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Automatic modulation classification (AMC) has wide spread applications in today’s 

communication system. AMC has vast applications both in military as well as civilian. 

In intelligent communication systems such as software defined radios networks and 

cognitive radio networks, AMC is the most important issue, when there is no prior 

information about the signal. In this research article, pattern recognition approach has 

been utilized for classification of M-ARY quadrature amplitude modulated (M-QAM) 

signals. Higher order cumulants are selected as feature set and Genetic Algorithm 

assisted Support Vector Machine (SVM) classifier is used for classification of M-QAM 

signals. The performance of classifier is evaluated on fading channels in the presence 

of additive white Guassain noise. The classification accuracy is also compared with and 

without optimized classifier.  
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1. INTRODUCTION

In Cognitive radio (CR) based communications spectrum is 

automatically sensed and efficiently used [1]. Awareness of 

wireless radio spectrum, which is the adaptable proposal for 

spectrum access is dependent on it and is a protuberant 

characteristic of cognitive radio networks [2]. The 

conventional communication studies generally focus on 

making communication systems more reliable, higher power 

and/or bandwidth efficient, and more secure [3].  

One of the essential requirements for a communication 

system is the security. The two users in communication system 

don’t want their communication to be known to the third 

user/eavesdropper. In contrast to this, the regularity authority 

might wish to detect a non-licensed user. The essential step of 

doing so is to identifying or classifying the modulation scheme 

of intercepted signal, which is the signature of a transmitter. 

Such demands also arise in many other military and 

noncombatant applications such as surveillance, validation of 

signal, verification, identification of interference, selection of 

proper demodulation methods in software defined radio (SDR), 

electronic warfare and threat analysis [4, 5].  

AMC is a key element which increases the overall cognitive 

radio networks performance. The key aim of this research is to 

empower the receiver in order to identify or classify the signal 

modulation automatically [6].  

In wireless communication systems, multipath fading 

channel, single carrier transmission method is used which 

results in corruption of signal. This problem is solved by 

orthogonal frequency division multiplexing (OFDM). The 

spectrum is divided into small sub bands then one sub carrier 

is used for every sub band. So, each of these small band of 

frequency is transmitted over the flat fading channel and inter 

symbol interference effect between these small frequency 

bands is minimized [7]. 

Furthermore, many different levels of modulation are being 

used which are dependent on information of channel condition 

for every sub band. Such kind of method can be identified as 

adaptive modulation. For instance, IEEE 802.11a is the 

standard OFDM protocol, have throughput for 64 QAM in the 

range of 48 Mbps. But the probability of error rises with rise 

of modulation level. Therefore, high levels of modulation can 

be utilized by sub carriers having higher SNR values, also the 

lower levels of modulation can be utilized by low SNR value 

sub carriers, which result in considerable throughput 

improvement of a communication system. The adaptive 

modulation system receivers need to classify the modulation 

form for each sub carrier so as to choose the demodulation 

method for each modulation type [8]. 

This is possible by using a table called bit allocation table 

(BAT), but this bit allocation table creates an extra overhead, 

mainly for large numbers of sub carriers as well as small 

frames of OFDM. The pretty way out for this, is to use AMC 

on receiver end in order to classify the modulation format for 

respective sub carrier, thus overall system transmission rate is 

increased [9].  

Figure 1. Maximum likelihood based D.T approaches 

In literature, the AMC has been divided into two approaches; 

Decision Theoretic (DT) Approach and Pattern Recognition 

(PR) Approach. The DT approach is based on the likelihood 

function of the received signal. There are several tests exists 

in the literature: Average likelihood ratio test (ALRT), 
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generalized likelihood ratio test (GLRT), hybrid likelihood 

ratio test (HLRT), quasi variants of the likelihood test. Figure 

1 shows the maximum likelihood based DT approach. The 

state of art existing work can also be found in ref. [10-21].  

 

Table 1. Summary of features based PR approach 

 
Ref # Features Modulations 

[22] HOC 2FSK, 4FSK, 8FSK, 16FSK, 32FSK 

[23] HOC QPSK, 4FSK, 16QAM 

[24] HOC QPSK, 4FSK, 16QAM 

[25] HOC BPSK, QPSK, 16QAM,64QAM 

[26] HOC  16QAM, 64QAM 

[27] HOC QPSK, 4FSK, 16QAM 

[29] Wavelets  2PSK,4PSK,2FSK,4-FSK, 16QAM,  

[30] Wavelets 4PSK,8PSK,16QAM,64QAM,256QAM 

[31] Wavelets  4QAM, 16QAM, 64QAM 

[32] Higher order Cumulants 2PSK-64PSK, 2FSK- 64FSK, 4QAM-64QAM 

[34] Higher order Cumulants BPSK, QPSK,8PSK,16-QAM,64-QAM,256-QAM 

[35] GCA ASK, PSK, and QAM 

[36] Higher order Cumulants BPSK, QPSK, 8PSK, 64QAM and 256QAM 

 

As this research is focusing on the PR approach which is 

also known as features based approach. The PR approach can 

be accomplished in two steps;  

(i) Parameter extraction & feature selection 

(ii) Classification  

There are various methods have been proposed in the 

literature to extract parameters from the received signal and 

select the number of distinct features from these parameters. 

