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In recent years, there is a growing demand for high-quality color imaging of digital media 

art (DMA) images, along with the proliferation of smart mobile terminals and the Internet 

technology. However, the existing digital terminals cannot transmit or reproduce the color 

of DMA images satisfactorily. This paper explores the key techniques of color management 

of highly dynamic color DMA images, aiming to evaluate the exact quality and acquire 

abundant details of these images. Firstly, five indices were designed to evaluate the quality 

of highly dynamic color DMA images, namely, peak signal-to-noise ratio (PSNR), mean 

square error (MSE), Pearson linear correlation coefficient (PLCC), Kendall rank correlation 

coefficient (KRCC), and Spearman’s rank correlation coefficient (SRCC). The workflow 

of image quality judgement was also introduced. To correct the DMA images under non-

standard illumination, a color correction method was proposed based on Retinex algorithm. 

In addition, a color reconstruction method was developed based on nonlocal Laplace energy 

function, solving the invalid and missing regions of single-frame color images. Finally, the 

effectiveness of our color management method was proved through experiments. The 

research results provide a reference for image quality valuation and color management in 

other fields. 
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1. INTRODUCTION

In recent years, there is a growing demand for high-quality 

color imaging of digital media art (DMA) images, along with 

the proliferation of smart mobile terminals and the Internet 

technology [1-5]. During the transmission between different 

digital terminals, the color of DMA images might get lost or 

distorted, because the terminals differ greatly in color 

generation mechanism and color gamut. These problems can 

be solved through color management. That is, the color 

displayed on the images needs to be adjusted as needed, 

making color rendering more accurate on existing hardware 

facilities [6-9]. 

The relevant studies mainly focus on color characterization 

and management of digital terminals. Based on physical 

simulators, the color rendering mechanism has mostly been 

modelled by the Neugebauer model, paper extension function 

model, and Murray-Davies model [10-15]. Jaroensri et al. [16] 

proposed a polynomial regression method that uses 

polynomials to approximate the nonlinear features of the 

images transmitted between digital terminals; despite its 

simple conversion form, the polynomial regression method is 

not sufficiently accurate. Based on radial basis function (RBF), 

Chandrasekharan and Sasikumar [17] converted and processed 

color DMA images, and explained how to configure complex 

network parameters, such as the type of color rendering device, 

the number of samples, and the color mode. 

In the meantime, some experts have mapped and described 

the boundaries of the color gamut, concerning the reproduction 

effect of color DMA images [18-22]. Bellavia and Colombo 

[23] determined the color gamut of a color inkjet printer based

on the Kubelka-Munk (K-M) theory and Neugebauer

equations; However, the application of the determination 

method is limited by its undesirable description effect, the 

printing conditions of the printer, and the quality of the printed 

paper. Through Zernike interpolation, Kalra and Singh [24] 

developed a boundary identification method for the color 

gamut of digital terminals, which, to a certain extent, improves 

the reproduction accuracy of the color gamut boundaries of 

low- and middle-end digital devices; But the identification 

method consumes too much time in boundary description and 

mapping. Drawing on spatial feedback algorithm, Oliveira et 

al. [25] assigned weights to the statistically combined color 

features of color DMA images, and put forward a mapping 

algorithm for one or more color gamuts, which achieves good 

overall mapping effect at the cost of incurring a high 

computing load.  

To date, there have been extensive studies on the color 

conversion of color management systems for color DMA 

images. However, the color transmission and reproduction of 

DMA images between different digital terminals remain 

unsatisfactory. In addition, further research is needed to 

address several key issues of DMA images: image quality 

evaluation, color characterization and calibration, color 

correction, and color reconstruction. 

Therefore, this paper explores the key techniques of color 

management of DMA images based on color image processing. 

In Section 2, five evaluation indices were summarized for the 

quality of highly dynamic DMA images, namely, peak signal-

to-noise ratio (PSNR), mean square error (MSE), Pearson 

linear correlation coefficient (PLCC), Kendall rank correlation 

coefficient (KRCC), and Spearman’s rank correlation 

coefficient (SRCC). The workflow of image quality 

judgement was also explained in this section. Based on 
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Retinex algorithm, Section 3 presents a color correction 

method for DMA images, which corrects images generated 

under different imaging conditions into the images under 

standard illumination. Drawing on nonlocal Laplace energy 

function, Section 4 offers a color reconstruction method for 

DMA images, solving the invalid and missing regions of 

single-frame color images. In Section 5, the proposed color 

management method was proved effective through 

experiments. 

