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 In this paper we propose a gradient based neural network to compute the 𝑝 - order AR 

parameters by solving the Yule-Walker equations. Furthermore, to reduce the size of the 

neural network, we derive a compact architecture of the discrete time gradient based neural 

network using the fast Fourier transform. For this purpose, the product of the weights 

matrix and the inputs vector which constitutes the activation of the neurons is performed 

efficiently in 𝑂(𝑝 𝑙𝑜𝑔 𝑝) operations and storage instead of 𝑂(𝑝2) in the original discrete 

time gradient based neural network. Simulation results show that proposed neural network 

architecture is faster and leads to the same results as the original method which prove the 

correctness of the proposed scheme. 
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1. INTRODUCTION 

 

Spectral estimation has been widely used in many practical 

applications such as radar, speech and communication, to 

mention a few [1, 2]. Over the last century, a great effort has 

been made to develop new techniques for high performance 

spectral estimation. Broadly, the developed techniques can be 

classified in two categories: nonparametric and parametric 

methods. The non-parametric spectral estimation approaches 

are relatively simple, and easy to compute via the Fast 

Fourier Transform (FFT) algorithm. However, these methods 

require the availability of long data records in order to yield 

the necessary frequency resolution. For the parametric 

approaches, we first design a model for the process of interest 

which is described by a small number of parameters. Based 

on this model, the spectral density estimation of the process 

can be obtained by substituting the estimated parameters of 

the model in the expression for the spectral density [1]. 

These parametric methods have a number of advantages as 

well as disadvantages over non-parametric methods. One of 

the advantages is their high resolution capability especially 

with a small number of data records. Also one of the 

disadvantages is the difficulty of determining a priori the 

order of the model for a given signal. In addition to these 

classical problems, many of the alternative spectral 

estimation methods require intensive matrix computation 

which may not be practical for real-time processing [3]. 

When the order of the system is moderate, the system can be 

efficiently computed in 𝑂(𝑝2)  flops using the celebrated 

Levinson-Durbin algorithm. In many problems of signal 

processing, the order of the system may be large and solving 

simultaneously this system becomes a challenge task [1]. 

Neural networks have been widely investigated in 

parametric spectral estimation [4, 5]. The major advantage of 

neural network over other methods resides in their capability 

to perform more complex calculations in real time due to 

their parallel-disturbed nature. The neural network consists of 

a large number of simple devices; each one computes little 

more than weighted sums. Consequently the complexity of 

computation can be dramatically reduced and the total 

computation time is comparable to the response time of a 

single processor which can be very small [6-8].  

As well known, the activation of neural networks is based 

on the computation of a full matrix by vector multiplication 

where the matrix contains the connection weights and the 

vector contains the inputs values. Moreover, for the same 

connection matrix, the multiplication has to be done at each 

iteration with a new vector input back-warded from the 

output. In such cases, one seeks to identify special properties 

of the connection matrix in order to reduce the complexity 

computation. 

In this paper, we derive a compact implementation of the 

Discrete time Gradient based Neural Networks (CDGNN) for 

the Auto Regressive (AR) parameters estimation. In the 

proposed scheme, the multiplication of the weight matrix by 

the input vector is performed efficiently in 𝑂(𝑝 𝑙𝑜𝑔 𝑝) 
operations using the FFT algorithm instead of 𝑂(𝑝2) in the 

original Discrete time Gradient based Neural Networks 

DGNN [9, 10]. 

The paper is organized as follows: Section II states the AR 

parameters estimation problem. In section III, the dynamics 

of the DGNN to solve this problem is investigated. In Section 

IV, we present the implementation of the proposed CDGNN 

model for AR spectral estimation. Computer simulation 

results for online spectral estimation based on the DGNN 

model are presented in section V followed by some 

concluding remarks. 

 

 

2. STATEMENT OF THE PROBLEM 

 

Consider the parameter estimation problem of the noisy 

AR signal [1, 4]: 
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where 𝑎𝑖 ,  𝑖 = 1, . . . , 𝑝  are  the unknown AR parameters, 

( ) , 1x n i i , ..., p− = are the p  last data samples; ( )e n  is a 

zero mean Gaussian process with variance 𝜎𝑛
2. Our objective 

is to get an optimal estimation of the AR parameters using 

the noisy observations {𝑥(𝑛)}𝑛=0
𝑁−1, where N is the number of 

data points. The parameters to be estimated are the solution 

of the Yule-Walker equations given by [1]: 
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then the above linear equations can be written: 

 

x x=R a r                                                                              (3) 

 

The power spectrum estimate of the AR signal is formed 

as: 
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where f is the normalized frequency. The true parameters ia , 

𝜎𝑛
2 should be replaced by their estimates. 