Some famous features which have been utilized in the 

literature are: higher order moments, higher order cumulants, 

spectral features, cyclic features, Gabor features and wavelet 

based features [22, 23, 30, 31, 35, 36]. 

The extracted distinct features are now input to the classifier 

structure. There are many forms of the classifier structure have 

been incorporated in the research. Mostly the classifier 

structure is based on neural network architecture, heuristic 

computational technique, K-nearest neighbor, Fuzzy C-means. 

The summary of some of the classifier and features used for 

the classification are shown in Table 1. 

 

1.1 Contribution of the research article 

 

The contribution is outlined as under: - 

• Proposed a modulation classification algorithm based 

on continuation of SVM classifier using HOC’s as a feature 

set. The proposed system has the following benefits: 

i. It provides high accuracy of classification as 

compared to state of the art existing techniques in literature. 

ii. Capable to classify different forms of modulation 

even in the presence of AWGN noise as well as Rayleigh 

fading and Rician fading channels.  

• Feature selection subsystem is based on HOC’s and 

HOM’s which is integrated with the proposed SVM and which 

results in simplified model of classifier. 

• Performance of classifier is further optimized using 

one of the evolutionary computing techniques such as Genetic 

Algorithm (GA).  

 

1.2 Organization of the research article 

 

This research paper is organized as follows: Section I 

provides the introduction to the problem area and systematic 

review of the literature along with major contributions. Section 

II presents the system model and features selected for 

classification. Section III leads an overview to pattern 

recognition systems and presents the structure and mechanism 

of support vector machine as a classifier. Simulation results 

with optimization and without optimization are incorporated 

in Section IV, which shows the supremacy of the proposed 

classifier and it is found that with optimization classification 

accuracy is much improved. Conclusion and future work is 

presented in Section V.  

 

 

2. SIGNAL MODEL AND SELECTED FEATURES 
 

Figure 2(a) and 2(b) depicts the generalized system model 

for AMC. The signal is injected into the modulator for 

modulation subsequently, signal is transmitted over the 

channel. The additive white Guassain noise (AWGN) is 

considered throughout the research with different fading 

channel model i.e. Rayleigh and Rician. At the receiver side, 

features taken are higher order cumulants (HOC) extracted 

from the noisy received signal (Figure 3). Once features 

extracted, then these features are fed into the classifier [36]. 

The classifier structure is based on support vector machine 

(SVM) and feed forward back propagation neural network 

(FFBPNN). After that, the classifier performance is optimized 

using one of the famous heuristic computational technique i.e. 

Genetic Algorithm (GA) and particle swarm optimization 

(PSO). The generalized expression for received signal is given 

as below: 

 

𝑟𝑛 =  𝑠𝑛 + 𝑔𝑛 (1) 

 

where, rn is the received baseband signal, gn is the additive 

white Gaussian Noise, sn is the transmitted signal and is 

defined as 

 

𝑠𝑛= K 𝑒−𝑖(2𝜋𝑓0 𝑛 𝑇+ 𝜃0)  ∑ 𝑆(𝑙)
𝑗=∞
𝑗=−∞ ℎ(𝑛𝑇 − 𝑗𝑇 +

 ∈𝑇 𝑇) 
(2) 

 

where, S(l) is sequence of symbols at the input that is taken out 

from the set of M constellations of known symbols and the 

condition for symbols to be equiprobable is not necessary, K 

is the signal amplitude, f0 is offset constant of frequency, T is 

the spacing of symbols, θn is phase jitter which differs from 

symbol to symbol, h is channel effects and ∈𝑇 is jitter timing. 
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Figure 2. Transmitter side of proposed system model  

 

 
 

Figure 3. Receiver side for proposed system model 

 

Table 2. Theoretical values of higher order moments and cumulants 

 
 QAM2 QAM4 QAM8 QAM16 QAM32 QAM64 

M20 1 0.1 3.8 0.36 0.9 0.73 

M21 2 0.1 0.8 0.04 0.08 0.04 

M40 2 0.9 0.9 0.73 0.2 0.62 

M42 0 6.9 68.4 203 748.8 3535.26 

M60 0.02 0.09 0.12 0.2 0.13 0.32 

M63 1 2.8 16.8 36.3 96.1 312.5 

M84 1 4 11.6 75.89 78.80 1108.5 

C20 1 0.1 3.8 0.36 0.98 0.73 

C21 1 2 5.8 10.1 19.3 42.04 

C40 2 0.9 0.9 0.73 0.21 0.62 

C42 2 1 0.9 0.66 0.67 0.61 

 

The representation of pth order of Cumulants is same as pth 

order of moment.  