 

 

2. QUALITY EVALUATION OF HIGHLY DYNAMIC 

DMA IMAGES 

 

2.1 Evaluation indices 

 

The quality of color DMA images needs to be evaluated by 

quantitative indices. According to the opinions of a team of 

video quality experts, five common indices were selected to 

objectively evaluate the quality of color DMA images: PSNR, 

MSE, PLCC, KRCC, and SRCC. 

 

2.1.1 PSNR and MSE 

From a statistical perspective, PSNR and MSE evaluate the 

quality of the target image based on the difference between the 

value of each pixel of the target image F and that of the 

corresponding pixel of the reference image R. Suppose both 

the target image and reference image are of the size M×N. 

Then, the PSNR can be calculated by: 
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where, F(i, j) and R(i, j) are the value of a pixel in F and that 

of the corresponding pixel in R, respectively. The MSE can be 

calculated by: 
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2.1.2 PLCC 

The PLCC measures the linear correlation between the 

value of each pixel of the target image F and that of the 

corresponding pixel of the reference image R. The PLCC can 

be calculated by: 
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2.1.3. KRCC 

The KRCC measures the level correlation between the value 

of each pixel of the target image F and that of the 

corresponding pixel of the reference image R. Let [F(i1, j1) F(i2, 

j2)] and [R(i1, j1) R(i2, j2)] be two pixel pairs randomly selected 

from the M×N pixel pairs of F and R. Then, the number of 

pixel pairs was counted in four cases: 

(1) A pixel pair is viewed as consistent if F(i1, j1)>F(i2, j2) 

and R(i1, j1)>R(i2, j2) or if F(i1, j1)<F(i2, j2) and R(i1, j1)<R(i2, 

j2). The number of consistent pixel pairs is recorded as O1. 

(2) A pixel pair is viewed as inconsistent if F(i1, j1)>F(i2, j2) 

and R(i1, j1)<R(i2, j2) or if F(i1, j1)<F(i2, j2) and R(i1, j1)>R(i2, 

j2). The number of inconsistent pixel pairs is recorded as O2. 

(3) The number of pixel pairs satisfying F(i1, j1)=F(i2, j2) 

and R(i1, j1)>R(i2, j2) or F(i1, j1)=F(i2, j2) and R(i1, j1)<R(i2, j2) 

is recorded as O3. 

(4) The number of pixel pairs satisfying F(i1, j1)>F(i2, j2) 

and R(i1, j1)=R(i2, j2) or F(i1, j1)<F(i2, j2) and R(i1, j1)=R(i2, j2) 

is recorded as O4. 

The KRCC can be calculated by: 
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2.1.4 SRCC 

The SRCC measures the order correlation between the value 

of each pixel of the target image F and that of the 

corresponding pixel of the reference image R. First, the F(i, j) 

and R(i, j) are ranked in ascending or descending order, 

producing the sorted vectors F(iʹ, jʹ) and R(iʹ, jʹ). Then, the 

difference vector D(iʹ, jʹ)=R(iʹ, jʹ)-F(iʹ, jʹ) can be obtained by 

subtracting F(iʹ, jʹ) from R(iʹ, jʹ). The SRCC can be calculated 

by: 
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For a highly dynamic DMA image, the image quality 

increases as the PLCC, KRCC, and SRCC approaches 1, and 

as the MSE approaches 0. 

 

2.2 Quality evaluation  

 

Figure 1 illustrates the framework for the quality evaluation 

of highly dynamic color DMA images. Firstly, the original 

pixel values F(i, j) and R(i, j) in the red (R), green (G), and 

blue (B) channels of the target image F and reference image R 

were converted to the perceptually consistent color space 

(PCCS), which can turn the emission brightness of highly 

dynamic color DMA images into perceived brightness, 

without disrupting the mask features of human vision. The 

converted images are denoted as Fpre(i, j) and Rpre(i, j), 

respectively. Figure 2 explains the workflow of PCCS 

conversion of highly dynamic color DMA images. 

The next task is to highlight the salient regions of the DMA 

images that interest the human eyes, and describe the details 

and texture features of such regions meticulously. To this end, 

the Log-Gabor filter was adopted to enhance the images after 

PCCS conversion and their salient areas. Figure 3 clarifies the 

workflow of the color enhancement. 
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Figure 1. The workflow of quality evaluation of highly dynamic color DMA images 

 

 
 

Figure 2. The workflow of PCCS conversion of highly dynamic color DMA images. 

