

Gradient Based Neural Network with Fourier Transform for AR Spectral Estimator

Abderrazak Benchabane*, Fella Charif

Department of Electronics and Telecommunications, Kasdi Merbah University, Ouargla 30000, Algeria

Corresponding Author Email: ge.benchabane@gmail.com

https://doi.org/10.18280/mmep.060220

ABSTRACT

Received: 14 February 2019

Accepted: 4 June 2019

 In this paper we propose a gradient based neural network to compute the 𝑝 - order AR

parameters by solving the Yule-Walker equations. Furthermore, to reduce the size of the

neural network, we derive a compact architecture of the discrete time gradient based neural

network using the fast Fourier transform. For this purpose, the product of the weights

matrix and the inputs vector which constitutes the activation of the neurons is performed

efficiently in 𝑂(𝑝 𝑙𝑜𝑔 𝑝) operations and storage instead of 𝑂(𝑝2) in the original discrete

time gradient based neural network. Simulation results show that proposed neural network

architecture is faster and leads to the same results as the original method which prove the

correctness of the proposed scheme.

Keywords:

gradient-based neural networks, toeplitz

systems, fast fourier transform, auto

regressive model

1. INTRODUCTION

Spectral estimation has been widely used in many practical

applications such as radar, speech and communication, to

mention a few [1, 2]. Over the last century, a great effort has

been made to develop new techniques for high performance

spectral estimation. Broadly, the developed techniques can be

classified in two categories: nonparametric and parametric

methods. The non-parametric spectral estimation approaches

are relatively simple, and easy to compute via the Fast

Fourier Transform (FFT) algorithm. However, these methods

require the availability of long data records in order to yield

the necessary frequency resolution. For the parametric

approaches, we first design a model for the process of interest

which is described by a small number of parameters. Based

on this model, the spectral density estimation of the process

can be obtained by substituting the estimated parameters of

the model in the expression for the spectral density [1].

These parametric methods have a number of advantages as

well as disadvantages over non-parametric methods. One of

the advantages is their high resolution capability especially

with a small number of data records. Also one of the

disadvantages is the difficulty of determining a priori the

order of the model for a given signal. In addition to these

classical problems, many of the alternative spectral

estimation methods require intensive matrix computation

which may not be practical for real-time processing [3].

When the order of the system is moderate, the system can be

efficiently computed in 𝑂(𝑝2) flops using the celebrated

Levinson-Durbin algorithm. In many problems of signal

processing, the order of the system may be large and solving

simultaneously this system becomes a challenge task [1].

Neural networks have been widely investigated in

parametric spectral estimation [4, 5]. The major advantage of

neural network over other methods resides in their capability

to perform more complex calculations in real time due to

their parallel-disturbed nature. The neural network consists of

a large number of simple devices; each one computes little

more than weighted sums. Consequently the complexity of

computation can be dramatically reduced and the total

computation time is comparable to the response time of a

single processor which can be very small [6-8].

As well known, the activation of neural networks is based

on the computation of a full matrix by vector multiplication

where the matrix contains the connection weights and the

vector contains the inputs values. Moreover, for the same

connection matrix, the multiplication has to be done at each

iteration with a new vector input back-warded from the

output. In such cases, one seeks to identify special properties

of the connection matrix in order to reduce the complexity

computation.

In this paper, we derive a compact implementation of the

Discrete time Gradient based Neural Networks (CDGNN) for

the Auto Regressive (AR) parameters estimation. In the

proposed scheme, the multiplication of the weight matrix by

the input vector is performed efficiently in 𝑂(𝑝 𝑙𝑜𝑔 𝑝)
operations using the FFT algorithm instead of 𝑂(𝑝2) in the

original Discrete time Gradient based Neural Networks

DGNN [9, 10].

The paper is organized as follows: Section II states the AR

parameters estimation problem. In section III, the dynamics

of the DGNN to solve this problem is investigated. In Section

IV, we present the implementation of the proposed CDGNN

model for AR spectral estimation. Computer simulation

results for online spectral estimation based on the DGNN

model are presented in section V followed by some

concluding remarks.