 

𝐶𝑝𝑞 = 𝑐𝑢𝑚 [ 𝑠, … . . , 𝑠⏟    
(𝑝−𝑞)𝑡𝑒𝑟𝑚𝑠

    ,   𝑠∗, … . 𝑠∗⏟    
(𝑞)𝑡𝑒𝑟𝑚𝑠

] (3) 

 

The nth order Cumulants is the function of the moments 

order up to n 

 

𝑐𝑢𝑚𝑚[𝑠1, … . . , 𝑠𝑛]

=∑(−1)𝑞−1

∀ 𝑣

 (𝑞

− 1)! 𝐸 [∏ 𝑠𝑗
𝑗 𝜖 𝑣1

]… . 𝐸 [∏ 𝑠𝑗
𝑗 𝜖 𝑣𝑞

] 

(4) 

 

The features selected for classification of M-QAM signals 

are as under [37]:  

 

𝐶20 = E [𝑦2 (𝑛)] = cumm{y (n), y (n)} (5) 

𝐶21 = E [|𝑦  (𝑛)|2] = cumm{y (n),𝑦∗(𝑛)} (6) 

 

𝐶40 = 𝑀40 − 3𝑀20
2 = cumm{y (n), y (n), y (n), y 

(n)} 
(7) 

 

𝐶41 = 𝑀40 − 3𝑀20𝑀21= cumm{y (n), y (n), y 

(n),𝑦∗(𝑛)} 
(8) 

 

𝐶42 = 𝑀42 − |𝑀20|
2 − 2𝑀21

=  cumm {y (n), y (n), 𝑦∗(𝑛), 𝑦∗(𝑛)} 
(9) 

 

𝑀𝑝𝑞=E [𝑠𝑝−𝑞(𝑠∗)𝑞] (10) 

 

whereas, p represents the order of moment and s∗ is the 

complex conjugate of a signal s. C2,0 is the second order 

cumulants, which is known as the expected value of the square 

of the received signal also known as the mean. C2,1 is the class 

of second order cumulants, which represents the expected 

value of the absolute square of the received signal. C4,0 is the 

forth order cumulants, with no absolute value of the received 

signal basically, it is the combination of the M4,0 and M4,1. 
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Similarly C4,1 and C4,2 is the class of 4th order cumulants. 

The theoretical values of the Cumulants are shown in Table 2.  

 

 

3. OPTIMUM SVM CLASSIFIER 

 

After the features extraction from the noisy signal, these 

features are now input to the classifier structure. The classifier 

is based on multi-class SVM. SVM has a solid mathematical 

model, which can efficiently resolve the construction problem 

of high dimensional data model in the finite set of samples, 

and can converge to global best [38]. 

The SVM basics for solving the best linear hyper plane 

which could classify all the signals completely. Considered the 

training data as below: 

 

{(𝑥1, 𝑦1), 𝑥2, 𝑦2), . . . (𝑥𝑖, 𝑦𝑖), x ∈ Rd, y ∈ {+1, 

−1}} 
(11) 

 

whereas, xi represent the feature space, yi= +1 means that the 

signal belongs to the first class, yi= −1 shows that the signal is 

member of second class. Such kind of data are separated 

through hyper plane w*x+b = 0, when training data is linearly 

distinguishable. Then the solution for optimal plane problem 

is the optimization problem. 

Min𝑖𝑚𝑖𝑧𝑒  ½ ||𝑤||2 , with reference to yi (w.xi + b) ≥ 1, 

Lagrange multiplier is introduced for solving the quadratic 

programming problems and the best decision function is 

obtained by, 

 

𝑓𝑥 = 𝑠𝑖𝑔𝑛[ ∑ 𝛼𝑖𝑦𝑖(𝑥𝑖 , 𝑥) + 𝑏
𝑛
𝑖=1 ] (12) 

 

whereas, αi is known as Lagrange multiplier. For classification 

of nonlinear data, SVM make comparison by nonlinearly of 

training data with high dimensional feature space through its 

kernel function afterwards it is processed as linear 

classification. Decision function is given as [39]: 

 

𝑓𝑥 = 𝑠𝑖𝑔𝑛[ ∑ 𝛼𝑖𝑦𝑖𝑘(𝑥𝑖 , 𝑥) + 𝑏
𝑛
𝑖=1 ] (13) 

 

whereas, k(xi, x)indicates kernel function. The typical kernel 

functions consist of the radial basis function (RBF): 

 

K(x, y) = exp (−∥ x −  y ∥2 /2σ2) (14) 

 

In short, Modulation classification based on SVM includes 

the followings steps: 

(i) Feature Extraction: Some key features are extracted 

after which they are converted according to their 

SVM data format. 

(ii) Kernel function selection: RBF kernel function is 

selected.  

(iii) Kernel function parameter calculation: The best 

kernel function parameters with cross validation are 

determined. 

(iv) Samples training: Sampled signals are trained and 

classifier model is obtained. 

(v) Signals classification: Data are classified according 

to obtained model in the training phase  

 

To optimize the classification accuracy of SVM based 

classifier, Genetic Algorithm is used in conjunction with SVM. 

