regression Networks (SVIRNs) was 

proposed [6]. In SVIRNs, the upper and lower bounds of the 

tube are automatically determined by two independent RBF 

networks. In this model, the radius of the tube can change by 

changing the features of the training data. Therefore, SVIRNs 

is robust to a noise whose maximum level depends on training 

data features. These two networks are initialized using ε-SVR. 

v-Support Vector Interval Regression Networks (v-SVIRN)

[7] determines the upper and lower bounds of the tube by only

one neural network or one model. In Twin SVR (TSVR) [8],

estimated function is determined by solving two small

Quadratic Programming Problems (QPPs), while ε-SVR

solves one large QPP. Solving the TSVR model needs less

time than solving ε-SVR model. Later, in ε-TSVR [9], a

regularization term was used to reduce the complexity of

estimated function and to increase its generalization ability.

The regularization term of ε-TSVR is L2-norm of the

estimated function weight vector, while in L1-TWSVR model

[10], L1-norm of the estimate function weight vector was used

as the regularization term. L1-TWSVR is a linear

programming, while ε-TSVR is a QPP. As well, the estimated

function of L1-TWSVR is sparser than that of ε-TSVR.

Therefore, the testing time of L1-TWSVR model is less than

that of ε-TSVR. Pair v-SVR is extended version of ε-TSVR

which has additional advantage of using parameter v for

controlling the bounds on fraction of support vectors and error

[11].

All the mentioned SVR-based methods assume that the 

noise distribution is symmetrical, therefore, the center of a 

tube which contain noisy data is used as the estimated function. 

In other words, the estimated function is determined in such a 

way that approximately half of the training data are positioned 

above it, and the remaining data are positioned below it. In the 

asymmetric v-SVR method [12], the estimated function is 

determined in such a way that an arbitrary number of training 

data are positioned above it and the remaining data are 

positioned below it. The size of each of these two parts of data 

is determined based on the prior knowledge about the noise 

distribution. Next, twin version of asymmetric v-SVR, i.e. 
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asymmetric v-TSVR [13], was proposed to improve the 

runtime of the asymmetric v-SVR model.  

Among the mentioned methods, the LS and RLS methods 

have the lowest runtime because each of them is an n + 1 

variable problem with a close-form solution which is obtained 

by inverting an n × n matrix, but they are too sensitive to noisy 

data. Against this, SVR-based models have a good robustness 

against noise but do not have a good runtime because for 

example to solve ε-SVR problem, a quadratic programming 

problem with 2×n variables and linear constraints must be 

solved which is too time consuming. In this paper, to improve 

the runtime of ε-SVR, first, an initial estimated function is 

obtained using the RLS method. Then, unlike the ε-SVR 

model, which uses all training data to determine the lower and 

upper limits of the tube, our proposed method uses the initial 

estimated function for determining the tube and the final 

estimated function. In other words, the data below and above 

the initial estimated function are used to estimate the upper 

limit and the lower limit of the tube, respectively. Thus, the 

number of the model constraints and, consequently, the model 

runtime are reduced. The experiments carried out on 15 

benchmark data sets confirm that our proposed method is 

faster than ε-SVR, ε-TSVR and pair v-SVR, and its accuracy 

are comparable with that of ε-SVR, ε-TSVR and pair v-SVR.  

In continue, in Section 2, RLS and ε-SVR are introduced. 

Then, in Section 3, our proposed method is presented. In 

Section 4, the results of the experiments are presented and 

Section 5 provides conclusion. 

 

 

2. BACKGROUND 

 

2.1 RLS 

 

Let {(x1,y1), (x2,y2), …, (xn,yn)}, be training data where x ∈
Rd is input variable and y ∈ R  is output variable. Suppose 

φ(. ) is a function which transforms data from the input space 

into a high-dimensional feature space. The goal is to find the 

function f(x)=wTφ(x)+b with the weight vector w =
∑ αiφ(xi)
n
i=1  and the bias b such that 

 

∀i: yi ≅ f(xi). (1) 

 

For this purpose, the following model is solved: 

 

min
α

1

2
(‖α‖2 + b2) +

C1
2
∑(f(xi) − yi)

2

n

i=1

, (2) 

 

where, α=(α1, α2, …, αn)T. The first term of model (2) is 

intended to prevent over-fitting and to increase the 

generalizability. The parameter C1 controls the importance of 

the estimated function training error against generalization 

ability. Model (2) can be written as follows: 

