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 Analysis of the vortical structures arising in the system with respect to their control 

parameters is an important fundamental study. Studies in this regard have mostly been paid 

attention on a free convective cavity flow. Relatively few studies have been devoted on the 

characteristics of the vortical structures arising in the mixed convection cavity flows. Thus, it 

is aimed to analyse the vortical structures arising in a free and forced convective flow of air 

in a cubical cavity using the direct numerical simulations. Governing equations of this 

problem, expressed in dimensionless form are solved by using the finite volume method. The 

simulated results are corroborated with benchmark solutions. Numerical solutions are 

obtained for wide range of Reynolds number (Re) and Richardson number (Ri) (the mixed 

convection parameter). The flow and thermal characteristics are analysed using isotherms, 

velocity magnitude, vortex corelines and average Nusselt number. The simulated results 

show that the large values of Ri decrease the total heat transfer rate thus the conductive heat 

transfer prevails. While when Ri takes the small values and for amplified values of Re the 

complex 3D features are clearly seen and the vigorous forced convection enhances the global 

heat in the system. 
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1. INTRODUCTION 

 

The laminar incompressible mixed convection lid driven 

cubical cavity flow has wide number of applications in 

engineering and science such as crystal growth, electronic 

device cooling, food processing, metal casting and phase 

change as freezing of water for latent thermal storage systems, 

solar power collector, glass production etc. Among these 

numerical experiments some of the benchmark solutions 

aided to investigate the performance of numerical 

methodologies and solving the incompressible Navier–Stokes 

equations for problems with complex geometries. In the 

literature for the past few decades attention has been focused 

on mixed convective flow in a cavity in different types of 

cavity geometries, fluids and imposed temperature gradients. 

Moallemi and Jang [1] studied the 2D flow and their 

thermal features in the laminar flow regime for 100 ≤ Re ≤ 

2000 with 0.01 ≤ Prandtl number (Pr) ≤ 50 and also varying 

the Ri values. The influence of buoyancy on the flow and 

thermal features is seen to be more aggravated for large 

values of Pr. It is shown that the free convection assists the 

forced convection magnitude. A numerical investigation in 

two dimensional shallow cavities of aspect ratio (AR) 10 was 

performed by Sharif [2] with heated moving plate. He 

noticed along the heated moving top wall, the local Nusselt 

number (Nu) starts with a high value at the left wall and 

decreases rapidly to a small value towards the right wall. The 

Nu in the vicinity of right cold wall shows an oscillatory 

behaviour because of the existence of a vortex at the cold 

surface. The average Nusselt number (𝑁𝑢̅̅ ̅̅ ) augments slowly 

and quickly with the inclination of the cavity for Ri = 0.1 and 

10, respectively. Prasad et al. [3] studied the mixed 

convective flow inside a 2D cavity with two vertical side 

walls kept at a cold temperature and with other vertical walls 

as adiabatic. It is observed that when the Grashof number (Gr) 

< 0, a strong convection is manifested for ARs with 0.5 and 

1.0. Also it is shown that for AR = 2, a Hopf bifurcation 

occurred at Gr = −105. In 2D and 3D bottom heating cavities, 

Mohammad and Viskanta [4] shown that the movement of lid 

suppresses all forms of convective cells for finite size cavities.  

The majority of past literature has been confined to the 

flow problems in the cavity. While in general, because of the 

no-slip conditions imposed at the end walls, a closed finite 

cavity problem possesses the 3D characteristics. Koseff and 

Street [5-7] observed that the lab experiments on these driven 

cavity flows have been paid less attention. They conducted 

experiments to describe the eminent features of the 3D lid 

driven cavity flows. Using pseudo-spectral method Ku et al. 

[8] attempted to compute the flow inside a cubic cavity at Re 

= 100, 400 and 1000. A systematic computational exercise 

was performed by Iwatsu et al. [9-11] for a cubical cavity in 

100 ≤ Re ≤ 4000. One among the main result of these 3D 

numerical simulations indicates that the steady solutions are 

attained at lower values of Re, but the flow becomes unsteady 

when Re exceeds approximately 2000. Aydin et al. [12] 

numerically analysed the transport mechanism of free and 

forced convection in a shear cavity with bottom heated wall 

and other walls as sliding.  