2. STATEMENT OF THE PROBLEM

Consider the parameter estimation problem of the noisy

AR signal [1, 4]:

1

() () ()
p

i
i

x n a x n i e n
=

= − − + (1)

Mathematical Modelling of Engineering Problems
Vol. 6, No. 2, June, 2019, pp. 309-315

Journal homepage: http://iieta.org/Journals/MMEP

309

where 𝑎𝑖 ,  𝑖 = 1, . . . , 𝑝 are the unknown AR parameters,

() , 1x n i i , ..., p− = are the p last data samples; ()e n is a

zero mean Gaussian process with variance 𝜎𝑛
2. Our objective

is to get an optimal estimation of the AR parameters using

the noisy observations {𝑥(𝑛)}𝑛=0
𝑁−1, where N is the number of

data points. The parameters to be estimated are the solution

of the Yule-Walker equations given by [1]:

1

2

(1) (0) (1) (1)

(2) (1)

() (1) (0)

x x x x

x x

px x x

ar r r r p

ar r

ar p r p r

 − − +

 = −

−

 (2)

where:

1
*

0

*

1
() () 0,1, ,

()

() (1), (2), , 1

N k

nx

x

x n x n k for k p
Nr k

r k for k p p

− −

=

+ =

=
 − = − − − − −

Let:

 (1), (2), , ()
T

x x x xr r r P= −r

1 2, , ,
T

pa a a = a

(0) (1) (1)

(1)

(1) (0)

x x x

x
x

x x

r r r p

r

r p r

− − +

 =

−

R

then the above linear equations can be written:

x x=R a r (3)

The power spectrum estimate of the AR signal is formed

as:

2

2
2

1

()

1

n

p j k f
ik

P f

a e

−
=

=

+

 (4)

where f is the normalized frequency. The true parameters ia ,

𝜎𝑛
2 should be replaced by their estimates.

In the following, two kinds of recurrent neural networks

for the AR parameters estimation will be presented. The

former is based on the gradient-descent method in

optimization to minimize a quadratic cost function [9-12].

The last, is a simplified architecture of the discrete time

gradient based neural networks.

3. BACKGROUND OF DGNN FOR AR PARAMETERS

ESTIMATION

Conventional gradient-based neural networks (GNN) have

been developed and widely investigated for online solution of

the linear system [9, 13, 14]. To apply the neural networks,

the parameters estimation problem must be transformed to a

minimization problem suitable for dynamic neural networks

processing [13, 14].

Consider the set of linear equations 𝑹𝑥𝒂 − 𝒓𝑥 = 0 . The

design procedure consists to define a norm-based scalar-

valued error function and then exploit the negative of its

gradient as the descent direction to minimize this function.

According to Eq. (3), let the scalar-valued norm-based

energy function:

2

2

1

2
x xE = −R a r (5)

with
2
 denoting the two-norm of a vector. The minimum

point of this cost function is the solution of the above linear

system 𝑹𝑥𝒂 = 𝒓𝑥.

To reach a minimum let us take the negative of the

gradient of the energy function

()x x x

E
− = − −

T
R R a r

a
 (6)

By using a typical continuous-time adaptation rule, Eq. (6)

leads to the following differential equation (linear GNN):

()() ()x x x

d E
t t

dt

= = − = − −

Ta
a R R a r

a
 (7)

where 𝛾 > 0 is a design parameter used to scale the GNN

convergence rate, and it should be set as large as hardware

permits.

We could obtain the general nonlinear GNN model by

using a general nonlinear activation function 𝑓(⋅) as follows

[14]:

()() ()x x xt f t= − −T
a R R a r (8)

The discrete-time model of the GNN can be obtained by

the use of the forward-difference rule to compute ()ta .

() (((1)) ()) /t kh k h kh h= + −a a a (9)

where 0h and k denote the sampling gap and the iteration

index respectively. In general, we have ()k t kh= =a a for

presentation convenience. Thus the presented DGNN model

(8) could be reformulated as:

()1
T

k k x x k xf+ = − −a a R R a r (10)

with h = .

(a) Block diagrams of DGNN

310

(b) Architecture of DGNN

Figure 1. Block diagram and architecture of DGNN

The block diagram realizing and the detailed architecture

of the discrete time gradient based neural network are shown

in Figure 1. As we can see, we have 2𝑝2 weighting function,

p adders of p elements, p adders of 1p + elements and

p time-delays.

4. PROPOSED DGNN FOR AR PARAMETERS

ESTIMATION

By setting x k=1z R a , 2 1()xf= −z z r and 3 2
T
x=z R z ,

the dynamic of the neural network can be rewritten in a

compact form as:

1 3k k + = −a a z (11)

This equation consists of two Toeplitz matrix-vector

products x k= 1z R a and 3 2
T
x=z R z which can be

computed efficiently using the algorithm described below.