 

min
α

1

2
(‖α‖2 + b2) +

C1
2
‖Kα + b − y‖2, (3) 

 

where, y=(y1, y2, …, yn)T and K is a matrix of which the i -th 

row of j-th column, i.e. Kij, is equal to k(xj,xi)= φT(xj)φ(xi) 

where k(…) is a kernel function. The model (3) can be written 

as follows: 

 

min
α̃
L =

1

2
‖α̃‖2 +

C1
2
‖K̃α̃ − y‖

2
, (4) 

 

where,  

 

α̃ = (
α
b
), (5) 

 

K̃ = (K 1). (6) 

 

At the optimal point of the model (4), we have: 

 

0 =
∂L

∂α̃
= α̃ + C1K̃

TK̃α̃ − C1K̃
Ty. (7) 

 

Therefore, 

 

α̃ = C1(I + C1K̃
TK̃)

−1
K̃Ty. (8) 

 

RLS is sensitive to noise because when yi is noisy, the 

optimal function f(.) changes mistakenly in order to the 

objective function of RLS become minimum according to Eq. 

(2). 

 

2.2 ε-SVR method 

 

ε-SVR supposes that the noise level is at most ε. Therefore, 

the center of a tube with radius ε, which is used as the 

estimated function, is determined in a way that the training 

data are located in that tube. In other words, the function 

f(x)=wTφ(x)+b is determined in such a way that as much as 

possible, 

 

∀i: −ε ≤ yi − f(xi) ≤ ε. (9) 

 

To do this, the following model is solved: 

 

min
w,b,ξ,ξ̂

1

2
‖w‖2 + C∑(ξi + ξ̂i)

n

i=1

subject to {

yi − f(xi) ≤ ε + ξi ,   i = 1,2, … , n;

f(xi) − yi ≤ ε + ξ̂i ,   i = 1,2, … , n;

ξi, ξ̂i ≥ 0 ,   i = 1,2, … , n;

 (10) 

 

where, ξ and ξ̂ allow outliers are not positioned outside the 

tube (see Figure 1). The number of outliers positioned outside 

the tube is controlled by the parameter C≥0. 

 

 
 

Figure 1. The estimated function of ε-SVR for the training 

data represented by x signs 
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The dual of the model (10) is as follows: 

 

𝑚𝑎𝑥
𝛼,�̂�

∑(𝛼𝑖 − �̂�𝑖)𝑦𝑖 − 𝜀

𝑛

𝑖=1

∑(�̂�𝑖 + 𝛼𝑖)

𝑛

𝑖=1

−
1

2
∑∑(αi − α̂i)(αj − α̂j)k(xi, xj)

n

j=1

n

i=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 
 

 
 ∑(𝛼𝑖 − �̂�𝑖) = 0

𝑛

𝑖=1

; 

0 ≤ 𝛼𝑖 ≤ 𝐶,   𝑖 = 1, … , 𝑛;
0 ≤ �̂�𝑖 ≤ 𝐶,   𝑖 = 1, … , 𝑛;

 (11) 

 

According to the Karush-Kuhn-Tucker (KKT) conditions 

[14], we have: 

 

w =∑(αi − α̂i)φ(xi)

n

i=1

, (12) 

 

Therefore, the estimated function is determined according 

to the following formula: 

 

f(x) = wTφ(x) + b =∑(αi − α̂i)k(xi, x) + b

n

i=1

, (13) 

 

where, based on the KKT conditions, the bias is determined by 

the following formula: 

 

b =

{
 
 

 
 yi −∑(αj − α̂j)k(xj, xi)

n

j=1

− ε, 0 < αi < C.

yi −∑(αj − α̂j)k(xj, xi)

n

j=1

+ ε, 0 < α̂i < C.

 (14) 

 

 

3. OUR PROPOSED METHOD 

 

The RLS have the good runtime, but it is sensitive to noisy 

data. Against this, ε-SVR model-based models are robust to 

noise but do not have a good runtime. In this paper, to improve 

the runtime of ε-SVR, first, an initial estimated function is 

obtained using the RLS method. Then, unlike the ε-SVR 

model, which uses all training data to determine the lower and 

upper limits of the tube, our proposed method uses the initial 

estimated function for determining the tube and the final 

estimated function. In other words, the data below and above 

the initial estimated function are used to estimate the upper and 

the lower limits of the tube, respectively. Thus, the number of 

the model constraints and, consequently, the model runtime 

are reduced. 