From the previous studies, it can be observed that for the 

flow in the 2D cavity in the absence of top lid motion the 

vertical heat transfer is shown to be entirely conductive and 

the externally applied temperature difference is 
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gravitationally stable. But for the flow in the 3D cavity, it is 

analysed that due to the movement of the lid, the 

mechanically driven convection is induced along with the 

enhancement of associated 3D heat movements. Thus along 

with imposed conditions on the cavity in realistic 

applications, the 3D constraints have to be taken into 

consideration. Thus, in the present paper the 3D features in 

the cubical cavity are aimed to analyse. The structure of 3D 

flows using the comprehensively and systematically 

organized numerical simulations by varying the control 

parameters is presented. 

The heat transfer mechanism in a lid driven cubical cavity 

by augmenting the convective activities is analysed in the 

steady state region of 100 ≤ Re < 2000, 0 ≤ Ri ≤ 10 with Pr = 

0.71. These considered parameter values are inline with 

Iwatsu et al. [11] and Ouertatani et al. [14]. The previous 

works of [1-12] is extended to analyse the vortical structures 

arising in this system. Using the open source software, 

namely, OpenFOAM the simulations are carried out. The 

finite volume method is used to discretize the governing 

equations. The enormous output data is analysed with help of 

velocity magnitude, isotherms, vortical corelines etc.  

The paper is organised as follows: In section 2, the 

configuration of the considered geometry along with the 

mathematical model is given. The adopted methodology to 

solve the model is explained. The simulated results are 

validated extensively and shown in section 3. The simulated 

results are analysed with respect to streamlines, isotherms 

and vortex corelines and given in section 4. The last section 

summarises the work done in this paper. 

 

 

2. PHYSICAL SYSTEM AND GOVERNING 

EQUATIONS 
 

A cubical lid driven cavity of length L is considered in the 

Cartesian coordinate (X, Y, Z) system which is filled with air. 

The schematic of the considered geometry along with the 

boundary conditions are shown in Fig. 1.  

 

 
 

Figure 1. Schematic of lid driven 3D cavity of length L 

 

The top lid situated at Y = L moves steadily in its own 

parallel plane with a constant velocity (U0), while the other 

boundary walls are kept at rest. The left side wall is assumed 

to be kept at a higher temperature (TH) than that of the right 

side wall (TC) with difference in temperature (ΔT =TH - TC) > 

0. In addition to these assumptions, the other four remaining 

boundary walls are assumed to be adiabatic. 

The considered 3D physical system is converted to a 

mathematical model by the steady laminar dimensionless 

form for the mass conservation, momentum and energy 

equations with the Boussinesq approximations as  

 

𝑑𝑖𝑣 𝑽 = 0                           (1) 

 

(𝑽.  𝑔𝑟𝑎𝑑 )𝑽 =  −𝑔𝑟𝑎𝑑 𝑝 +
1

𝑅𝑒
. ∇2𝑽 + 𝑅𝑖.  𝑇∗𝒆                 (2) 

 

(𝑽.  𝑔𝑟𝑎𝑑)𝑇∗ =
1

𝑅𝑒.  𝑃𝑟
.  ∇2𝑇∗                                               (3) 

 

where notations are explained in the Nomenclature. The 

above equations (1)-(3) are closed with the following 

boundary conditions: 

 

V = (1, 0, 0) at Y = 1; V = 0 at Y = 0, X = 0, 1; Z = 0, 1 

𝑇∗ = 1 at X = 0; 𝑇∗ = 0 at X = 1. 
𝜕𝑇∗

𝜕𝑌
= 0, at X = 0, 1 and 

𝜕𝑇∗

𝜕𝑍
= 0, Z = 0, 1. 