In this research, the extracted features are optimized in such a 

way to minimize the mean square error between the theoretical 

values and original values of the features. The cost function 

for the GA is mean square error and can be expressed as 

follows: 

 

𝐽 =
1

𝑁
∑𝑒𝑘(𝑛)

2

𝑁

𝑘=1

 (15) 

 

where, J corresponds the mean square error (MSE). The fitness 

function (FF) for the GA is defined as [40]:  

 

𝐹𝐹 =
1

1 + 𝐽
;         0 < 𝐹 < 1 (16) 

 

The genetic algorithm is used to minimize the cost as 

discussed in Eq. (15) or maximize the fitness function as 

shown in Eq. (16). The algorithm to optimize the features for 

SVM are shown in the following steps: -  

Step-1: Initialize random population (selected features)  

Step-2: Calculate fitness function of each candidate solution 

(using Eq. (16)) 

Step-3: Select best-ranking candidates to mate pairs at 

random 

Step-4: Apply single point crossover operator 

Step-5: Calculate fitness function of each new population 

(using Eq. (16)) & Apply mutation operator (optional) 

Step-6: Check whether the terminating condition fulfilled 

(e.g. desired fitness achieved or enough number of cycles 

completed), If yes then terminate algorithm otherwise go to 

step 3. 

The pseudo code of proposed optimized features for SVM 

are shown in Table 3.  

 

Table 3. Pseudo code of proposed algorithm 

 
while  

   do 

if initialization ~ done 

   continue 

   //Parameter Initialization 

else 

break 

// Move to next step 

end 

for i = 1:N 

    for j=1:M 

   // N is the length of HOC (Rows) 

   // M => # of columns 

    end 

    If Higher_Order_Cummulants ==true 

       break 

    else 

        continue initialization     

    end 

end 

// Generate signal and extract features  

while Iterations_left 

 do 

for k = 1:length(Iterations) 

   if algorithm_type==GA 

    Apply GA  // Steps are given in section 3 

  end 

save fitness 

end 

if MSE == MSE_desired 

  break 

else 
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continue 

// Keep running the algorithm until desired MSE is found 

 

Apply SVM for Classification 

End 

// Save all the results in tabular/graphical form 

 

 

4. SIMULATION RESULTS 

 

In this paper, different QAM’s modulation schemes are 

simulated in the MATLAB. Different noises i.e. AWGN noise, 

Rician flat fading and Rayleigh flat fading noises are added in 

the transmitted signals data. The simulation is performed with 

different number of samples (NoS) on each channel at SNR’s. 

The simulation shows the average classification accuracy of 

QAM modulation format. For classification purpose, support 

vector machine (SVM) classifier is used. For this, 50% of 

samples are used for testing, 30% samples are used for testing 

and 20% samples are used for validation purpose. The figure 

of merit for the problem is average classification accuracy 

(ACA). The simulation parameters are shown in Table 4.  

 

Table 4. Simulation parameters for optimization of features 

 
Genetic Algorithm Parameters  Values 

Candidate Solutions  10-50  

Cross-over  Single Point  

Fitness Scaling  Rank  

Selection  Roulette Wheel  

Mutation  Adaptive Feasible  

Hybrid Function  NA 

Stoppage Criterion  FF=0.99 

Iterations  1000 

SNR in dB  0-5 dB  

 

4.1 ACA without optimization 

 

Table 4 shows the training and testing of average 

classification accuracy on different channels with different 

number of samples at different SNR values. Table 5 also 

shows that the classification accuracy increases as the number 

of samples are increased and it also increases by increasing the 

SNR. Moreover, it is also clear from Table 5 that AWGN 

channel has better classification accuracy than the Rician flat 

fading channel and Rayleigh flat fading channels, because 

AWGN noise is linear to the communication channel. 

Moreover, Rayleigh channel has less classification accuracy 

than AWGN and Rician, it is due to unavailability of line of 

sight (LOS) path between sender and receiver. The percentage 

classification accuracy reaches from 91.98% to 97.54%, when 

4096 number of samples are taken in AWGN channel model. 

Also, it is reaches to 95.75% and 94.50% for Rician and 

Rayleigh channels respectively, having same number of 

samples and at 5 dB SNR.  

 

4.2 ACA with optimization  

 

Table 6 shows the percentage classification accuracy of 

training and testing of classifier at different SNR‘s, with 

different number of samples, by applying Genetic Algorithm. 

For 512 number of samples classification accuracy become 

92.1% at 0 dB SNR for AWGN channel. Also, for 5 dB it 

reaches to 94.5% for same number of samples and same 

channel model. Moreover, for 4096 samples it approaches to 

97.2% for 0 dB SNR and 98.6% at 5 dB SNR. However, for 

Rician channel it reaches to 96.7% on 512 samples at 10dB 

SNR and 98.6% when 4096 samples are taken, for same value 

of SNR. Also, for Rayleigh channel, percentage classification 

accuracy also increased and it reaches to 98.7% at 5 dB SNR, 

when 4096 samples are taken.  

 

Table 5. ACA without optimization 

 

Channel No. of Samples 
Training Testing 

0 dB 5 dB 0 dB 5dB 

AWGN 

512 94.15 95.20 90.83 91.98 

1024 95.34 96.85 92.74 93.86 

2048 96.81 97.6 96.14 96.52 

4096 97.26 98.75 97.00 97.54 

Rician 

512 93.93 94.13 90.24 91.65 

1024 94.85 95.7 91.7 93.21 

2048 95.73 95.95 93.15 93.74 

4096 96.83 96.75 94.24 95.75 

Rayleigh 

512 92.83 94.11 87.9 91.25 

1024 93.05 94.98 87.95 92.89 

2048 93.86 95.46 91.25 93.52 

4096 94.54 96.24 92.42 94.50 

 