Let f(x) = ∑ αik(xi, x) + b
n
i=1  be initial estimated function 

obtained by using the RLS model based on the training data 

{(x1,y1), (x2,y2), …, (xn,yn)}. If f(xi )≤0 then (xi,yi) is a point 

below the function f(.); otherwise, (xi,yi) is a point above the 

function f(.). Let Ia be the index of the training data above the 

function f, and Ib be the index of the training data below the 

function f, and |Ia|+|Ib|=n. Our proposed model for determining 

a tube with the radius ε and the center f̃(x) = wTφ(x) + b is 

as follows:  

 

Min
w,b,ξ̌

 
1

2
‖w‖2 + C2∑ξi

n

i=1

subject to {

yi − f̃(xi) ≤ ε + ξi ,   i ∈ Ia;

f̃(xi) − yi ≤ ε + ξi ,   i ∈ Ib;
ξi ≥ 0 ,   i = 1,2, … , n.

 (15) 

 

where, ξ allows outliers are not positioned outside the tube. 

The number of outliers positioned outside the tube is 

controlled by the parameter C2. Unlike ε-SVR which uses all 

training data to determine the lower and upper bounds of the 

tube, in our proposed model, only the upper half of the training 

data is used to determine the upper limit of the tube, and also 

only the lower half of the training data is used to determine the 

lower limit of the tube. The upper half and lower half of 

training data are determined based on the initial estimated 

function obtained by the RLS. The Lagrange function of the 

model (15) is as follows:  

 

L =
1

2
‖w‖2 + C∑ξi

n

i=1

 

−∑αi(ε + ξi − yi+w
Tφ(xi) + b)

i∈Ia

 

−∑αi(ε + ξi + yi−w
Tφ(xi) − b)

i∈Ib

−∑γi

n

i=1

ξi; 

(16) 

 

where, γi and αi  are Lagrange coefficients. At the optimal point 

of the model (15) we have: 

 
∂L

∂w
= 0 → w =∑αiφ(xi)

i∈Ia

−∑αiφ(xi)

i∈Ib

; (17) 

 
∂L

∂b
= 0 →  ∑αi

i∈Ia

−∑αi
i∈Ib

= 0; (18) 

 
∂L

∂ξ
= 0 →  αi = C2 − γi , i = 1,2, … , n; (19) 

 

yi −w
Tφ(xi) − b ≤ ε + ξi , i ∈ Ia; (20) 

 

wTφ(xi) + b − yi ≤ ε + ξi , i ∈ Ib; (21) 

 

αi(ε + ξi − yi+w
Tφ(xi) + b) = 0, i ∈ Ia; (22) 

 

αi(ε + ξi + yi−w
Tφ(xi) − b) = 0, i ∈ Ib; (23) 

 

γiξi = 0, i = 1,2, … , n; (24) 

 

ξi, αi, γi ≥ 0, i = 1,2, … , n. (25) 

 

By substituting Eq. (17) to Eq. (24) into the Lagrange 

function, this function is simplified as follows: 

 

L =∑αiyi
i∈Io

−∑αiyi
i∈Iu

− ε∑αi

n

i=1

 

−
1

2
(∑∑αi

j∈Io

αjk(xi, xj)

i∈Io

+∑∑αi
j∈Iu

αjk(xi, xj)

i∈Iu

− 2∑∑αi
j∈Iu

αjk(xi, xj)

i∈Io

) 

(26) 
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In addition, according to Eq. (19), and since αi,γi≥0, we have: 

 

0 ≤ αi ≤ C2,     i = 1,2, … , n; (27) 

 

Therefore, the dual of the model (15) is as follows: 

 

𝑚𝑎𝑥
𝛼

∑𝛼𝑖𝑦𝑖
𝑖∈𝐼𝑎

−∑𝛼𝑖𝑦𝑖
𝑖∈𝐼𝑏

− 𝜀∑𝛼𝑖

𝑛

𝑖=1

−
1

2
(∑∑𝛼𝑖

𝑗∈𝐼𝑎

𝛼𝑗𝑘(𝑥𝑖 , 𝑥𝑗)

𝑖∈𝐼𝑎

+∑∑𝛼𝑖
𝑗∈𝐼𝑏

𝛼𝑗𝑘(𝑥𝑖 , 𝑥𝑗)

𝑖∈𝐼𝑏

−2∑∑𝛼𝑖
𝑗∈𝐼𝑏

𝛼𝑗𝑘(𝑥𝑖 , 𝑥𝑗)

𝑖∈𝐼𝑎

)