In the following, two kinds of recurrent neural networks 

for the AR parameters estimation will be presented. The 

former is based on the gradient-descent method in 

optimization to minimize a quadratic cost function [9-12]. 

The last, is a simplified architecture of the discrete time 

gradient based neural networks. 
 
 

3. BACKGROUND OF DGNN FOR AR PARAMETERS 

ESTIMATION 
 

Conventional gradient-based neural networks (GNN) have 

been developed and widely investigated for online solution of 

the linear system [9, 13, 14]. To apply the neural networks, 

the parameters estimation problem must be transformed to a 

minimization problem suitable for dynamic neural networks 

processing [13, 14].  

Consider the set of linear equations 𝑹𝑥𝒂 − 𝒓𝑥 = 0 . The 

design procedure consists to define a norm-based scalar-

valued error function and then exploit the negative of its 

gradient as the descent direction to minimize this function.  

According to Eq. (3), let the scalar-valued norm-based 

energy function: 

 

2

2

1

2
x xE = −R a r                                                      (5) 

 

with 
2
  denoting the two-norm of a vector. The minimum 

point of this cost function is the solution of the above linear 

system 𝑹𝑥𝒂 = 𝒓𝑥. 

To reach a minimum let us take the negative of the 

gradient of the energy function 

 

( )x x x
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                                           (6) 

 

By using a typical continuous-time adaptation rule, Eq. (6) 

leads to the following differential equation (linear GNN): 

 

( )( ) ( )x x x

d E
t t
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= = − = − −



Ta
a R R a r

a
                          (7) 

 

where 𝛾 > 0 is a design parameter used to scale the GNN 

convergence rate, and it should be set as large as hardware 

permits. 

We could obtain the general nonlinear GNN model by 

using a general nonlinear activation function 𝑓(⋅) as follows 

[14]: 

 

( )( ) ( )x x xt f t= − −T
a R R a r                                              (8) 

 

The discrete-time model of the GNN can be obtained by 

the use of the forward-difference rule to compute ( )ta . 

 

( ) ( (( 1) ) ( )) /t kh k h kh h=  + −a a a                                    (9) 

 

where 0h  and k denote the sampling gap and the iteration 

index respectively. In general, we have ( )k t kh= =a a  for 

presentation convenience. Thus the presented DGNN model 

(8) could be reformulated as: 

 

( )1
T

k k x x k xf+ = − −a a R R a r                                       (10) 

 

with h = .  

 

 
(a) Block diagrams of DGNN 
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(b) Architecture of DGNN 

 

Figure 1. Block diagram and architecture of DGNN 

 

The block diagram realizing and the detailed architecture 

of the discrete time gradient based neural network are shown 

in Figure 1. As we can see, we have 2𝑝2 weighting function, 

p  adders of p  elements, p  adders of 1p +  elements and 

p  time-delays. 

 

 

4. PROPOSED DGNN FOR AR PARAMETERS 

ESTIMATION  

 

By setting x k=1z R a  , 2 1( )xf= −z z r and 3 2
T
x=z R z , 

the dynamic of the neural network can be rewritten in a 

compact form as: 

 

1 3k k + = −a a z                                                                  (11) 

 

This equation consists of two Toeplitz matrix-vector 

products x k= 1z R a  and 3 2
T
x=z R z  which can be 

computed efficiently using the algorithm described below.  

 

4.1 Fast matrix-vector product computation 

 

Since 𝑹𝑥 is a Toeplitz matrix which is given by its first 

column and first row, thus it depends only on 2𝑝 − 1 

parameters rather than 𝑝2 . To compute the product 𝒛𝟏 =
𝑹𝑥𝒂𝑘, the Toeplitz matrix 𝑹𝑥  can be first embedded into a 

circulant matrix 𝑪 ∈ ℜ
2𝑃×2𝑃

 as follows [15, 16]: 

 

𝑪 = [
𝑹𝒙 𝑺
𝑺 𝑹𝒙

]                                                     (12) 

 
where       
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S        (13)  

The matrix S  never needs to be formed explicitly as C  is 

simply a Toeplitz matrix where the columns are described by 

the circular-shift of the first column of the matrix C which is 

of the form:  
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Now we form a new matrix by vector product as follow: 

 

k x k x k

x k

       
 =  =       
       n n

a R S a R a
C

0 S R 0 Sa
                            (15)  

 

Note that the vector [ ]Tk na 0 is simply the vector ka  zero 

padded to the length of 1c and will be noted a . Then the 

equation will be rewritten as:  

 

k

k

 
 =  

 

xR a
C a

Sa
                                                                   (16) 

 

Then the product x kR a can be computed efficiently using 

the following algorithm. 