 

 
 

Figure 3. The workflow of salient area enhancement for highly dynamic color DMA images 

 

As shown in Figure 3, the frequency domain conversion 

function LG of Log-Gabor filter was applied to filter the 

images in spatial and frequency domains, such as to extract the 

texture features from the images in Lab format. The weights 

of the salient areas in each image were calculated by: 
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where, PL-fft2, Pa-fft2, and Pb-fft2 are the images after Lab channel 

filtering and two-dimensional fast Fourier transform (FFT2) in 

Matlab; ifft is the inverse fast Fourier transform (IFFT) 

function in Matlab. 

By formula (6), the weights WFpre and WRpre were obtained 

for the salient areas in Fpre(i, j) and Rpre(i, j). Then, the 

weighted images can be denoted as Fpre-W(i, j) and Rpre-W(i, j). 

Considering the wide color gamut (WCG) of the highly 

dynamic DMA images, there are strong correlations between 

R, G, and B channels. Unlike the traditional quality evaluation 

algorithms for grayscale images, the quaternion method treats 

R, G, and B channels as the coefficients of the three imaginary 

parts i, j, and k of a quaternion, and correlates these channels 

cleverly by the combination in formula (7), thereby acquiring 

the brightness, contrast, and structural feature of highly 

dynamic DMA images: 

 

( ) ( ) ( ) ( )Q p R p i G p j B p k= + +   (7) 

 

where, Q(p) is the quaternion expression of highly dynamic 

DMA images at pixel p. After being processed by formula (7), 

the weighted images were represented as QFpre-W and QRpre-W. 

Taking QFpre-W and QRpre-W as inputs, the multi-scale 

structure features of the images were calculated, with the aim 

to improve the robustness of image quality evaluation, and to 

reduce the influence of various factors (e.g. sampling density, 

and the distance between the image plane and the viewer) on 

the subjective evaluation of DMA images. 

Let l and L be the unit scale and highest scale of the input 

images, respectively. Then, the number of samplings L/l=T 

can be controlled by adjusting the l value. Setting the sampling 

factor to 2, the block matching three-dimensional (BM3D) 

algorithm, which is based on block processing, was 

implemented to filter, and sample every image on the scale of 

l. Then, the contrast Ct and structural feature St on the t-th scale 

were calculated. After that, the t value was updated iteratively 

by t=t+1 until l≤L, and the previous steps were repeated. Note 

that, when l=L, the brightness BT was also recorded. Let α, β, 

and γ be the weight indices of contrast, brightness, and 

structural feature. Then, all these features can be combined by 

formula (8) into the final score of quality evaluation: 
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3. COLOR CORRECTION OF DMA IMAGES BASED 

ON RETINEX ALGORITHM 

 

To convert the DMA images obtained under different 

imaging conditions into images under standard illumination, 

the images obtained through the calculation of multi-scale 

structure features were subject to color correction based on 

Retinex algorithm. 
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The Retinex algorithm calculates the weighted average of 

the value of the target pixel Q(i, j) and that of neighboring 

pixels. In this way, the illumination component can be 

removed from the image, while the reflection component is 

retained. The mathematical expression of Retinex algorithm is 

as follows: 

 

( ) ( ) ( ) ( )( ), log , log , ,  H i j Q i j A i j Q i j= −    (9) 

 

where, A(i, j) and Q(i, j) are normalized convolution functions 

for convolution operation. The value of A(i, j) can be 

calculated by: 
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where, τ is the radius (Gaussian kernel size). The τ value, 

which determines the size of the neighborhood of the target 

pixel, must be selected to strike a balance between the degree 

of image distortion and the enhancement effect of image 

details. Therefore, the value of A(i, j) should satisfy the 

following constraint: 

 

( ), 1A i j didj =    (11) 

 

To ensure the local dynamic range of DMA images in color 

correction and guarantee the color reconstruction effect, the 

results of multiple calculations by formula (9) were subject to 

weighted stacking by: 
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where, K is the number of convolution kernels; ωk is the weight 

of the k-th radius; Ak(i, j) is the convolution function of the k-

th radius. The weighted stacking might cause color distortion, 

as it increases the contrast in local areas. This problem was 

solved by the color correction factor below: 

 

( ) ( ) ( ) , log , log ,  i j Q i j Q i j   = −         (13) 

 

where, Q∑(i, j) is the stacking of the pixels in R, G, and B 

channels; γ=137 is the nonlinear controlled intensity 

coefficient; λ=38 is the gain coefficient. 