Table 6. Average classification accuracy with optimization 

 

Channel No. of Samples 
Training Testing 

WOO WO WOO WO 

AWGN 

512 94.15 96.3 90.83 92.1 

1024 95.34 97.4 92.74 95.6 

2048 96.81 97.9 96.14 98.1 

4096 97.26 99.5 97 99.2 

Rician 

512 93.93 95.1 90.24 93.2 

1024 94.85 96.8 91.7 96.5 

2048 95.73 97.9 93.15 97.0 

4096 96.83 98.1 94.24 97.2 

Rayleigh 

512 92.83 95.1 87.9 92.1 

1024 93.05 96.7 87.95 93.4 

2048 93.86 97.3 91.25 94.2 

4096 94.54 97.9 92.42 95.3 

 

4.3 ACA comparison at 0db of SNR 

 

Table 7 shows the comparison of classification accuracy of 

both training and testing for each channel model at 0 dB SNR. 

On AWGN channel model, the classification accuracy without 

optimization (WOO) of training and testing was 94.15% and 

90.83% respectively, when 512 samples are used for 

simulation. After applying GA, this classification rate is 

improved and training and testing reaches to 96.3% and 92.1% 

respectively. And for 1024, 95.34 to 97.4% for testing and for 

training 92.74% to 93.6%. The accuracy rate for 2048 number 

of samples is 96.81% to 97.9% for training and for testing it 

reaches from 96.14 % to 98.1 %. When 4096 samples are used, 

we achieve highest accuracy rate, at this SNR. The table shows 

that training accuracy of training approaches to 97.26% to 

99.5% and for testing approaches to 97% to 99.2%. Although, 

Rician channel has not good accuracy as compared to AWGN 

channel model accuracy but it also increases the classification 

accuracy after optimization by using GA. For training, 

classification accuracy with 512, 1024, 2048 and 4096 

samples turn into 95.1, 96.8, 97.9 and 98.1% respectively. And 

for testing, it reaches to 93.2, 96.5, 97 and 97.2% for respective 

number of samples. Also, the classification accuracy increases 
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with optimization (WO) in the Rayleigh channel model for 

both training and testing. When 512 samples are taken, 

classification accuracy of training reaches to 95.1% and for 

testing it reaches to 92.1% and for 4096 number of samples, it 

increases to 97.9% and 95.3% for training and testing 

respectively.  

 

Table 7. Average classification accuracy at 0 dB 

 

Channel No. of Samples 
Training Testing 

0 dB 5 dB 0 dB 5 dB 

AWGN 

512 96.3 97.4 92.1 94.5 

1024 97.4 99.1 93.6 97.7 

2048 97.9 99.3 98.1 98.6 

4096 99.5 99.9 99.2 99.9 

Rician 

512 95.1 96.5 93.2 96.7 

1024 96.8 97.2 96.5 97.8 

2048 97.9 98.3 97.0 98.1 

4096 98.1 98.7 97.2 98.6 

Rayleigh 

512 95.1 96.5 92.1 93.5 

1024 96.7 97.8 93.4 96.3 

2048 97.3 98.4 94.15 97.9 

4096 97.9 98.5 95.3 98.2 

 

4.4 ACA comparison at 5 dB of SNR 

 

Table 8 shows the comparison of classification accuracy on 

different channel models with different number of samples at 

5 dB SNR. The table shows that classification accuracy rises 

after optimization. It shows that the percentage classification 

accuracy also reaches to 99.9% both for training and testing 

after applying Genetic Algorithm, when 4096 samples are 

used. The classification accuracy for Rician channel reaches 

to 98.7% and 98.6% for training and testing respectively, on 

same number of samples. However, the classification accuracy 

on Rayleigh channel also increases and reaches to 98.5% and 

98.2%. When we compare the result of Table 7 with Table 6 

results, it is also clear that the Table 7 has better classification 

accuracy rate than the classification accuracy result in Table 6, 

for all channel model as well as for each number of samples 

on every channel model.  

 

Table 8. Average classification accuracy at 5 dB 

 

Channel No. of Samples 
Training Testing 

WOO WO WOO WO 

AWGN 

512 95.2 97.4 91.98 94.5 

1024 96.85 99.1 96.68 98.7 

2048 97.6 99.3 96.52 98.6 

4096 98.75 99.9 97.54 99.9 

Rician 

512 94.13 96.5 91.65 96.7 

1024 95.7 97.2 93.21 97.8 

2048 95.95 98.3 93.74 98.1 

4096 96.75 98.7 95.75 98.6 

Rayleigh 

512 94.11 96.5 91.25 93.5 

1024 94.98 97.8 92.89 96.3 

2048 95.46 98.4 93.52 97.9 

4096 96.24 98.5 94.50 98.2 

 

The performance comparison with and without optimization 

on AWGN channel, Rician channel and Rayleigh channel are 

shown in Figures 4-6 respectively. The Figures 4-6, shows the 

average classification accuracy (ACA) on different number of 

samples i.e. 512, 1024, 2048 & 4096. As it clear from the 

Figures 4-6, the average classification accuracy with 

optimization is quite better than the without optimization. 