4.1 Fast matrix-vector product computation

Since 𝑹𝑥 is a Toeplitz matrix which is given by its first

column and first row, thus it depends only on 2𝑝 − 1

parameters rather than 𝑝2 . To compute the product 𝒛𝟏 =
𝑹𝑥𝒂𝑘, the Toeplitz matrix 𝑹𝑥 can be first embedded into a

circulant matrix 𝑪 ∈ ℜ
2𝑃×2𝑃

 as follows [15, 16]:

𝑪 = [
𝑹𝒙 𝑺
𝑺 𝑹𝒙

] (12)

where

0 (1) (2) (1)

(1) 0 (1) (2)

(2) (1) 0 (3)

(1) (2) (3) 0

x x x

x x x

x x x

x x x

r P r P r

r P r P r

r P r P r

r r r

− −

− −

 = − −

 − − −

S (13)

The matrix S never needs to be formed explicitly as C is

simply a Toeplitz matrix where the columns are described by

the circular-shift of the first column of the matrix C which is

of the form:

1 (0), (1), ,

(1), 0 , (1), (2), , (1)

x x

T

x x x x

r r

r p r p r p r p

=

− − − −

c
 (14)

Now we form a new matrix by vector product as follow:

k x k x k

x k

 = =
 n n

a R S a R a
C

0 S R 0 Sa
 (15)

Note that the vector []Tk na 0 is simply the vector ka zero

padded to the length of 1c and will be noted a . Then the

equation will be rewritten as:

k

k

 =

xR a
C a

Sa
 (16)

Then the product x kR a can be computed efficiently using

the following algorithm.

Algorithm: Fast matrix-vector product computation

1. Compute ()FFT=A a

2. Compute ()1FFT=W c

3. Compute the element -wise vector-vector product

.*=H A W

4. Compute ()IFFT=z H

5. The p first elements of the vector z constitute the product

x kR a , ie . (1:)x k p=R a z

Since the FFT and the IFFT algorithms can be done in

(log)O p p operations, the product x kR a can be obtained in

(log)O p p operations [15, 16]. Figure (2) shows the block

diagram illustrating the fast matrix-vector multiplication.

Figure 2. Block diagram illustrating the fast matrix-vector

multiplication

4.2 Proposed architecture of CDGNN

To compute the product 𝒛3 = 𝑹𝑥
𝑇𝒛2, we do the same steep

and we replace 𝑹𝑥by 𝑹𝑥
𝑇 and ka by 2z . We note here that

T
xR is Toeplitz matrix generated by the following vectors

[𝑟𝑥(0), 𝑟𝑥(−1),⋯ , 𝑟𝑥(1 − 𝑝)] and [𝑟𝑥(0), 𝑟𝑥(1),⋯ , 𝑟𝑥(𝑝 −

1)], and it can be embedded into a circulant matrix
TC . The

Fourier transform of the first column �̃�1 =
[𝑟𝑥(0), 𝑟𝑥(−1),⋯ , 𝑟𝑥(1 − 𝑝),  0 , 𝑟𝑥(𝑝 − 1), 𝑟𝑥(𝑝 −

2),⋯ ,𝑟𝑥(0)]
𝑇of the matrix 𝐶𝑇 will be noted �̃�.

311

Figure 3. Block diagrams of a simplified DGNN

The block diagram realizing and the detailed architecture

of the proposed neural network are shown in the figures (3)

and (4) respectively. As we can see, the FFTs of the column

1c and 1c constitutes the connection weighting of the neural

network. So we have just 4p weighting function instead of

2𝑝2 in the original DGNN. The entire circuit contains two

blocks FFT/IFFTs, 2 blocks FFT, 2𝑝 adders of 2 elements, 𝑝

time-delays, and 4𝑝 weighted connections.

Figure 4. Architecture of the proposed neural network

4.3 Complexity an comparison

As we know, the complexity of a neural network is defined

as the total number of multiplications per iteration. It’s well

known that the FFT/IFFT using 𝑝 points require

0.5𝑝 𝑙𝑜𝑔 𝑝 multiplications, then it can be seen that the

proposed neural network model requires 5𝑝 + 4𝑝 𝑙𝑜𝑔 2 𝑝

multiplications per iteration. The original DGNN requires per

iteration 2𝑝2 + 𝑝 multiplications. As result, the

computational complexity of the proposed neural network is

𝑂(𝑝 𝑙𝑜𝑔 𝑝) instead of 𝑂(𝑝2) for the DGNN.

Figure 5. Computational complexity of the two networks

Concerning the memory storage, in addition to 𝑂(𝑝 𝑙𝑜𝑔 𝑝)
memory required for the FFT/IFFT blocks, we need to store

the 6n elements of the vectors 1c , 1c , b , and the outputs,

thus only 𝑂(𝑝 𝑙𝑜𝑔 𝑝) elements need storage in the proposed

DGNN instead of 𝑂(𝑝2) elements in the original GNN.