 

The non-dimensional heat transfer rate (Nu) at the hot wall 

is computed is by Nu = (
𝜕𝑇∗

𝜕𝑋
)

𝑋 = 0
. The average heat transfer 

rate (𝑁𝑢)̅̅ ̅̅ ̅ is obtained by integrating Nu along the hot wall. 

With the aid of above numerical model given in Eqs. (1)-

(3) the open source software namely, the OpenFOAM is used 

to simulate the fluid flow inside the cubical cavity. In the 

buoyantBoussinesqSimpleFoam of the CFD solver the 

geometry, flow volume and boundary conditions are set. It is 

a steady state solver for buoyant flow of incompressible fluid 

that includes Boussinesq approximation. The second order 

upwind linearization technique is employed for the spatial 

derivatives. The CGS method was used as an effective 

acceleration means and divergent and Laplacian terms are 

discretized by the QUICK and Gauss linear schemes, 

respectively. 

 

 

3. VALIDATION 

 

Table 1. Validation of simulated results with respect to 𝑁𝑢̅̅ ̅̅  

 
 Ri 

 

Re 

  

0.001 

 

 1 

 

10 

 

 

100 

Present work 1.8134 1.305 1.075 

Iwatsu et al.[11] 1.820 1.330 1.080 

Ouertatani et al. [14] 1.836 1.348 1.092 

 

 

400 

Present work 3.880 1.540 1.169 

Iwatsu et al. [11] 3.990 1.500 1.170 

Ouertatani et al. [14] 3.964 1.528 1.130 

 

1000 

Present work 7.150 1.790 1.340 

Iwatsu et al. [11] 7.030 1.800 1.370 

Ouertatani et al. [14] 7.284 1.856 1.143 

 

The present simulated results are corroborated with the 

similar works done by Iwatsu et al. [9] and Nasreddine 

Ouertatani et al. [11] in terms of 𝑁𝑢̅̅ ̅̅ . The validation is 

performed for Ri = 0.001, 1 and 10 and Re = 100, 400 and 

1000 and the values are tabulated in Table 1. The deviation 

between the present simulated results and the previous results 

is very less. Thus, the data obtained from the present study is 
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used to predict the characteristics of mixed convective heat 

transfer in the cubical cavity.  

 
(a) Velocity magnitude |V | at XY mid plane 

 
(b) Temperature T* at XY mid plane  

 

Figure 2. Grid independent test for Re = 100, Ri = 0.001. 

 

Figure 2 shows the |V | and T* solutions calculated using 

three different size meshes, namely 243, 483 and 963 with Ri 

= 0.001and Re = 100. Figures 2 (a) and (b) show |V | and T* 

in the XY mid plane, respectively, that are calculated using 

the above different mesh sizes. From Fig. 2 it is observed that 

currently employed 483 uniformly stretched mesh results did 

not show much difference from those when the mesh 

resolution was increased and decreased by 50%. Hence the 

mesh with 483 resolutions was used for the simulations which 

are conducted in the investigated domain.  

 

 

4. RESULTS AND DISCUSSION  

 

The simulated results are plotted as streamlines and 

isotherms for different control parameter values, such as Re 

and Ri arising in the system. The important aspects of 

combined effect of Re and Gr on the vortical structures is 

analyzed. The physical parameters Re and Gr control the 

flow characteristics and hence they are varied proportionally 

so that the mixed convection parameter Ri is kept constant as 

Ri < 1, = 1 and > 1. For these Ri values, from the Table 1 it 

can be observed that the 𝑁𝑢̅̅ ̅̅  gets augmented with Re while it 

gets diminished for increasing values of Ri and the variation 

between each value is more that 50%. 

For the past few decades extensive experimental and 

numerical investigations have paid attention on the 

recirculation phenomena arising inside the cavity along with 

the developing and deforming 3D vortical structures and 

coherent structures. Three major regions in the cavity classify 

the flow field are: (i) the flow near the hot wall (ii) centre of 

the cavity where the energy exchange takes place through the 

interaction of the vortices and (iii) the vicinity of the lid, 

where there is a large velocity gradient exists due to the 

movement of lid. Thus, the analysis of vortex dynamics of 

this flow is a demanding task. 