 

 
 

Figure 4. Percentage ACA on AWGN channel 

 
 

Figure 5. Percentage ACA on rician channel 

 
 

Figure 6. Percentage ACA on Rayleigh channel 

 

4.5 ACA comparison with existing techniques  

 

Table 9 shows the training and testing accuracy of proposed 

and existing classifier, and it is found that proposed classifier 

performs better in both scenarios also at lower SNR’s. The 

performance of the proposed GA-SVM classifier is compared 

with the state of art existing technique [33]. Table 9 shows the 

training and testing accuracy of proposed and existing 

classifier, and it is found that proposed classifier performs 

better in both scenarios also at lower SNR’s. At 5 dB of SNR, 

the proposed classifier gives percentage ACA of 99.12 and 

98.71 for training and testing respectively, while when 

compared the existing algorithm have percentage ACA of 

98.95 and 98.75 respectively.  

In Table 10, the comparison of percentage ACA with the 

existing techniques at 0 dB and 5 dB of SNR with 4096 

number of samples on AWGN channel with optimization. The 

performance is compared and found the proposed classifier 

performance is better and approximately approaching to 100% 

at lower SNR’s. Table 11, shows the performance comparison 

of proposed classifier structure with the state of art existing 

techniques. The proposed classifier performs much better as 

compared to the existing techniques. 
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Table 9. ACA comparison with [33] 

 

Channel/No of Samples 

0 dB without Optimization 

Training [33] Training [Proposed] Testing [33] 
Testing  

[Proposed] 

AWGN 

 

1024 

93.26 95.34 91.45 92.74 

5 dB without Optimization 

96.75 96.85 96.54 96.68 

0 dB with Optimization 

94.92 97.40 93.64 95.6 

5 dB with Optimization 

98.95 99.12 98.75 98.71 

 

Table 10. ACA comparison with [28, 39] 

 
Channel/No of Samples 0dB [39] 0dB Proposed 5dB [39] 5dB Proposed 

AWGN 4096 

98.48 99.21 99.86 99.93 

0dB [28] 0dB Proposed 5dB [28] 5dB Proposed 

96.30 99.21 98.95 99.93 

 

Table 11. ACA comparison with the state of art existing techniques 

 
Reference  No. of samples SNR Value  Previous ACA  Proposed ACA 

[40] 1024 
0dB 57.2% 96.2% 

10dB 75.36% 99.1% 

[2] 512 0dB 92.7% 94.12% 

[18] 512 10dB 88% 97.4% 

[23] 1024 
0dB 89.3% 96.2% 

5dB 96.1% 97.4% 

[9] 2048 10dB 97.7% 99.3% 

[16] 512 

0dB 78.4% 95.1% 

5dB 93.3% 96.4% 

10dB 96.4% 97.4% 

[37] 512 
0dB 80.9% 96.3% 

5dB 96.4% 97.4% 

[25] 4096 
0dB 96.3% 99.21% 

5dB 98.95% 99.93% 

[24] 4096 
0dB 98.48% 99.21% 

5dB 99.86% 99.93% 

 

 

5. CONCLUSION & FUTURE WORK 

 

AMC has vast significance in enhancing the consumption 

of the available band and enhancing the communication 

systems throughput. The likelihood based AMC is optimal but 

difficult to implement on the other hand features based pattern 

recognition approach is simple to implement. For AMC higher 

order cumulants based features are used and AMC is executed 

by combining SVM and GA. Simulation results is 

demonstrated under AWGN, Rayleigh and Rician noise of 

different values of SNR’s. It has been found that percentage 

accuracy of classification is higher at low SNR’s also 

percentage accuracy of optimized classifier increases 

significantly as compared than the simple classifier. In future 

different classifier structure such as radial basis function and 

committee machines with reduced feature set may be utilized 

for better classification accuracy. 

 

 

REFERENCES  

 

[1] Zhao, J.L., Wang, T.T. (2011). Identification of cognitive 

radio modulation. In 2011 International Conference on 

Mechatronic Science, Electric Engineering and 

Computer (MEC), pp. 1773-1776. 

https://doi.org/10.1109/mec.2011.6025826 

[2] Liu, J., Luo, Q. (2012). A novel modulation classification 

algorithm based on daubechies5 wavelet and fractional 

Fourier transform in cognitive radio. In 2012 IEEE 14th 

International Conference on Communication 

Technology, pp. 115-120. 

https://doi.org/10.1109/icct.2012.6511199 

[3] Castro, A.R., Freitas, L.C., Cardoso, C.C., Costa, J.C., 

Klautau, A.B. (2012). Modulation classification in 

cognitive radio. Foundation of Cognitive Radio Systems, 

43. https://doi.org/10.5772/30764 

[4]  Ghauri, S.A., Qureshi, I.M., Cheema, T.A., Malik, A.N. 

(2014). A novel modulation classification approach 

using Gabor filter network. The Scientific World Journal, 

2014: 643671. https://doi.org/10.1155/2014/643671 

[5] Ghauri, S.A., Mansoor Qureshi, I. (2015). PAM signals 

classification using modified Gabor filter network. 

Mathematical Problems in Engineering, 2015: 262180. 

https://doi.org/10.1155/2015/262180 

[6] Ghauri, S.A., Qureshi, I.M., Shah, I., Khan, N. (2014). 