 
Algorithm: Fast matrix-vector product computation 

1. Compute ( )FFT=A a  

2. Compute ( )1FFT=W c  

3. Compute the element -wise vector-vector product  

.*=H A W  

4. Compute ( )IFFT=z H  

5. The p first elements of the vector z constitute the product 

x kR a , ie . (1: )x k p=R a z  

 

Since the FFT and the IFFT algorithms can be done in 

( log )O p p operations, the product x kR a  can be obtained in 

( log )O p p operations [15, 16]. Figure (2) shows the block 

diagram illustrating the fast matrix-vector multiplication. 

 

 
 

Figure 2. Block diagram illustrating the fast matrix-vector 

multiplication 

 

4.2 Proposed architecture of CDGNN 

 

To compute the product 𝒛3 = 𝑹𝑥
𝑇𝒛2, we do the same steep 

and we replace 𝑹𝑥by 𝑹𝑥
𝑇  and ka by 2z . We note here that 

T
xR is Toeplitz matrix generated by the following vectors 

[𝑟𝑥(0), 𝑟𝑥(−1),⋯ , 𝑟𝑥(1 − 𝑝)]  and [𝑟𝑥(0), 𝑟𝑥(1),⋯ , 𝑟𝑥(𝑝 −

1)], and it can be embedded into a circulant matrix 
TC . The 

Fourier transform of the first column �̃�1 =
[𝑟𝑥(0), 𝑟𝑥(−1),⋯ , 𝑟𝑥(1 − 𝑝),  0 , 𝑟𝑥(𝑝 − 1), 𝑟𝑥(𝑝 −

2),⋯ ,𝑟𝑥(0)]
𝑇of the matrix 𝐶𝑇 will be noted �̃�. 
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Figure 3. Block diagrams of a simplified DGNN 

 

The block diagram realizing and the detailed architecture 

of the proposed neural network are shown in the figures (3) 

and (4) respectively. As we can see, the FFTs of the column 

1c  and 1c  constitutes the connection weighting of the neural 

network. So we have just 4p weighting function instead of 

2𝑝2 in the original DGNN. The entire circuit contains two 

blocks FFT/IFFTs, 2 blocks FFT, 2𝑝 adders of 2 elements, 𝑝 

time-delays, and 4𝑝 weighted connections.  

 
 

Figure 4. Architecture of the proposed neural network 
 

4.3 Complexity an comparison 

 

As we know, the complexity of a neural network is defined 

as the total number of multiplications per iteration. It’s well 

known that the FFT/IFFT using 𝑝  points require 

0.5𝑝 𝑙𝑜𝑔 𝑝 multiplications, then it can be seen that the 

proposed neural network model requires 5𝑝 + 4𝑝 𝑙𝑜𝑔 2 𝑝 

multiplications per iteration. The original DGNN requires per 

iteration 2𝑝2 + 𝑝  multiplications. As result, the 

computational complexity of the proposed neural network is 

𝑂(𝑝 𝑙𝑜𝑔 𝑝) instead of 𝑂(𝑝2) for the DGNN.  

 

 
Figure 5. Computational complexity of the two networks 

Concerning the memory storage, in addition to 𝑂(𝑝 𝑙𝑜𝑔 𝑝) 
memory required for the FFT/IFFT blocks, we need to store 

the 6n elements of the vectors 1c , 1c , b , and the outputs, 

thus only 𝑂(𝑝 𝑙𝑜𝑔 𝑝) elements need storage in the proposed 

DGNN instead of 𝑂(𝑝2) elements in the original GNN. 

 

 

5. COMPUTER SIMULATION 

 

To show the correctness of the proposed neural network 

architecture and its similarity with the original scheme, the 

two neural networks have been implemented in the 

MATLAB Simulink environment on computer with 4 GB 

RAM and Intel CORE i3 processor with 2.2 GHz. the 

Simulink implementation of the DGNN and the CDGNN are 

shown in Figures (6) and (7). The block subsystem which is 

depicted in Figure (7b) is used to compute 𝒛𝟏(𝑘ℎ)  and 

𝒛3(𝑘ℎ) according to the algorithm investigated above. 

