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 District heating networks are a convenient, economic and environmental-friendly way to supply 

heat to buildings connected to a central heating plant. However, the control of such a system 

becomes challenging if the total length of the network reaches several kilometers because the 

travel time of the information into the system is over hours. One solution consists in 

instrumenting all the parts of the network and performing a closed loop control to optimize the 

temperature and the mass flow rate supplied to every single consumption point. However this 

solution is generally expensive and difficult to implement in existing networks. What is proposed 

in this paper is to dynamically model the heat waves in the network to determine the temperatures 

and mass flow rates at key locations considering the ambient losses and the pipe thermal inertia.  

A study is performed to check the possibility to use the one-dimensional finite volume method 

to simulate heat waves propagation. First, an adiabatic pipe is considered as a reference test case 

to determine the limitations of this method. The results are compared to a 2D computational 

fluid dynamic simulation and numerical diffusion is exhibited for low spatial discretization. 

Therefore, an improved alternative model is developed to overcome this problem.  
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1. INTRODUCTION 

 

District heating networks appeared in Europe since the 14th 

century (in France) [1] and they have been developed since 

1950 [2]. Nowadays, they are generally considered as a 

convenient way to supply heat to a large number of buildings 

with a central heating plant generating high conversion 

efficiency and fuel flexibility [3], [4]. Moreover the DHN 

allows a variety of energy sources to feed them especially the 

renewable ones such as biomass, industrial waste heat or 

geothermal resources [5]. The size of DHN varies widely: 

from several dozen meters (for industry or small communities) 

to several kilometers (such as Moscow city network [6]).The 

control of large DHN is a key challenge to reduce heat losses 

and to minimize the heat cost while ensuring the user comfort 

in buildings. To achieve this, an open-loop control is often 

implemented [7] because of the simplicity of use and the 

limited investments related to this method. The control of the 

studied application detailed herein basically consists of 

holding a water temperature set point supplying to the network 

inlet to ensure thermal comfort in buildings. This supply 

temperature is a function of the hour of the day and the ambient 

temperature. However they are not adapted for widespread 

networks or DHN fed by multiple heat plants. Indeed this 

control often leads to observe large variation of the return 

temperature at the heat plant. In the case where the heat 

supplied to the network is more important compared to the 

heat demand of the buildings, the return temperature increases. 

Therefore the heat losses of the pipes increase too while the 

pipe temperature is more important than the one which is 

required. Moreover it often involves an over-sizing of the 

installations (pumps, heat plants…) leading to a higher 

investment costs because of the unwanted variations of 

temperature and flow rates. Finally, thermal discomfort can 

also appear in some buildings, even if the rated power plant is 

oversized: typically the fluid velocity is about one meter per 

second and the heat transport delay can reach hours to feed 

correctly the furthest buildings connected to pipes of several 

kilometers. 

One solution is to instrument the network at numerous key 

locations to measure the temperatures, and the mass flow rates. 

Doing so, a closed-loop control and some dedicated control 

techniques of thermal systems [8], [9] can be used. However 

this method is generally expensive because of the numerous 

expensive sensors which have to be used; especially if a 

retrofit of the system is performed while these sensors are 

generally intrusive.  

In this paper, the heat waves in the network are dynamically 

modeled to determine at each key location the flow rates and 

the temperatures of the transport fluid to avoid these costs. 

Notice, only water as fluid transport is considered in this paper.  

Some existing models are compared to show their 

limitations and a new one is proposed. The ways of 

improvement of the new model are investigated to consider the 

thermal losses and the inertia of the pipes. While the ambient 

losses have been generally considered in studies related to heat 

transport in DHN [10], [11], the inertia of the pipes influence 

is often neglected. However it also induces delays in the heat 

transport especially in the large DHN with large temperatures 

variations at the inlet network. 

The developed model allows for a further study to be 

coupled to predictive heat demand methods to implement 

control at a lower cost. In this paper, large networks for which 

the time delays are quite long, typically hours, are focused but 

the conclusions can be extended to small ones. To support the 

discussion, an existing cogeneration plant connected to a 
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district heating network installed on the University Campus in 

Liège (Belgium) is used as an application test case and to 

determine the main parameters of the study. 