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
∑𝛼𝑖
𝑖∈𝐼𝑎

−∑𝛼𝑖
𝑖∈𝐼𝑏

= 0; 

0 ≤ 𝑎𝑖 ≤ 𝐶2,   𝑖 = 1,2, … , 𝑛;

 (28) 

 

If we define: 

 

βi = {
αi, i ∈ Io;
−αi, i ∈ Iu,

 (29) 

 

then, the model (28) can be written as follows: 

 

𝑚𝑎𝑥
𝛽

∑𝛽𝑖𝑦𝑖

𝑛

𝑖=1

− 𝜀 (∑𝛽𝑖
𝑖∈𝐼𝑎

−∑𝛽𝑖
𝑖∈𝐼𝑏

)

−
1

2
∑∑βi

n

j=1

βjk(xi, xj)

n

i=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 
 

 
 ∑𝛽𝑖

𝑛

𝑖=1

= 0; 

0 ≤ 𝛽𝑖 ≤ 𝐶2,   𝑖 ∈ 𝐼𝑎;
−𝐶2 ≤ 𝛽𝑖 ≤ 0,   𝑖 ∈ 𝐼𝑏;

 (30) 

 

which is a convex quadratic programming problem. After 

solving the model (30) and obtaining the optimal value of β, 

the optimal values of α  can be determined using Eq. (29). 

Given Eq. (22), for each i ∈ Ia, if αi>0 then 

 

yi − w
Tφ(xi) − b = ε + ξi; (31) 

 

and according to Eq. (19), if αi<C2 then 

 

γi > 0. (32) 

 

Then, according to Eq. (24), we have: 

 

ξi = 0. (33) 

 

Thus, for each i ∈ Ia, if 0<αi<C2, the bias can be obtained 

from the following equation: 

 

b = yi − w
Tφ(xi) − ε. (34) 

 

According to Eq. (23), for each i∈Ib, if αi>0, then 

 

−yi + w
Tφ(xi) + b = ε + ξi; (35) 

 

and according to Eq. (19), if αi<C2, then 

 

γi > 0; (36) 

 

Then, according to Eq. (24), we have: 

 

ξi = 0. (37) 

 

Thus, for each i ∈ Iu, if 0<αi<C2, the bias can be obtained 

from the following equation: 

 

b = ε + yi − w
Tφ(xi). (38) 

 

According to Eq. (17), the optimal hyperplane or estimated 

function is as follows: 

 

f(x) = wTφ(x) + b 

= b +∑αik(x, xi)

i∈Ia

−∑αik(x, xi)

i∈Ib

 

= b +∑βik(x, xi)

n

i=1

= b + ∑ βik(x, xi)

i∈SV

; 

(39) 

 

where, SV = {i|βi ≠ 0} is called support vector set. 

 

 

4. EXPERIMENTS 

  

In this section, our proposed method is compared with ε-

SVR [4], ε-TSVR [9]  and pair v-SVR [11] using 15 

benchmark data sets of the UCI repository. The characteristics 

of these data sets are in accordance with Table 1. The kernel 

function used in each regression method is Gaussian kernel 

function. For each data set, the optimal values of the 

parameters C1,C2,C3,C4 were selected from the set 

{0,0.01,…,100}, the optimal value of the parameter ε1=ε2=ε 

was selected from the set {0,0.1}, and the optimal value of the 

parameter σ was selected from the set {0.1,0.2,…,100} by 

using the grid search mechanism. These optimal values were 

reported in Table 2. The RMSE and runtime of each method 

for the best values of their parameters are according to Table 

3 and Table 4, respectively. To calculate RMSE, 10-fold cross 

validation was used. As it can be seen, the RMSE of our 

proposed method is competitive with the three other methods 

and the run time of our proposed method is much less than that 

of ε-SVR and less than that of ε-TSVR and pair v-SVR. The 

reason is that in our proposed method instead of solving the 

constrained quadratic programming problem (11) with 2×n 

variables, two smaller problems, i.e. the unconstrained 

quadratic programming problem (2) with n + 1 variables, and 

then the constrained quadratic programming problem (30) 

with n variables are solved. Also, in each of ε-TSVR and pair 

v-SVR, two constrained quadratic programming problem 

problems with n variables are solved. Solving the mentioned 

unconstrained quadratic problem is faster than the mentioned 

constrained quadratic problems of the same size. It should be 

noted that, each problem was solved using MATLAB2015 on 

a computer of 8GbRAM and 2.20GHz CPU. The quadprog 

function and the interior-point-convex algorithm were used to 

solve each constrained quadratic model. 
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Table 1. Characteristics of 15 UCI datasets 