 

 
 

Figure 6. DGNN MATLAB/Simulink model 

 

 
(a) Simulink model of the CDGNN 

 

(b) Subsystem detail used in the CDGNN 

 

Figure 7. CDGNN Simulink model and the subsystems 

 

Computer simulations have been performed to assess the 

performance of the proposed method in term of accuracy and 

computational complexity by comparing it with the Yule- 

Walker method [1]. 

In the firsts experiment, an AR (4) process was generated, 

with four poles inside the unit circle as shown in Figure 8. 
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( ) 2.0371 ( 1) 2.4332 ( 2)

1.7832 ( 3) 0.7019 ( 4) ( )

x n x n x n

x n x n e n

= − − − +

− − − +                    (17) 

 
The input 𝑒(𝑛) is a white Gaussian process with variance 

𝜎𝑒
2 = 10−2.  

 
 

Figure 8. The pole plot of the AR model (17) 

 

 
 

Figure 9. Convergence error of the two neural networks 

 

In this example, we let the number of process samples 𝑁 =
64, ℎ = 10−4 and 𝛾 = 55.103. Figures 9, 10 and 11 show the 

convergence behavior of the original network and its 

simplified version. As we can see, starting from a random 

initial state 𝒂(0) , the two networks converge in the same 

manner to the true parameters. Figure 9 shows the 

convergence error of the two networks. It is found that in a 

few tens of thousands of iterations, the residual error for the 

two networks is about 10−14 . The mean squared error 

‖�̂� − 𝒂‖2
2  after convergence is less than 10−3 for the two 

networks. This is well illustrated in Figure 10. In Figure 11, 

we show the trajectories of the estimated parameters.  

As we can see from this example, both circuits present the 

same performance. However, the computation time is 

different. The Figure (12) shows the computation time of 

both neural networks according to the order of the model. For 

moderate values of the model order, the computation time of 

the two networks are similar, however, for large orders, the 

proposed network is faster. We note here that the computing 

time is only indicative; it strongly depends on the material 

used for the simulation. 

 
 

Figure 10. Mean squared error of the estimated vector 

parameters  

 
 

Figure 11. Convergence behaviour of the state trajectory  
 

 
 

Figure 12. Computation time of the two networks 

 

Figure (13) shows the spectral density of the AR (4) 

process for CDGNN and Yule-Walker methods. The two 

methods give a similar performance. 
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Figure 13. Spectral density of the process for different 

methods 

 

For further illustrative and comparative purposes, let us 

consider the above model. The simulation results based on 

100 realizations are summarized in Table 1. The averaged 

mean square error (AMSE) is given by: 

 

2

2
1

1
ˆ

M

m
m

AMSE
M =

= − a a                                              (18) 

 

where ma is the estimated vector using the m -th realization 

and M  the total number of realizations. As we can see from 

the table, the performances of the Yule-walker method and 

the proposed simplified neural network are similar.  

 

Table 1. Computed results of estimated parameters using 

different algorithms 

 

 1a  2a  3a  4a  AMSE 

True -2.0371 2.4332 -1.7832 0.7019 0 

Y-W -2.0512     2.4478 -1.8383     0.7162 0.00091 

CDGNN -2.0512     2.4478 -1.8383     0.7162 0.00091 

 

 
 

Figure 14. parameter selection 

 

Concerning the selection of the design parameter  , 

several simulations were done. As shown in the Figure (14), 

the optimal value giving a convergence error 10−10 is about  

6 × 105. For smaller values, the convergence time is more 

important. However for values just greater than the optimum 

value, the network presents some damped oscillations. If this 

value is further increased, the network diverges.  

We note here, that the optimal value is strongly influenced 

by the value of the noise variance. For smaller values, a 

higher value of   should be used. 

 

 

6. CONCLUSIONS 

 

Recurrent neural networks are very useful as 

computational models for solving computationally intensive 

problems due to their inherent nature of parallel and 

distributed information processing. The Toeplitz structure of 

the correlation matrix allows us to design a compact 

implementation of the gradient based neural network for AR 

parameters estimation taking the advantage of the fast 

Fourier transform. The proposed reduced neural network is 

very suitable for estimating the AR parameters of models 

with large order. Computer simulations confirm the fastness 

and the accuracy of the proposed estimator.  
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