 

 

2. PROBLEM STATEMENT 

 

In large networks, the length of pipes can reach several 

kilometers. When heat is injected at one end of the pipe, the 

heat propagation to buildings located further in the network 

depends on the fluid velocity, and can take a significant 

amount of time. While the order of magnitude of the fluid 

velocity is generally the meter per second, to limit the pressure 

loss and the related pump consumption, the delay to transport 

heat can reach minutes or hours. As for example, the hospital 

connected to the DHN of the University of Liège is at a 

distance of about 3 kilometers from the heating plant and the 

fluid velocity is generally between 0.5 and 1 m/s leading to a 

heat transport delay from one to two hours. 

In this contribution, a reference pipe is modeled by a finite-

volume approach [12]. The pipe is discretized along its 

longitudinal axis in a finite number of cells of equal volume V, 

as depicted for the one-dimensional problem in Figure 1 where 

h stands for the enthalpy; ρ for the fluid density; m ̇ for the 

mass flow rate; ; �̇� for the heat flux and Δx for the spatial 

discretization. Two types of variables are present: cell 

variables and node variables (at cells interface). The latter ones 

are indicated by subscript “su” (supply) and “ex” (exhaust), 

and correspond to the inlet and outlet nodes of the cell. The 

variables with a “star” superscript are related to the adjacent 

cells. To compute the node values, a discretization scheme is 

implemented in the cell component. In the one-dimensional 

finite volume approach investigated in this study, the upwind 

scheme is used:  ℎ = ℎ𝑒𝑥  [13]. To consider flow reversal, a 

conditional statement is added in function of the flow rates at 

the inlet nodes: 

 

ℎ𝑠𝑢 = {
ℎ     𝑖𝑓 �̇� 𝑠𝑢 < 0
 ℎ𝑒𝑥

∗  𝑖𝑓 �̇� 𝑠𝑢 ≥ 0
,  (1) 

 

where  �̇� 𝑠𝑢≥0 when the fluid flows in the nominal direction 

(from left to right in Figure 1). 

 

 
 

Figure 1. Discretization of the pipe in cells and 

representation of the variables [13]. 

 

In each cell, conservation laws are integrated, namely the 

mass Eq(2), momentum Eq (3) and energy Eq (4) balances 

[14], as given hereunder for the one-dimensional 

incompressible flow problem: 

 

𝜕𝜌

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
= 0, (2) 

𝜕(𝜌𝑢)

𝜕𝑡
+

𝜕(𝜌𝑢2)

𝜕𝑥
= −

𝜕𝑝

𝜕𝑥
− τ − ρg sinϑ, (3) 

 

𝜕(𝜌𝑒)

𝜕𝑡
+

𝜕(𝜌𝑒𝑢)

𝜕𝑥
=

𝜕𝑝

𝜕𝑡
+ Q̇ − ρug sinϑ,        (4) 

 

where, u for the velocity, p for the pressure, τ for the shear 

stress per unit length of the flow channel, g the net acceleration 

and e=h+u²/2.  

Assuming that the section of the pipe is constant; there is no 

elevation between the inlet and the outlet pipe (sin(θ)=0); the 

fluid is incompressible (ρ is independent of the pressure) and 

a static momentum balance is considered therefore the 

pressure is assumed constant, the equations 2-4 become: 

 

�̇�𝑒𝑥 − �̇�𝑠𝑢 =  𝑉
𝑑𝜌

𝑑𝑡
  (5) 

 

𝑝𝑠𝑢 − 𝑝𝑒𝑥 = 0,  (6) 

 

𝑉 𝜌 
𝑑ℎ

𝑑𝑡
=  �̇�𝑠𝑢(ℎ𝑠𝑢 − ℎ) − �̇�𝑒𝑥(ℎ𝑒𝑥 − ℎ) + �̇�, (7) 

 