Based on the multi-scale structure features, the Retinex 

algorithm with color correction function can be illustrated as: 
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4. COLOR RECONSTRUCTION OF DMA IMAGES 

BASED ON NONLOCAL LAPLACE ALGORITHM 

 

The nonlocal Laplace algorithm first determines the weight 

matrix based on the feature similarity between the nodes of the 

target image and the undirected graph, and then filters the 

image with the nonlocal Laplace energy function, according to 

the results of smooth interpolation on the point cloud. The 

point cloud interpolation through point integration can be 

expressed as: 
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where, D is the set of nodes in the undirected graph; Dˊ is the 

set of sampled nodes in the undirected graph; d0 is the initial 

value of set D; δ is the positive number far smaller than 1; G 

and Ĝ are Gaussian weight functions satisfying: 
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Considering the quality requirements of 3D reconstruction 

and stereo vision of highly dynamic DMA images, the 

following strategies were adopted to solve the invalid and 

missing regions of single-frame color images: the color of 

highly dynamic DMA images was reconstructed by weighted 

nonlocal Laplace algorithm; the color information of 

neighboring pixels with highly similar depth was fully utilized 

to constrain and repair the redundant pixels in RGB channels 

and depth image of the target image. 

For the given target image F, the corresponding depth image 

was created as the reference image R. Then, the color 

reconstruction is to restore the color image Fʹ∈EM×N from the 

sub-sample F|D. The weight matrix for the image combining 

color information and depth feature can be determined by: 
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where, b1 and b2 are the standard deviations to constrain the 

color information and depth feature. After the weight matrix 

W has been determined, the Laplace energy function can be 

expressed as: 
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Formula (18) can be minimized by solving: 
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where, G and Ĝ are weight matrices satisfying: 
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5. EXPERIMENTS AND RESULTS ANALYSIS 

 

To verify the effect of PCCS conversion of highly dynamic 

DMA images, this paper compares the responses to PCCS 

conversion with those of logarithmic conversion, both of 

which are based on the features of human vision, under 

different brightness ranges. Figures 4(a) and 4(b) provide the 

normalized response curves under the brightness ranges of [0, 

110]cd/m2 and [110, 4, 110]cd/m2, respectively. Obviously, 

the normalized response curves of PCCS conversion were 

more uniformly distributed than those of logarithmic 

conversion, thanks to the relatively simple conversion process. 

Moreover, the emission brightness of highly dynamic color 

DMA images simulated through PCCS conversion had a good 

nonlinear correlation with the perceived brightness.  

 

 
(a) 

 
(b) 

 

Figure 4. The normalize response curves under different 

brightness ranges 

 

Tables 1 and 2 compare the image quality evaluations of 

various algorithms on image libraries 1 and 2, respectively. 

The contrastive algorithms include our algorithm and several 

popular image quality evaluation algorithms: low dynamic 

range (LDR) algorithm, structural similarity index (SSIM) 

algorithm, multi-scale structural similarity index (MS-SSIM) 

algorithm, high dynamic range- video quality measure (HDR-

VQM) algorithm, and convolutional neural network (CNN) 

algorithm. Among them, the input image of the LDR algorithm 

is the original image coupled with the result of visual saliency 

detection. The SSIM and MS-SSIM algorithms require the 

grayscale of the original image. The HDR-VQM algorithm 

needs the brightness of the original image. The CNN is an 

image quality evaluation and prediction model based on 

AlexNet. 

 

Table 1. The image quality evaluations of various algorithms 

on image library 1  

 
 PSNR MSE PLCC KRCC SRCC 

LDR 0.4054 0.8125 0.5034 0.3823 0.5352 

SSIM 0.5325 0.7303 0.6335 0.4752 0.6238 

MS-SSIM 0.7623 0.4677 0.8583 0.6969 0.7940 

HDR-VQM 0.9232 0.4533 0.9642 0.7324 0.8597 

CNN 0.8834 0.4568 0.8964 0.7106 0.8892 

Our algorithm 0.8945 0.3256 0.9047 0.8905 0.8346 

 

Table 2. The image quality evaluations of various algorithms 

on image library 2 

 
 PSNR MSE PLCC KRCC SRCC 

LDR 0.3564 0.9632 0.4874 0.4175 0.4294 

SSIM 0.4565 0.8367 0.6578 0.5752 0.6041 

MS-SSIM 0.6423 0.5897 0.7895 0.6324 0.7352 

HDR-VQM 0.6742 0.4352 0.8347 0.7596 0.8679 

CNN 0.9024 0.5322 0.8845 0.8384 0.8456 

Our algorithm 0.8945 0.3452 0.9146 0.9012 0.8955 

 