Modulation classification using cyclostationary features 

on fading channels. Research Journal of Applied 

Sciences, Engineering and Technology, 7(24): 5331-

5339. https://doi.org/10.19026/rjaset.7.932 

[7] Dobre, O.A., Abdi, A., Bar-Ness, Y., Su, W. (2007). 

447



 

Survey of automatic modulation classification 

techniques: Classical approaches and new trends. IET 

Communications, 1(2): 137-156. 

https://doi.org/10.1049/iet-com:20050176 

[8]  Morales-Jimenez, D., Gomez, G., Paris, J.F., 

Entrambasaguas, J.T. (2009). Joint adaptive modulation 

and MIMO transmission for Non-Ideal OFDMA cellular 

systems. 2009 IEEE Globecom Workshops, Honolulu, 

HI, USA, pp. 1-5. 

https://doi.org/10.1109/glocomw.2009.5360728 

[9] Ye, Z., Memik, G., Grosspietsch, J. (2007). Digital 

modulation classification using temporal waveform 

features for cognitive radios. 2007 IEEE 18th 

International Symposium on Personal, Indoor and 

Mobile Radio Communications, pp. 1-5. 

https://doi.org/10.1109/pimrc. 2007.4394558 

[10] Hameed, F., Dobre, O., Popescu, D. (2009). On the 

likelihood-based approach to modulation classification. 

IEEE Transactions on Wireless Communications, 8(12): 

5884-5892. https://doi.org/10.1109/twc.2009.12.080883 

[11] Xu, J.L., Su, W., Zhou, M. (2011). Likelihood-Ratio 

approaches to automatic modulation classification. IEEE 

Transactions on Systems, Man, and Cybernetics, Part C 

(Applications and Reviews), 41(4): 455-469. 

https://doi.org/10.1109/tsmcc.2010.2076347 

[12] Bai, D., Lee, J., Kim, S., Kang, I. (2012). Near ML 

modulation classification. In 2012 IEEE Vehicular 

Technology Conference (VTC Fall), pp. 1-5. 

https://doi.org/10.1109/vtcfall.2012.6398878 

[13] Shi, Q., Karasawa, Y. (2011). Noncoherent maximum 

likelihood classification of quadrature amplitude 

modulation constellations: Simplification, analysis, and 

extension. IEEE Transactions on Wireless 

Communications, 10(4): 1312-1322. 

https://doi.org/10.1109/twc. 2011.030311.101490 

[14] Wang, F., Wang, X. (2010). Fast and robust modulation 

classification via Kolmogorov-Smirnov test. IEEE 

Transactions on Communications, 58(8): 2324-2332. 

https://doi.org/10.1109/tcomm.2010.08.090481 

[15] Liu, A.S., Qi, Z.H.U. (2011). Automatic modulation 

classification based on the combination of clustering and 

neural network. The Journal of China Universities of 

Posts and Telecommunications, 18(4): 13-38. 

https://doi.org/10.1016/s1005-8885(10)60077-5 

[16] Zhu, Z., Nandi, A.K. (2014). Blind digital modulation 

classification using minimum distance centroid estimator 

and Non-Parametric likelihood function. IEEE 

Transactions on Wireless Communications, 13(8): 4483-

4494. https://doi.org/10.1109/twc.2014.2320724 

[17] Le, B., Rondeau, T.W., Maldonado, D., Bostian, C.W. 

(2005). Modulation identification using neural network 

for cognitive radios. In Software Defined Radio Forum 

Technical Conference. 

[18] Muhlhaus, M.S., Oner, M., Dobre, O.A., Jondral, F.K. 

(2013). A low complexity modulation classification 

algorithm for MIMO systems. IEEE Communications 

Letters, 17(10): 1881-1884. 

https://doi.org/10.1109/LCOMM.2013.091113.130975  

[19] Ramezani-Kebrya, A., Kim, I.M., Kim, D.I., Chan, F., 

Inkol, R. (2013). Likelihood-Based modulation 

classification for multiple-antenna receiver. IEEE 

Transactions on Communications, 61(9): 3816-3829. 

https://doi.org/10.1109/tcomm.2013.073113.121001 

[20] Huang, S., Yao, Y., Wei, Z., Feng, Z., Zhang, P. (2017). 

Automatic modulation classification of overlapped 

sources using multiple cumulants. IEEE Transactions on 

Vehicular Technology, 66(7): 6089-6101. 

https://doi.org/10.1109/tvt.2016.2636324 

[21] Orlic, V., Dukic, M. (2009). Automatic modulation 

classification algorithm using higher-order cumulants 

under real-world channel conditions. IEEE 

Communications Letters, 13(12): 917-919. 

https://doi.org/10.1109/lcomm.2009.12.091711 

[22] Gong, X., Li, B., Zhu, Q. (2010). Collaborative 

modulation recognition based on SVM. 2010 Sixth 

International Conference on Natural Computation, 2: 

871-874. https://doi.org/10.1109/icnc.2010.5583916 

[23] Sherme, A.E. (2012). A novel method for automatic 

modulation recognition. Applied Soft Computing, 12(1): 

453-461. https://doi.org/10.1016/j.asoc.2011.08.025 

[24] Ebrahimzadeh, A., Ghazalian, R. (2011). Blind digital 

modulation classification in software radio using the 

optimized classifier and feature subset selection. 