 

4.1 Isotherms 

 
(a) Re = 100, Ri = 0.001 

 
(b) Re = 100, Ri = 1 

 
(c) Re = 100, Ri = 10 
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(d) Re = 400, Ri = 0.001

 
(e) Re = 400, Ri = 1 

 
(f) Re = 400, Ri = 10 

 
(g) Re = 1000, Ri = 0.001 

 
(h) Re = 1000, Ri = 1 

 
(i) Re = 1000, Ri = 10 

Figure 3. Isotherms for different Ri and Re. 

The contour legend used in  Figs. (a)-(i) is shown 

in Fig (a) 
 

The influence of Re and Ri on the temperature contours is 

illustrated in Fig. 3. When Ri is fixed at 0.001 and Re 

increases from 100 to 1000, i.e., as velocity of the upper lid 

increases, it is observed that vertical isotherms start to 

appear. The buoyancy driven convection is dominated by the 

mechanically driven forced convection as observed from 

Figs. 3(a, d, g). This result implies the lid movement is due to 

the forced convection only. As the isotherms depart from the 

vertical position, i.e. Ri = 1, there is a change in the heat 

transfer mechanism between the conduction and convection 

states. Initially the isotherms at the centre of the cavity are 

horizontal and become vertical especially inside the very thin 

boundary layers as shown in Figs. 3(b, e, h). While on the 

other hand, when Ri augments from 1 to 10, isotherm fields 

get distorted by the buoyant convection and 3D patterns 

become more pronounced as shown in Figs. 3(c, f, i). The 

isotherm field gets more distorted with increasing Ri values. 

This is due to the fact that if the forced convection due to the 

lid movement is almost nil, buoyancy force dominates the 

flow and natural convection controls the heat transfer. 

 

4.2 Velocity magnitude 

 

Figure 4 shows the velocity magnitude distributions on the 

symmetry planes for different Re and Ri. We observe that the 

flow motion in 3D cavity is elaborated due to the effect of 

lateral walls. For the cases of low Re flow tunnels are 

developed near the center of walls, and as Ri increases, they 
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move to the corners of the cavity. As shown in Fig. 4(c), the 

maximum velocity is located adjacent to two corners of the 

isothermal walls, which means the two tunnels have been 

developed there. In addition, we also find that similar to the 

temperature field, velocity boundary layers are generated 

close to the isothermal walls, which become thinner with 

increasing Re, but no apparent velocity boundary layers are 

developed adjacent to the adiabatic walls. This result 

indicates that contrary to those results obtained near the 

adiabatic wall i.e., a boundary layer is formed adjacent to the 

isothermal wall. This outcome is consistent with the 

phenomenon observed in Fig. 4. 

 

 
(a) Re = 100, Ri = 0.001 

 
(b) Re = 100, Ri = 1 

 
(c) Re = 100, Ri = 10 

 
(d) Re = 400, Ri = 0.001 

 

 
(e) Re = 400, Ri = 1 

 
(f) Re = 400, Ri = 10 

 
(g) Re = 1000, Ri = 0.001 
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(h) Re = 1000, Ri = 1 

 

 
(i) Re = 1000, Ri = 10 

Figure 4. Velocity magnitude for different Ri and Re 

The contour legend for Figs. (a)-(i) is shown in Fig.(a) 
 

4.3 Vortex corelines and streamlines 

 

The swirling motion in the fluid is regarded as the vortex 

and the main signature of the vortical flow is given by the 

vortex corelines. According to Robinson [15] the vortex is 

defined as "A vortex exists when instantaneous streamlines 

mapped onto a plane normal to the vortex core exhibit a 

roughly circular or spiral pattern, when viewed from a 

reference frame moving with the centre of the vortex core". 

Thus, an analysis is made from the enormous simulated data 

to understand the signature of vortex flow with respect to the  

different control parameters. The vortices that generated from 

the end walls are detected and visualized. In general these 

vortices consist of critical points in the wall shear stress 

vector field [16].  