The upwind scheme, previously described, is often used 

because it is quite robust and avoids numerical oscillations and 

divergence if a stability criterion is satisfied. This criterion is 

called the CFL (Courant – Friedrichs – Lewy) condition [15] 

and is defined for the one dimension problem by 

 

𝐶𝐹𝐿 =
𝑢 ∙∆𝑡

∆𝑥
≤ 1 , (8) 

 

where ∆t, the time step in s and ∆x, the spatial discretization 

in m. Notice that if CFL condition is equal to 1, the exact 

solution of the problem is found by the one-dimensional finite 

volume method. Indeed in this case, the entering flux covers 

the entire cell during the time step and the lumped properties 

at the nodal point correspond to the properties at the interface 

that are obtained by the upwind scheme. If CFL value is lower 

than 1, the upwind scheme can induce some numerical 

diffusion [16], [17] because of the fact that the entering flux 

does not cover the entire cell. 

 

 
 

Figure 2. The numerical diffusion due to CFL conditions for 

a step input for several CFL conditions 

 

Figure 2 illustrates the numerical diffusion of the upwind 

scheme: in the case of a temperature step applied to the inlet 
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of a pipe at initial time, it can be noticed that the adimensional 

temperature response at the pipe outlet is a function of the CFL 

value. When CFL is lower than 1, the numerical diffusion 

appears: the adimensional temperature increases before the 

exact solution but reaches the final temperature after the exact 

solution. The more the CFL value is low, the more the 

temperature begins to increase soon and the more the 

temperature reaches the final temperature later. 

Notice that for a fixed fluid velocity, the time step is directly 

linked to the spatial discretization to ensure convergence. For 

a fixed CFL value, here 0.5, Figure 3 shows the influence of 

the spatial and time discretization due to the numerical 

diffusion. Of course, the solution is closer to the exact solution 

for higher spatial and time discretization but it involves a more 

important computational time which could be not compatible 

with predictive control especially for large networks as studied 

here. 

 

 
 

Figure 3. The numerical diffusion due to CFL conditions 

equal to 0.5 for varied spatial/time steps. 

 

Various  numerical alternatives to reduce the numerical 

diffusion of the upwind scheme are available in the literature, 

such as second or higher order upwind schemes [17]–[20], but 

they are not be studied herein because they can introduce 

oscillations or convergence issue once implemented, 

especially when the spatial discretization is high, i.e. the 

number of variables is high. To conclude this discussion of 

finite volume method, notice that it can be extended to two or 

three dimensions. 

To avoid being subjected to numerical diffusion, an 

alternative modeling method based on the standard TRNSYS 

Type 31 component is proposed. For further information about 

the original model, the reader can refer to [10], [21]. This 

modeling method is based on a Lagrangian approach, i.e. the 

properties of each fluid particle are considered along their 

direction in function of time, considering the energy balance 

in each cell according to the Figure 4. 

 

 
 

Figure 4. Lagrangian coordinate system for one dimensional 

system 

In this approach, the momentum balance is neglected and 

the fluid is considered as incompressible, so the mass and 

energy balance are expressed by: 

 

𝜕𝑚

𝜕𝑡
= 0, (9) 

 

𝑉 𝜌 
𝜕ℎ

𝜕𝑡
=  �̇�, (10) 

 

This component models the thermal behavior of fluid flow 

in a pipe whose cell volume and density are considered as 

constant. That is valid for low temperature variation of a fluid 

cell covering the pipe which occurs in an insulated pipe as the 

studied case. This assumption involves a constant density. The 

pipe is divided in cells that follow the heat wave propagation: 

the entering fluid shifts the position of the existing cell and the 

energy balance is applied to each cell. 

The diffuse heat transport through the pipe is neglected. 

This is justified when the Péclet number, which is the product 

of Prandtl and Reynolds number Eq. (11), is larger than 1.  

 

Pe= 
𝐿𝑢

𝑘/(𝜌 𝑐𝑝)
, (11) 

 

where k is the fluid diffusivity [m²/s] and Cp the heat capacity 

at constant pressure of the fluid [J/kg/K] 

This coefficient depends especially of pipe length and flow 

velocity while the fluid is determined as water and the 

diffusivity in the water is in the order of magnitude 10-7 m²/s. 