5. COMPUTER SIMULATION

To show the correctness of the proposed neural network

architecture and its similarity with the original scheme, the

two neural networks have been implemented in the

MATLAB Simulink environment on computer with 4 GB

RAM and Intel CORE i3 processor with 2.2 GHz. the

Simulink implementation of the DGNN and the CDGNN are

shown in Figures (6) and (7). The block subsystem which is

depicted in Figure (7b) is used to compute 𝒛𝟏(𝑘ℎ) and

𝒛3(𝑘ℎ) according to the algorithm investigated above.

Figure 6. DGNN MATLAB/Simulink model

(a) Simulink model of the CDGNN

(b) Subsystem detail used in the CDGNN

Figure 7. CDGNN Simulink model and the subsystems

Computer simulations have been performed to assess the

performance of the proposed method in term of accuracy and

computational complexity by comparing it with the Yule-

Walker method [1].

In the firsts experiment, an AR (4) process was generated,

with four poles inside the unit circle as shown in Figure 8.

500 1000 1500 2000
10

2

10
3

10
4

10
5

10
6

10
7

Order p

C
o

m
p

le
x

it
y

DGNN

CDGNN

312

() 2.0371 (1) 2.4332 (2)

1.7832 (3) 0.7019 (4) ()

x n x n x n

x n x n e n

= − − − +

− − − + (17)

The input 𝑒(𝑛) is a white Gaussian process with variance

𝜎𝑒
2 = 10−2.

Figure 8. The pole plot of the AR model (17)

Figure 9. Convergence error of the two neural networks

In this example, we let the number of process samples 𝑁 =
64, ℎ = 10−4 and 𝛾 = 55.103. Figures 9, 10 and 11 show the

convergence behavior of the original network and its

simplified version. As we can see, starting from a random

initial state 𝒂(0) , the two networks converge in the same

manner to the true parameters. Figure 9 shows the

convergence error of the two networks. It is found that in a

few tens of thousands of iterations, the residual error for the

two networks is about 10−14 . The mean squared error

‖�̂� − 𝒂‖2
2 after convergence is less than 10−3 for the two

networks. This is well illustrated in Figure 10. In Figure 11,

we show the trajectories of the estimated parameters.

As we can see from this example, both circuits present the

same performance. However, the computation time is

different. The Figure (12) shows the computation time of

both neural networks according to the order of the model. For

moderate values of the model order, the computation time of

the two networks are similar, however, for large orders, the

proposed network is faster. We note here that the computing

time is only indicative; it strongly depends on the material

used for the simulation.

Figure 10. Mean squared error of the estimated vector

parameters

Figure 11. Convergence behaviour of the state trajectory

Figure 12. Computation time of the two networks

Figure (13) shows the spectral density of the AR (4)

process for CDGNN and Yule-Walker methods. The two

methods give a similar performance.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

4

Real Part

Im
a

g
in

a
ry

 P
a

rt

0 1 2 3 4 5

x 10
5

10
-15

10
-10

10
-5

10
0

Iteration k

R

x a
-r

x

2

DGNN

CDGNN

0 1 2 3 4 5

x 10
5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Iteration k

a
-â

22

DGNN

CDGNN

0 1 2 3 4 5

x 10
5

-3

-2

-1

0

1

2

3

Iteration k

T
ra

je
c
to

ri
e
s
 â

(k
)

DGNN

CDGNN

True

500 1000 1500 2000
10

-3

10
-2

10
-1

10
0

Order p

C
o
m

p
u
ta

ti
o

n
 t

im
e
 p

e
r

it
e

ra
ti
o
n
 (

s
)

DGNN

CDGNN

313

Figure 13. Spectral density of the process for different

methods

For further illustrative and comparative purposes, let us

consider the above model. The simulation results based on

100 realizations are summarized in Table 1. The averaged

mean square error (AMSE) is given by:

2

2
1

1
ˆ

M

m
m

AMSE
M =

= − a a (18)

where ma is the estimated vector using the m -th realization

and M the total number of realizations. As we can see from

the table, the performances of the Yule-walker method and

the proposed simplified neural network are similar.

Table 1. Computed results of estimated parameters using

different algorithms

 1a 2a 3a 4a AMSE

True -2.0371 2.4332 -1.7832 0.7019 0

Y-W -2.0512 2.4478 -1.8383 0.7162 0.00091

CDGNN -2.0512 2.4478 -1.8383 0.7162 0.00091

Figure 14. parameter selection

Concerning the selection of the design parameter ,

several simulations were done. As shown in the Figure (14),

the optimal value giving a convergence error 10−10 is about

6 × 105. For smaller values, the convergence time is more

important. However for values just greater than the optimum

value, the network presents some damped oscillations. If this

value is further increased, the network diverges.