As shown in Tables 1 and 2, the PLCC, SRCC, and KRCC 

of our algorithm on image library 1 were 0.9047, 0.8905, 

0.8346, respectively, higher than those of LDR, SSIM, MS-

SSIM, and HDR-VQM. Meanwhile, the MSEs of our 

algorithm on the two image libraries (0.3256 and 0.3452) were 

smaller than those of any other algorithm. Therefore, it can be 

concluded that PCCS conversion and salient area enhancement 

can make the quality evaluation more accurate on highly 

dynamic DMA images.  

To visualize the performance of the above algorithms, the 

quality scores obtained by each algorithm and normalized 

subjective quality scores of the original images were fitted into 

nonlinear scatter points. As shown in Figure 5, the scatter 

points of our algorithm were distributed in a narrower range 

than those of any other algorithm, indicating the strong 

correlation between subjective and objective scores of highly 

dynamic DMA images.  

Next is to verify the correction effect of our color correction 

algorithm on color DMA images. A foggy image (Figure 6(a)) 

were selected from the image libraries as the test images. The 

image corrected by the traditional Retinex algorithm is given 

in Figure 6(b); the image corrected by Retinex + weighted 

stacking is given in Figure 6(c); the image corrected by 

Retinex + weighted stacking + color correction is given in 

Figure 6(d). The corrected images were evaluated against the 

five selected indices. The evaluation results in Table 3 show 

that the addition of color correction improved the index values, 

greatly optimizing the image quality. 

Finally, a low-illumination image (Figure 7(b)) was selected 

from the image libraries to verify the effect of the proposed 

color reconstruction algorithm on color DMA images. Figure 

7(a) presents the original image of the low-illumination image 

under saturated light; Figure 7(c) is the image processed by the 

traditional Retinex algorithm; Figure 7(d) is the image 

reconstructed by nonlocal Laplace algorithm. Similarly, the 

final images were evaluated against the five selected indices. 

The evaluation results in Table 4 show that the index values 

reached the maximum after color reconstruction. Hence, our 

color reconstruction algorithm increased the information of 

image details. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 

Figure 5. The results of nonlinear scatter points fitted from the quality scores obtained by each algorithm 

 

Table 3. The evaluated quality of the corrected images 

 
 PSNR MSE PLCC KRCC SRCC 

Original image 0.8145 0.3952 0.8846 0.9012 0.8655 

Retinex 0.8345 0.3643 0.8843 0.9235 0.8698 

Retinex + weighted stacking 0.8678 0.2977 0.8926 0.9297 0.8745 

Retinex + weighted stacking + color correction 0.8965 0.2552 0.9034 0.9357 0.8945 

 

Table 4. The evaluated quality of the original image and reconstructed image 

 
 PSNR MSE PLCC KRCC SRCC 

Original image 0.8239 0.3547 0.8943 0.8846 0.8246 

Image reconstructed by nonlocal Laplace algorithm 0.8674 0.3146 0.9045 0.9056 0.8856 
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Figure 6. The original foggy image and the corrected images 

 

 
 

Figure 7. The effect of color reconstruction 

 

 

6. CONCLUSIONS 

 

This paper explores deep into the key techniques of color 

management for DMA images. Firstly, five evaluation indices 

were chosen for highly dynamic DMA images, including 

PSNR, MSE, PLCC, KRCC, and SRCC, and the quality 

evaluation workflow was clarified. Experimental results show 

that, under different brightness ranges, the PCCS conversion 

could accurately simulate the nonlinear relationship between 

emission brightness and perceived brightness. In addition, the 

quality evaluation of our algorithm was compared with that of 

LDR, SSIM, MS-SSIM, HDR-VQM, and CNN, indicating 

that PCCS conversion and salient area enhancement can 

enhance the quality evaluation accuracy of highly dynamic 

DMA images. Furthermore, a Retinex-based color correction 

method was established to correct the DMA images under non-

standard illumination, and a color reconstruction algorithm 

was developed based on nonlocal Laplace algorithm, solving 

the invalid and missing regions of single-frame color images. 

Through repeated experiments, it is proved that the color 

correction and color reconstruction improved the values of the 

evaluation indices, and greatly enriched the information of 

image details.  
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