 
No. Dataset Application #Instance #Feature 

1 Pyrimidine Regression 74 27 

2 Triazines Regression 186 61 

3 Bodyfat Regression 252 14 

4 Haberman Classification 306 4 

5 Yacht Hydrodynamics Regression 308 7 

6 ionosphere Classification 351 34 

7 Housing Regression 506 14 

8 Pima Indians Diabetes  Classification 768 8 

9 Concrete Compressive Strength Regression 1030 9 

10 Mg Regression 1385 7 

11 banknote authentication Classification 1372 5 

12 Abalone Regression 4177 8 

13 Wine Regression 4898 12 

14 Wisconsin Breast Cancer Classification 569 32 

15 Forest Fires Regression 517 13 

 

Note that determination of appropriate values for the 

parameters of a model is a challenging issue which can be 

estimated using a validation set or based on prior knowledge 

which may not be available for each dataset. The Figures 2, 3 

and 4 show the sensitivity of RMSE of our proposed method 

to the parameters C1, C2, and σ, respectively. According to 

Figure 2, for each dataset except “Concrete” dataset, the best 

RMSE can be obtained by a large value of C1. Moreover, the 

sensitivity of RMSE of our proposed method to the parameter 

C1 for “Concrete” dataset is small. According to Figure 3, the 

best RMSE can be obtained by a large value of C2 for some 

datasets and the best RMSE can be obtained by a small value 

of C2 for the others. But, as it can be seen, the RMSE is not too 

sensitive to a wide range of values of C2. For example, the 

sensitivity of MSE of our proposed method to the parameter 

C2 for “Triazines” dataset is about 0.004 for the range [0,100]. 

According to Figure 4, the RMSE is also not too sensitive to a 

wide range of the values of σ. For example, the sensitivity of 

MSE of our proposed method to the parameter σ for “Triazines” 

dataset is about 0.16 for its whole range, and about 0.01 for the 

range [20,100]. 

 

Table 2. The best parameters of our proposed method with 

the lowest RMSE 

 

Dataset σ C1 C2 

Pyrimidine 63.4 100 100 

Triazines 28.3 100 100 

Bodyfat 100 100 20 

Haberman 100 100 100 

Yacht Hydrodynamics 2 0.01 100 

ionosphere 1.4 50 1 

Housing 50 0.01 100 

Pima Indians Diabetes 49.4 100 1 

Concrete Compressive Strength 38 0.01 100 

Mg 2 0.01 100 

Banknote authentication 1.2 100 10 

Abalone 100 100 100 

Wine 1 100 100 

Wisconsin Breast Cancer 20.1 20 1 

Forest Fire 59.3 100 1 

 

Table 3. The mean and standard deviation of RMSE of our proposed method, ε-SVR, ε-TSVR and pair v-SVR 

 
Dataset ε-SVR ε-TSVR pair v-SVR proposed 

Pyrimidine 0.0842± 0.0593 0.0656± 0.0471 0.0675±0 .0367 0.1180± 0.0615 

Triazines 0.1503± 0.0338 0.1362± 0.0434 0.1456± 0.0457 0.1512± 0.0332 

Bodyfat 4.7757± 0.8102 8.1441± 2.1848 7.6785± 1.5767 6.2215± 1.4876 

Haberman 0.8664± 0.1086 0.8775± 0.1395 0.8452± 0.1065 0.8615± 0.1055 

Yacht Hydrodynamics 10.9085± 1.2578 10.3360± 1.8207 10.5678± 1.5342 9.6190± 0.9907 

Ionosphere 0.5148± 0.1096 0.5022± 0.1283 0.4322± 0.1164 0.4354± 0.1279 

Housing 6.7392± 2.1573 8.9263± 3.5525 7.5678± 3.4234 8.5130± 3.3002 

Pima Indians Diabetes 0.9112± 0.0640 0.9871± 0.0033 0.9454± 0.0197 0.8425± 0.0946 

Concrete Compressive Strength 13.9188± 6.8642 14.6849± 7.1039 13.7545± 6.7433 14.6370± 5.2094 

Mg 0.1014± 0.0123 0.1113± 0.0156 0.0945± 0.0154 0.0999± 0.0134 

Banknote authentication 0.0857± 0.0184 0.0768± 0.0183 0.0956± 0.0224 0.1178± 0.0209 