According to [22]–[25], the flow velocity can range 1 to 2 

meters per second in common district heating networks. 

Therefore the Péclet number is larger than one as assessed and 

the assumption is valid. 

Finally, the pipe friction and the related energy dissipation 

is neglected as it is the case in the related literature which 

studies heat transport in district heating networks [26], [27]. 

 

 

3. METHODOLOGY 

 

In order to simplify the resolution, the flow was considered 

as incompressible which is valid if the fluid is water and for 

low pressure variations [28]. To simplify and show the 

limitations of each investigated method, an adiabatic pipe is 

considered in the first part of this study. A temperature profile 

is applied to the pipe inlet and the pipe outlet is analyzed.  

The main approach investigated is the one-dimensional 

finite volume method developed and available under Modelica 

platform. This software is particularly adapted to solve 

complex transient systems (thermal, mechanical…) and a lot 

of components are already available that can be interconnected 

by a graphical interface. Here a validated library called 

Thermocycle [29] is used to solve the transient problem. 

A bi-dimensional modeling of the pipe is considered as the 

reference case of the studied flow problem. It takes place under 

OpenFoam platform. A turbulence model k-ε is considered 

and the natural convection influence is neglected to consider 

the case as axisymmetric while high Reynolds number are 

studied (between 105 and 106). The turbulence intensity, the 

turbulent Prandtl number and the turbulent to molecular 

viscosity ratio can be calculated by [30]–[32]. This bi-

dimensional modeling method involves a radial velocity and 
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temperature profile in the pipe. This method is called “2D 

finite volume method”. 

The third approach considered is the Lagrangian approach 

explained in the previous section which is called “plug flow”. 

It is assumed that there is no pressure loss into the cells to 

simplify the equation system resolution. However, due to the 

pipe length of DHN parts, it is proposed to set a pressure loss 

only at the pipe outlet to consider the pump work. This 

pressure loss is defined by the non-linear Darcy-Weisbach 

equation [33]. This assumption is also implemented in the one-

dimensional finite volume method to consider the pressure 

loss at the outlet pipe. 

To anticipate the discussion results, the other physical 

phenomenon occurring in a pipe, i.e. the heat losses and the 

pipe inertia influences, are introduced. The constituting pipe 

material itself is divided into cells initialized to a fixed 

temperature. Each cell has a thermal inertia (TI) depending on 

the geometrical characteristic of the pipe: 

 

𝑇𝐼 =  𝑉 𝜌 𝐶𝑝,  (12) 

 

where V is the cell volume [m³] is defined as 
∆x (𝐷𝑜𝑢𝑡−𝐷𝑖𝑛)π

4
 and 

where ρ and C_(p )are respectively the density [kg/m³] and the 

specific heat [J/kg/K] of the constituting material of the pipe 

and Dout and Din respectively the outer and inner pipe diameter 

[m].  

The heat exchanges between the fluid cell and the 

constituting pipe cell or between the constituting pipe cell and 

the ambient are computed by using a heat transfer coefficient. 

The heat transfer coefficient corresponding to the heat 

exchange between the fluid and the pipe can be computed from 

the flow characteristics by [34]. The present contribution is not 

intended to be a review of the literature on the calculation of 

heat losses and thermal resistance in district heating and the 

interested reader is referred to [15, 16] for a more complete 

information concerning the heat transfer between the pipe and 

the ambient. Herein, previous experimental studies are used to 

determine the heat loss coefficient of the pipe [35], [36]. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Introduction 

 

To support the discussion, a typical district heating 

application available on the University campus in Liège is 

used. The installed network has a total length of 10 km and 

distributes pressurized hot water to approximately 70 

buildings located in the University campus representing a total 

heated area of about 470000 m². Buildings are very different 

in nature namely, classrooms, administrative offices, research 

centers, laboratories and a hospital. The effective peak power 

of the network is around 56 MW for a total of 60000 MWh per 

year. Heat losses represent approximately 10% of the annual 

energy supplied to the DHN. 

