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 In this paper, Lattice Boltzmann method (LBM) is proposed to simulate Magneto-

hydrodynamic (MHD) free convection in a two-dimensional open cavity with mixed 

boundary conditions (BCs). The cavity is getting under a uniform transverse magnetic 

field. The proposed numerical scheme solved the flow field and the temperature field 

using D2Q9 lattice model. So, the main aim of this study is to highlight the effectiveness 

of this mesoscopic model to predict the effects of pertinent parameters such as the 

Hartmann number varying from 0 to 150 and the Prandtl number altering in a wide 

range of Pr=0.025 and 0.71. Rayleigh number is fixed at moderate value of 105. This 

in-house numerical code used in this paper is ascertained and a good agreement with 

literature is highlighted. The appropriate validation with previous numerical 

investigations demonstrated that this attitude is a suitable method and a powerful 

approach for engineering MHD problems. Findings and results show the alterations of 

Hartman number that influence the isotherms and the streamlines widely at different 

Rayleigh and Prandtl numbers simultaneously. Moreover, heat transfer declines with 

the increment of Hartmann number. The effect of the magnetic field on the average 

Nusselt number at Liquid Gallium (Pr=0.025) is also highlighted. 
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1. INTRODUCTION 

 

Free convection in closed and open cavities has many 

engineering applications such as: cooling systems of solar 

collectors, electronic components, building and thermal 

insulation systems, nuclear reactor systems, food storage 

industry and geophysical fluid mechanics. Convection under 

the influence of a magnetic field received a considerable 

attention in crystal growth in fluids, metal casting, fusion 

reactors and geothermal energy extractions, natural 

convection is under the influence of a magnetic field [1-20]. 

Recent attention has been intensively focused on the cases 

with mixed boundary conditions on the walls of an open cavity 

[21-24].  

Over the last decades, LBM was an applicable method for 

simulating fluid flow and heat transfer successfully [25-32]. It 

becomes a powerful, an effective and easy numerical method, 

it is used in simulating complex flow problems with different 

boundary conditions [33, 34].  

This surge in interest of the D2Q9 LBM (Figure 1-c) model 

is mainly attributed to its computational simplicity, direct 

discretization, ability and efficiency. It is known that the 

conventional computational fluid dynamics (CCFD) solvers, 

namely the volume finite element method (FVM), the control 

volume finite element method (CVFEM), the finite difference 

method (FDM) are macroscopic models but the LBM is a 

recent mesoscopic approach describing and capturing 

engineering physics better [30]. This mesoscopic approach 

includes simple calculations procedure, efficient 

implementation for a parallel architecture and robustness for 

handling complex geometry 

Engineering applications including linear, sinusoidal, 

convective, Dirichlet, open, Neumann Boundary Conditions 

(BC), or a mixture [35] of these conditions in different walls 

of the MHD cavity is a tricky task for numerical heat and mass 

transfer in physical engineering simulations. 

This is a typical problem with mixed boundary conditions 

and should not be confused with the considerably simpler 

problem when the temperature is prescribed over certain 

complete sides of the rectangle, while the temperature gradient 

is prescribed over the remaining sides. As far as the writer is 

aware no analytical solution of the mixed boundary value 

problem above formulated (or of the analogous problem for 

the cylinder) is to be found in the literature. We must therefore 

(if interested in numerical answers) resort to the alternative of 

substituting for the differential equation of heat conduction 

and for the equations expressing the initial and boundary 

conditions their appropriate difference analogs, and solving 

the resulting system.  

The main aim of this paper is to identify the ability of 

Lattice Boltzmann Method (LBM) for solving magnetic field 

simultaneously in the presence of a non isothermal boundary 

condition. It is endeavored to express the best situation for heat 

transfer and fluid flow with the MHD and mixed BCs 

parameters. The effects of Rayleigh number on streamlines, 

isotherms and the Nusselt number are investigated.
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2. MATHEMATICAL FORMULATION 

 

Plotting of considered model is shown in Figure 1. It 

displays a two-dimensional open cavity with side length of H. 

At first case the left vertical is maintained at high temperature 

(TH). Whereas at the second case, the vertical left wall is 

linearly heated. An external cold air enters into the enclosure 

from the east opening boundary, while the fluid is correlated 

with the opening boundary at constant temperature (TC). The 

horizontal walls are insulated and impermeable to mass 

transfer. The open cavity is filled with liquid gallium with 

Prandtl number of 0.025. The gravitational acceleration acts 

downward. The uniform external magnetic field with a 

constant magnitude B is applied in the x-direction (transverse 

field). It is assumed that the induced magnetic field produced 

by the motion of an electrically conducting fluid is negligible 

compared to the applied magnetic field. Thermo-physical 

properties of the fluid are assumed to be constant, and the 

density variation in the buoyancy force term is handled by the 

Boussinesq approximation. The flow is two-dimensional, 

laminar and incompressible; in addition, it is assumed that the 

viscous dissipation and Joule heating are neglected. 

An open cavity is considered for the present study with the 

physical dimensions as shown in Figure 1. The left vertical is 

linearly heated. An external cold air enters into the enclosure 

from the east opening boundary, while the fluid is correlated 

with the opening boundary at constant temperature (Tc). The 

horizontal walls are insulated and impermeable to mass 

transfer. The open cavity is filled with liquid gallium. The 

gravitational acceleration acts downward.  

 

 
(a) 

 

 
(b) 

 

Figure 1. Geometries (a) and D2Q9 velocities (b) 

The uniform external magnetic field with a constant 

magnitude B0 is applied in the x-direction. The density 

variation in the fluid is approximated by the standard 

Boussinesq model. It is assumed that the induced magnetic 

field produced by the motion of an electrically conducting 

fluid is negligible compared to the applied one. Furthermore, 

it is assumed that Joule heating and the viscous dissipation are 

neglected. Therefore, standard D2Q9 for flow and for 

temperature can be written in non dimensional form as follows: 
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Hartmann number is written as 𝐻𝑎 = 𝐻𝐵√𝜎/𝜇. 