Engineering Applications of Artificial Intelligence, 24(1): 

50-59. https://doi.org/10.1016/j.engappai.2010.08.008 

[25] Su, W. (2013). Feature space analysis of modulation 

classification using very high-order statistics. IEEE 

Communications Letters, 17(9): 1688-1691. 

https://doi.org/ 10.1109/lcomm. 2013. 080613.130070 

[26] Zaerin, M., Seyfe, B. (2012). Multiuser modulation 

classification based on cumulants in additive white 

Gaussian noise channel. IET Signal Processing, 6(9): 

815-823. https://doi.org/10.1049/iet-spr.2011.0357 

[27] Hussain, A., Sohail, M.F., Alam, S., Ghauri, S.A., Qureshi, 

I.M. (2019). Classification of M-QAM and M-PSK 

signals using genetic programming (GP). Neural 

Computing and Applications, 31(10): 6141-6149. 

https://doi.org/10.1007/s00521-018-3433-1  

[28] Gupta, R., Kumar, S., Majhi, S. (2020). Blind modulation 

classification for asynchronous OFDM systems over 

unknown signal parameters and channel statistics. IEEE 

Transactions on Vehicular Technology, p. 1. 

https://doi.org/10.1109/tvt.2020.2981935 

[29] Wang, Y., Gui, J., Yin, Y., Wang, J., Sun, J., Gui, G., 

Adachi, F. (2020). Automatic modulation classification 

for MIMO systems via deep learning and zero-forcing 

equalization. IEEE Transactions on Vehicular 

Technology, 69(5): 5688-5692. 

https://doi.org/10.1109/tvt.2020.2981995 

[30] Zhu, Z., Waqar Aslam, M., Nandi, A.K. (2014). Genetic 

algorithm optimized distribution sampling test for M-

QAM modulation classification. Signal Processing, 94: 

264-277. https://doi.org/10.1016/j.sigpro.2013.05.024 

[31] Maclellan, A., McLaughlin, L., Crockett, L., Stewart, R. 

(2019). FPGA accelerated deep learning radio 

modulation classification using MATLAB system 

objects PYNQ. 2019 29th International Conference on 

Field Programmable Logic and Applications (FPL), pp. 

246-247 https://doi.org/10.1109/fpl.2019.00045 

[32] Huang, S., Jiang, Y., Gao, Y., Feng, Z., Zhang, P. (2019). 

Automatic modulation classification using contrastive 

fully convolutional network. IEEE Wireless 

Communications Letters, 8(4): 1044-1047. 

https://doi.org/10.1109/lwc.2019.2904956 

[33] Abdelmutalab, A., Assaleh, K., El-Tarhuni, M. (2016). 

Automatic modulation classification based on high order 

cumulants and hierarchical polynomial classifiers. 

Physical Communication, 21: 10-18. 

448



https://doi.org/10.1016/j.phycom.2016.08.001 

[34] Tu, Y., Lin, Y., Hou, C., Mao, S. (2020). Complex-valued

networks for automatic modulation classification. IEEE

Transactions on Vehicular Technology, p. 1.

https://doi.org/10.1109/TVT.2020.3005707

[35] Wang, Y., Gui, G., Gacanin, H., Ohtsuki, T., Sari, H.,

Adachi, F. (2020). Transfer learning for semi-supervised

automatic modulation classification in ZF-MIMO

systems. IEEE Journal on Emerging and Selected Topics

in Circuits and Systems, p. 1.

https://doi.org/10.1109/jetcas. 2020.2992128 

[36] El-Khoribi, R.A., Shoman, M.A.I., Mohammed, A.G.A.

(2014). Automatic digital modulation recognition using

artificial neural network in cognitive radio. International

Journal of Emerging Trends & Technology in Computer

Science, 3(3): 132-136.

[37] Hussain, A., Ghauri, S.A., Qureshi, I.M., Sohail, M.F.,

Khan, S.A. (2016). KNN based classification of digital

modulated signals. IIUM Engineering Journal, 17(2): 71-

82. https://doi.org/10.31436/iiumej.v17i2.641

[38] Peng, S., Jiang, H., Wang, H., Alwageed, H., Zhou, Y.,

Sebdani, M.M., Yao, Y.D. (2018). Modulation

classification based on signal constellation diagrams and

deep learning. IEEE Transactions on Neural Networks

and Learning Systems, 30(3): 718-727.

https://doi.org/10.1109 /tnnls.2018.2850703 

[39] Ghauri, S.A., Shah, H.H., Sajjad, H. (2013). Comparison

of different population strategies for multiuser detection

using Genetic Algorithm. World Congress on Internet

Security (WorldCIS-2013), pp. 65-68.

https://doi.org/10.1109/worldcis.2013.6751018 

[40] Ozen, A., Ozturk, C. (2013). A novel modulation

recognition technique based on artificial bee colony

algorithm in the presence of multipath fading channels.

2013 36th International Conference on

Telecommunications and Signal Processing (TSP), pp.

239-243. https://doi.org/10.1109/tsp.2013.6613928

449