The district heating network is divided into twenty-three 

sections having the same geometric characteristic but pipe 

diameters ranging from 50 to 350 mm. The insulation used is 

mineral wool with an identified thermal conductivity of 0,047 

W/m/K. The insulation thickness varies between 80 and 130 

mm. Mass flow rate range in the biggest pipes (0.35m of 

diameter) is between 50 and 200 kg/s corresponding to a 

velocity range of 0.4 to 1.8 m/s.  

In this study, a pipe of 0.35m of diameter (the main pipes of 

the network which ensure the main part of the heat transport) 

is considered and the corresponding heat transfer coefficient 

was previously identified [35] at the value of 0.76 W/m²/K.  

First, an adiabatic pipe of 20 meters is investigated in which 

a velocity of 1m/s is considered, which is close to the annual 

average velocity of the DHN studied. The temperature profile 

at the inlet pipe is a “step” of 10K from 323K to 333K in 10s. 

It is approximated by the first part of a sinus which approaches 

a temperature increase in DHN (see Figure 4 plain line). 

 

4.2 Adiabatic case study 

 

The first results concern the spatial discretization of the 2D 

finite volume method: 400, 800 and 1600 cells are investigated 

corresponding to a ∆x = 5, 2.5 and 1.25 cm. Doing so, the 

accuracy level can be identified as a function of the spatial 

discretization. Here, the outlet temperature, drawn in the 

following figures dedicated to 2D finite volume method, is the 

average temperature of 40 equidistant check points on the 

radial axis from the pipe center to the wall to consider the 

outlet temperature profile. 

 

 
 

Figure 5. 2D finite volume results for several spatial 

discretizations to determine the accuracy level 

 

The increased cell number from 400 (black dots) to 800 

cells (blue squares) does not involve a significantly higher 

accuracy level: the outlet pipe temperature results do not 

change a lot (Figure 5). This is particularly true when the cell 

number grows from 800 to 1600 cells (red triangles) where the 

results are quasi identical. Therefore for the first spatial 

discretization considered, the solution of this bi-dimensional 

finite volume method can be considered reliable. 

Figure 6, the comparison results of the 1D finite volume 

method (blue circles) and the 2D finite volume method (black 

squares) is drawn in the same spatial discretization (400 cells):  

the outlet pipe temperature response follows the same trend in 

both cases. In this case, the numerical diffusion occurs, CFL 

value is 0.5, so the 1D finite volume method “acts” like the 

more accurate bi-dimensional simulations where a velocity 

profile in the pipe is considered. However, for the exact 

solution of the 1D finite volume method problem (straight red 

line in Figure 5), the increase of the temperature appears a little 

bit later than the 2D finite volume method but then, the 

temperature outlet follows the trend of the 2D finite volume 

method. It is due to the fact that the model is only one-

dimensional and does not consider a radial velocity profile 

involving a higher velocity in the pipe center, and therefore, 

quicker heat propagation. However the difference of the 

temperature outlet between these two methods is quite limited 

and the actual behavior is correctly assessed. 
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Figure 6. Comparison of the 2D and 1D finite volume 

method for a same spatial discretization 

 

Despite the fact that the 1D finite volume method assesses 

the trend of the outlet pipe temperature as the 2D finite volume 

method for an important spatial discretization, an issue appears 

with the use of the one-dimensional finite volume method 

available under Modelica platform. When the pipe length 

increases, the number of cells and the variable number 

increases. It leads to a higher computational time cost (second 

order). However beyond about 50 meters the software does not 

converge anymore. If the spatial discretization is reduced 

(from 0.05 m to 0.1 m by cell), this issue occurs for a higher 

pipe length: about 100 meters. It is supposed that this issue 

could come from the higher variables number whose orders of 

magnitude are very different. While the aim of this study is to 

model large network, it is proposed to decrease the spatial 

discretization. Unfortunately, if the spatial discretization is 

reduced to allow the resolution of the equation system of 

longer pipes, the numerical diffusion appears more 

significantly than before and leading to a dispersion of the 

outlet pipe temperature as it is shown in Figure 7. 