The macroscopic velocity and temperature are [25-34]: 
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Nusselt number Nu is one of the most important 

dimensionless parameters in describing the convective heat 

transport. The local Nusselt number and the average value at 

the bottom wall are calculated as; 
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3. RESULTS AND DISCUSSIONS  

 

In order to check the accuracy of the present results, the 

present code is validated against published works in the 

literature, in Figure 2 we compare the steady state isotherms at 

Pr=0.71 for Ra=105 in the absence of a magnetic field 

(Hartmann number, Ha=0) with reference [20], a good 

agreement is observed. A second validation is highlighted, for 

a different Prandtl number of Pr=0.025 (liquid gallium), the 

steady state isotherms of linearly heated side walls MHD 

cavity with a moderate Hartmann number of 50, Pr=0.025 and 

Ra=105. The obtained numerous investigations have been 
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compared with reference [7] and present work. After grid 

assessment and validation with previous literature (Figure 2), 

we illustrate the effect of magnetic field in an open cavity with 

linearly heated west Boundary which is filled with liquid 

gallium for Ha=50 and Ra=105. 

We seek to provide the behavior of the Nusselt bottom wall 

Nub in the case of two linear vertical walls. Figure 3 shows 

clearly that the local Nusselt number at the bottom wall Nub 

exhibits an oscillatory behavior with the horizontal distance 

x/X and that it is exactly symmetric about the centerline of the 

bottom wall. The Variation of local Nusselt number with 

distance at bottom wall in the case of linearly heated side walls 

(Pr= 0.025 and Ra=105) is depicted for different Hartman 

numbers. 

In Figure 4 (a-b), the outlet section of flow on the open 

boundary moves downward and the movement of the flow gets 

limited with the increment of Hartmann number that it can 

influences heat transfer from the linearly heated wall to the 

cold open boundary. The effect of the presence of the magnetic 

field is clear in the counter of the isotherms where the 

isotherms recede from the linearly heated left wall slowly and 

their gradient on the left wall declines extremely which it 

exposes the decrease in heat transfer in the open cavity. Figure 

4c highlight the variation of local Nusselt number Nub with 

horizontal distance X at bottom wall in the case of linearly 

heated side wall for a MHD open cavity (Pr=0.025 and 

Ra=105). We notice an increasing trend when the position vary 

from to 0 to left (west)-edge of the bottom side wall because 

of the linearly heated left boundary. Nub reach the maximum 

at the right (east)side of the bottom edge due to the cooled right 

(east) wall. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2. (a-b) Comparison of the steady state isotherms (a-

b) at Pr=0.71 for Ha = 0 and Ra = 105 (a) ref. [20] and (b) 

and (c-d) steady state isotherms of linearly heated side walls 

MHD cavity for Ha = 50, Pr=0.025 and Ra = 105, (c) ref. [7] 

and (d) present work 

 

 
 

Figure 3. Variation of local Nusselt number with distance at 

bottom wall in the case of linearly heated side walls 

(Pr=0.025 and Ra = 105) 
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(a) 

 
(b) 

 
(c) 

 

Figure 4. Isotherms (a) and streamlines (b) and Variation of 

local Nusselt number (c) with distance at bottom wall in the 

case of linearly heated side wall for a MHD open cavity 

 

 

4. CONCLUSIONS 

 

In this work, a lattice Boltzmann method is proposed to 

simulate MHD natural convection of two-dimensional open 

square cavity with a linearly heated boundary condition. A 

D2Q9 lattice model is used both to simulate the flow field and 

temperature field. Aiming to validate the proposed model, the 

obtained results of this study have been compared with 

previous numerical investigations [7, 20]. It was shown that 

the results predicted by the proposed method are in good 

agreement with other numerical results. The obtained 

numerical results show that the LB model is a stable, powerful 

approach for simulating the MHD free convection in a two-

dimensional open square cavity with mixed boundary 

conditions and is able to study the effects of all parameter on 

the flow field and temperature field such as Hartmann number 

and Prandtl number. Besides, the implementation of the new 

model highlights a great ability and stability. It is noted that, 

the application of the magnetic field reduces the convective 

heat transfer rate in the open enclosure. The profiles of the 

local Nusselt number along the bottom wall of the MHD 

enclosure increased continuously for the case of linearly 

heated left side wall and cooled open right wall, while it 

exhibited an oscillatory behavior along the horizontal distance 

for the case of linearly heated side walls. All simulations are 

done for Ra=105 when the buoyancy-driven flow starts to 

dominate the heat transfer mechanism. 
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NOMENCLATURE 

Ha Hartmann number 

B magnetic field intensity, T 

ρ Density,kgm-3 

u,v Velocities, ms-1

g 

k 

gravitational acceleration, m.s-2 

thermal conductivity, W.m-1. K-1 

Ra Rayleigh number 

Pr Prandtl number 

H characteristic length scale, m 

ei discrete particle speeds, ms-1

𝛥𝑇 Temperature difference, k  

f density distribution functions 

g internal energy distribution functions 

T Temperature, k 

γ Angle, rad 

Nu local Nusselt number  

x,y cartesian coordinates, m 

Tm Avearge temperature, k 

Greek symbol 

 thermal diffusivity, m2. s-1 

 thermal expansion coefficient, k-1 

τ Relaxation time, s  
 electrical conductivity, Sm−1 

µ dynamic viscosity, kg. m-1.s-1 

ν kinematic viscosity, m2s-1 

Subscripts 

avg average 

H Hot 

C Cold 
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