We note here, that the optimal value is strongly influenced

by the value of the noise variance. For smaller values, a

higher value of should be used.

6. CONCLUSIONS

Recurrent neural networks are very useful as

computational models for solving computationally intensive

problems due to their inherent nature of parallel and

distributed information processing. The Toeplitz structure of

the correlation matrix allows us to design a compact

implementation of the gradient based neural network for AR

parameters estimation taking the advantage of the fast

Fourier transform. The proposed reduced neural network is

very suitable for estimating the AR parameters of models

with large order. Computer simulations confirm the fastness

and the accuracy of the proposed estimator.

REFERENCES

[1] Kay SM. (1988). Modern Spectral Estimation: Theory

and Application. Englewood Cliffs, NJ: Prentice-Hall.

[2] Zeng X, Shao Z, Lin W, Luo H. (2018). Research on

orientation holes positioning of printed board based on

LS-power spectrum density algorithm. Traitement du

Signal 35(3-4): 277-288.

https://doi.org/10.3166/ts.35.277-288
[3] Marple SL. (1987). Digital Spectral Analysis with

Applications. Englewood Cliffs, NJ: Prentice-Hall.

[4] Park SK. (1990). Hopfield neural network for AR

spectral estimator. In Proc. IEEE, pp. 487-490.

http://dx.doi.org/10.1109/ISCAS.1990.112092

[5] Xia Y, Kamel MS. (2006). A cooperative recurrent

neural network algorithm for parameter estimation of

autoregressive signals. International Joint Conference

on Neural Networks, Vancouver, BC, Canada, pp.

2516-2522.

[6] Shao Z, Chen T. (2016). Distributed piecewise H∞

filtering design for large-scale networked nonlinear

systems. Eurasip Journal on Advances in Signal

Processing 7: 1-12. https://doi.org/10.1186/s13634-016-

0350-2

[7] Zhong ZX, Wai RJ, Shao ZH, Xu M. (2017). Reachable

set estimation and decentralized controller design for

large-scale nonlinear systems with time-varying delay

and input constraint. IEEE Transactions on Fuzzy

System 25(6): 1629-1643.

https://doi.org/10.1109/TFUZZ.2016.2617366

[8] Zhong ZX, Lin CM, Shao ZH, Xu M. (2016)

Decentralized event-triggered control for large-scale

networked fuzzy systems. IEEE Transactions on Fuzzy

System (99): 1-1.

[9] Zhang Y, Chen K, Ma W. (2007). MATLAB simulation

and comparison of Zhang neural network and gradient

neural network for online solution of linear time-

varying equations. International Conference on Life

System Modeling and Simulation, Shanghai, China, pp.

0 0.1 0.2 0.3 0.4 0.5
-60

-50

-40

-30

-20

-10

Frequency (Hz)

P
o

w
e

r/
fr

e
q

u
e

n
c

y
 (

d
B

/H
z

)

True

CDGNN

Yule Walker

3 3.5 4 4.5 5 5.5 6 6.5

x 10
5

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

4

Optimal v alue of

It
e
ra

ti
o
n
s

h=10-4 ,
e
2=10-2

314

450-454.

[10] Stanimirovi ć PS, Petkovi ć MD. (2018). Gradient

neural dynamics for solving matrix equations and their

applications. Neurocomputing 306: 200-212.

[11] Stanimirovi ć PS, Petkovi ć MD. (2019). Improved

GNN models for constant matrix inversion. Neural

Process. Lett. https://doi.org/10.1007/s11063-019-

10025-9

[12] Shiheng W, Shidong D, Ke W. (2015). Gradient-based

neural network for online solution of Lyapunov matrix

equation with Li activation function. International

Conference on Information Technology and

Management Innovation, pp. 955-959.

https://doi.org/10.2991/icitmi-15.2015.161

[13] Zhang Y, Chen K. (2008). Global exponential

convergence and stability of Wang neural network for

solving online linear equations. Electronics Letters

44(2): 145-146. http://dx.doi.org/10.1049/el:20081928

[14] Yi C, Zhang Y. (2008). Analogue recurrent neural

network for linear algebraic equation solving.

Electronics Letters 44(18): 1078-1079.

http://dx.doi.org/10.1049/el:20081390

[15] Pan V. (2001). Structured Matrices and polynomials:

Unified Superfast Algorithms. Birkhauser Boston.

[16] Kailath T, Sayed AH. (1999). Fast Reliable Algorithms

for Matrices with Structure. SIAM Publications,

Philadelphia, PA.

315