 

 
 

Figure 7. The influence of the numerical diffusion of the 

outlet pipe temperature for the twenty meters pipe 

 

Nevertheless, the influence of the numerical diffusion of the 

outlet temperature for a twenty meters pipe is quite limited: the 

temperature increase occurs about four seconds sooner and the 

temperature reaches the maximal value about four seconds 

later. In the case of a one-kilometer pipe, which makes the 

university network up, is studied: the reader can notice in 

Figure 8 the significant influence on the outlet temperature due 

to the numerical diffusion. Indeed the rise of the temperature 

pipe outlet can occur very soon (up to about 600 seconds 

earlier if the spatial step is 100 meters) compared to the exact 

solution (straight black line). 

 

 
 

Figure 8. The influence of the numerical diffusion of the 

outlet pipe temperature for one thousand meter pipe 

 

Generally in the DHN Modelica model found in the 

literature [29], [37], the spatial discretization is very poor, 

typically 2 or 3 cells for several dozen meters, a priori, to allow 

the convergence of these complex model. However this spatial 

discretization leads to a lack of precision in the results as it was 

previously shown. While the aim of this article is to assess the 

temperatures at some key locations to perform control of the 

network, the 1D finite volume method available in Modelica 

is not suitable to reach this aim. Moreover these first two 

approaches need important computational time due to the 

spatial discretization considered. This characteristic reinforced 

the fact that these approaches are not suitable for their use 

coupled to a predictive control. 

The results of the “plug flow” model are drawn in Figure 9: 

the exact solution of the one-dimensional finite volume 

method (black dots) is found with the plug flow model with 

spatial discretizations of one meter (blue dots line). If the 

spatial discretization is more refine, 0.5 m, the exact solution 

of the 1D finite volume method is found too (red line) without 

numerical diffusion. In the opposite case, if the spatial 

discretization is rougher, 2 m, discontinuities are noticed in the 

results due to the lower spatial discretization. In this last case, 

there are not enough cells to describe correctly the fluctuations 

of the inlet pipe temperature. The “plug flow” model allows a 

quicker resolution of the system by a factor 103 compared to 

the resolution of 1D finite volume method. From now, this 

model is the only one to be investigated to consider the heat 

losses and the thermal inertia of the pipe influence. 

 

 
 

Figure 9. Plug flow results for several spatial discretization 
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4.3 Influence of the heat losses and pipe thermal inertia 

 

Since the “plug flow” model can assess the exact solution 

of the 1D finite volume pipe problem, the model is extended 

to catch the physical behavior of a real network, i.e. the 

ambient losses and the thermal inertia of the pipe. While the 

length of pipes can reach several kilometers, the ambient 

losses have an influence on the temperature. In a previous 

study [35], these annual losses were identified at about 10% of 

the annual heat supplied for the district heating network 

studied. It is the same order of magnitude that found in other 

studies [38]–[40] but notice that these losses can reach 20% of 

the annual heat supplied [39]. On the other hand, the thermal 

inertia of the pipes should also be considered. Indeed it induces 

a delay in the heat transport: when the fluid temperature 

increases (respectively decreases) in the pipe, there is a delay 

of the increase (respectively the decrease) temperature at the 

outlet pipe while the pipe is heated (resp. releases heat). This 

effect is more important when the thickness of the pipe 

increases especially if the pipe is in a metal constituting 

material, which is generally the case for large district heating 

networks. 

A pipe of one thousand meters is considered to see the 

influence of the heat losses. Indeed, for small pipe length, the 

heat losses have no significant influence on the outlet 

temperature since the pipe is insulated. In this case the ambient 

temperature is taken equal to 293 K. The influence of the 

thermal inertia of the pipe is considered with a pipe thickness 

of 0 cm (no thermal inertia) and 1 cm (a conventional thickness 

for the pipe diameter considered).  