Abalone 2.0999± 0.6538 2.1265± 0.6173 2.0451± 0.9835 3.1384± 0.9881 

Wine 0.8637± 0.0660 0.8685± 0.0576 0.8621± 0.0452 0.8601± 0.0355 

Wisconsin Breast Cancer 1.8819± 0.5168 1.8847± 0.5224 1.8664± 0.4767 1.8703± 0.4350 

Forest Fires 0.1974± 0.2502 0.1288± 0.2810 0.1198± 0.2576 0.1250± 0.2746 

 

Table 4. The runtime of our proposed method, ε- SVR, ε-TSVR and pair v-SVR (seconds) 

 
Dataset ε-SVR ε-TSVR pair v-SVR proposed 

Pyrimidine 0.41 0.29 0.35 0.12 

Triazines 3.44 2.12 2.87 1.71 

Bodyfat 5.69 0.71 1.75 0.28 

Haberman 8.34 0.78 2.76 0.43 

Yacht Hydrodynamics 9.79 0.64 3.65 0.26 
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ionosphere 9.12 4.20 6.43 3.08 

Housing 33.94 2.06 9.34 0.77 

Pima Indians Diabetes 40.85 13.45 21.67 12.34 

Concrete Compressive Strength 144.2 40.79 31.43 38.32 

Mg 187.02 10.26 49.45 4.84 

Banknote authentication 252.38 11.82 51.43 11.70 

Abalone 14202.98 199.51 199.51 54.07 

Wine 3906.94 1384.58 2232.32 920.94 

Wisconsin Breast Cancer 2.87 1.92 2.02 1.53 

Forest Fires 17.81 3.70 5.21 2.51 
 

   

   

   

   

   
 

Figure 2. The sensitivity of our proposed method to the parameter C1 for the best C2 and σ reported in Table 2 
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Figure 3. The sensitivity of our proposed method to the parameter C2 for the best C1 and σ reported in Table 2 
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Figure 4. The sensitivity of our proposed method to the parameter σ for the best C1 and C2 reported in Table 2 

 

 

5. CONCLUSIONS 

 

The RLS method is one of the fastest methods for function 

estimation because it is an n + 1 variable problem with a close-

form solution which is obtained by inverting an n × n matrix. 

The RLS has a high sensitivity to noisy data. Against this, ε-

SVR has a good resistance against noise, but its runtime is not 

as good as the RLS runtime, because in order to solve the dual 

ε-SVR, we need to solve a quadratic programming problem 

with 2×n variables and linear constraints. ε-SVR supposes that 

the noise in the output variable is at most ε. Therefore, the 

center of a tube with radius ε, which is used as the estimated 

function, is determined in a way that the training data are 

located in that tube. Therefore, this method is robust to such 

noisy data. In this paper, to improve the runtime of ε-SVR, 

first, an initial estimated function was obtained using the RLS 

method. Then, unlike ε-SVR which uses all data to determine 

the lower and upper limits of the tube, our proposed method 

used the initial estimated function for determining the tube and 

the final estimated function. Strictly speaking, the data below 

and above the initial estimated function were used to estimate 

the upper and lower limits of the tube, respectively. Thus, the 

number of the model constraints and, consequently, the model 

runtime were reduced.  

Our proposed method runtime is also lower than that of ε-

TSVR and pair v-SVR because in each of ε-TSVR and pair v-

SVR, two quadratic programming problems with n-variables 

and linear constraints are solved, while in our proposed 

method, an unconstrained quadratic programming problem 

with n+1 variables and a close form solution, and then, a 

quadratic programming problem with n-variables and linear 

constraints are solved. Solving an unconstrained quadratic 

programming problem is faster than a constrained quadratic 

programming problem of the same size. Our experiments on 

15 benchmark dataset confirm that our proposed method is 

faster than ε-SVR, ε-TSVR and pair v-SVR, and its accuracy 

is comparable with the ε-SVR, ε-TSVR and pair v-SVR.  
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NOMENCLATURE 

 

xi i-th training data 

yi Class label of i-th training data 

ξi, ξ̂i Slack variables for i-th training data 

n The number of training data 

w Weight vector of htperplane 

b Bias of hyperplane 

𝛼𝑖 , α̂i Lagrange coefficients for i-th training data 

φ(.) A function which map data from the input 

space into a high-dimensional feature space 

k(.,.) Kernel function 

σ Hyper-parameter of Gaussian kernel function 

C1,C2,C3,C4 Hyper-parameters of models to control penalty 

terms 

ε Size of tube 
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