 

 
 

Figure 10. Heat losses and pipe inertia influences on the 

outlet pipe temperature for the plug flow modeling 

 

Figure 10 shows that the outlet temperature pipe begins to 

slightly decrease due to the heat. Since the velocity is 1 m/s, 

this temperature decrease takes one thousand seconds to 

appear at the outlet and is worth 0.1 K. Then the outlet 

temperature increases due to the temperature “step” at the inlet. 

However the temperature increase is slower when the thermal 

inertia is considered (red dashed line) while the pipe is heated 

up. Indeed, the thermal inertia induces a significant delay on 

the thermal response: the time required for the temperature to 

reach the steady state level is about 200 seconds (blue dots line) 

instead of 10 seconds when the pipe inertia is not considered. 

Of course in the case of a temperature decrease, the delay also 

exists due to the release of the heat inside the pipe. 

Through these results, the significant influence of the pipe 

thermal inertia on the heat transport in pipes is demonstrated. 

Indeed for more complex and longer network this delay has to 

be considered during the early morning heating boost for 

example. To guarantee the thermal comfort of the users, this 

heating boost is generally performed too soon leading to more 

important and useless heat losses. Coupled to predictive 

control of energetic needs of buildings, it could be possible to 

feed only the required heat demand in the network. 

 

 

5. CONCLUSIONS 

 

A comparison between several modeling methods is 

performed to determine the most convenient way to model the 

heat transport in large district heating networks to improve 

their control at low cost, i.e. by model the DHN behavior 

instead of their costly instrumentation.  

First, an adiabatic pipe is considered to show the limitations 

of each modeling method investigated and an existing district 

heating network is used to determine the main parameters of 

the study.  

For the same spatial discretization, the bi-dimensional finite 

volume model does not bring substantial details in the results 

(i.e. the outlet temperature of the pipe) compared to a one-

dimensional finite volume modeling. However to get reliable 

results, spatial discretization of the pipe is important, as it 

involves a high computational time incompatible with the final 

use of this model, namely the predictive control. On the other 

hand, the decrease in the spatial discretization level involves a 

significant numerical diffusion linked to the discretization 

scheme used, and therefore an anticipation of the heat waves 

at the pipe outlet. Finally, the use of one-dimensional 

modeling is restricted by a non-convergence issue appearing 

when the length of the pipes, and so the variable number, 

increases. The authors suppose that it could be due to the 

numerous variables whose order of magnitudes are very 

different causing inconstancy in the resolution method. An 

alternative method should be to assume that the density is 

constant in this model while the heat losses of the pipe and so 

temperature variations are reduced to simplifying the 

equations system. 

The results of the “plug flow” model give us the same 

accuracy as the exact solution of the one-dimensional problem 

model. Moreover, these results are obtained with a rough 

spatial discretization leading to a very quick simulation. Since 

the “plug flow” results of the adiabatic case are equal to the 

exact solution of the one-dimensional finite volume problem, 

heat losses and pipe thermal inertia influences are also 

considered. For an insulated pipe, the heat losses have a slight 

influence on the outlet temperature of the pipe especially for 

short pipe length. However, they have to be considered while 

they generally represent 10% of the heat supplied to the 

network. On the other hand, the influence of the thermal inertia 

of the pipe on the outlet pipe temperature has been exhibited 

as this induces a significant delay in the heat transport. 

This final model will serve in the future work dedicated to 

assess the behavior of a complete heat district network. Once 

validated, a control will be implemented to reduce the heat 

consumption of the district network and to assess the economic 

and environmental benefits. 
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NOMENCLATURE 

 

A Heat exchange area, m² 

CP specific heat, J. kg-1. K-1 

D Diammeter, m2 

�̇� Mass flow rate, kg/s 

p Pressure, Pa 

�̇� Heat flux, J/s 

t  Time, s 

T Temperature, K 

u Velocity, m/s 

V Volume, m³ 

  

Greek symbols 

 

 

ρ density, kg/m³ 

 

Abbreviations 

 

 

DHN District heating network 

FVM Finite volume method 

in Inner 

out Outer 

* Adjacent cell 
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