Figure 5 depicts the vortex corelines and swirling 

streamlines around these corelines for Re = 100 and Ri = 

0.001. The velocity gradient eigen-mode method was used to 

extract these vortex corelines. The front and right side views 

of the cavity are shown to clearly visualize the vortical 

structures arising in the system. Also Fig. 5 shows the pattern 

of vortical coreline that occur in the recirculation region. The 

coreline depicts the complex surface streaking structure. 

Since the fluid particles near the endwall lead the vortical 

motion to proceed along the third dimension, the vortex 

motion shows its start/end in the bounding endwalls [13]. 

Also the fluid particles about this line have an inclination to 

move spirally towards the symmetry plane. At the centre of 

the cavity there are two vortices that are similar and interact 

with each other. The exchange of energy among these two 

closed vortical structures happens at the centre of the cavity. 

Hence the 3D flow structure is necessary to understand the 

realistic nature of flow. 

 
(a) Front view 

 
(b) Viewing from right side 

 

Figure 5. Vortex corelines and Streamlines for Re = 100 and 

Ri = 0.00. The red and blue denote the hot and cold walls 

respectively. The streamtraces are shown in green color 

 

 
(a) Re = 100, Ri = 0.001 
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(b) Re = 100, Ri = 1 

 
(c) Re =100, Ri =10 

 
(d) Re = 400, Ri = 0.001 

 
(e) Re = 400, Ri = 1 

 
(f) Re = 400, Ri = 10 

 
(g) Re = 1000, Ri = 0.001 

 
(g) Re = 1000, Ri = 1 

 
(i) Re = 1000, Ri = 10 

Figure 6. Visualizing vortex corelines (red color)  

and Streamtraces (green color) for different Ri and Re 
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Figure 6 illustrates the streamlines and the vorticity in 

terms of vortical corelines in the cubical cavity for different 

combinations of Re and Ri values. The swirling nature is 

closer to the vortex lines as Ri increases. The strength of the 

vorticity increases as Re or Ri increases. When Ri < 0.1 the 

natural convection is insignificant, Ri > 10 forced convection 

is insignificant, and for 0.1 < Ri < 10 neither free nor forced 

convection are significant. The forced convection is large 

relative to natural convection, except in the case of extremely 

low forced flow velocities.  

The following three different cases of Ri are investigated 

in the present study: (i) Ri (= 0.001) is much less than unity 

(free convection); (ii) Ri is of order unity (=1), where the 

flow is buoyancy-driven or the energy of the flow derived 

from the potential energy in the system (mixed convection); 

(iii) Ri >> 1 (=10), i.e., the buoyancy is dominant or to 

homogenize the fluids, there is insufficient kinetic energy 

(forced convection). The above three cases are depicted in 

Figs. 6(a, d, g), Figs. 6(b, e, h) and Figs. 6(c, f, i), 

respectively. It can be observed that for all values of Ri the 

increasing values of Re from 100 to 1000 shows the chaotic 

nature of the flow from laminar to transitional. As Re 

increases the streamlines are much distorted. The flow 

behaviour observed to be different in different types of 

convection dominated regimes.  

 

 

5. CONCLUSION 

 

In the present paper an attempt is made to address the 3D 

laminar free and forced convective flow in a cubical cavity 

filled with air for the non-dimensional numbers Re and Ri 

arising in the system. The effects of these parameters and 

their resulting convection disturbances are investigated. 

When Ri << 1, the isotherm surfaces maintain a two 

dimensional structures for Re = 100 and 3D structures are 

visualised when Re takes the large values. But for the large 

Ri values there is a stabilizing buoyancy effect, heat transfer 

is largely by convection and three dimensionality in the 

thermal field is weak. When Ri >> 1, the heat transfer rate is 

suppressed along with the conductive heat transfer. It is 

observed that vigorous forced convection enhances the global 

heat. 
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NOMENCLATURE 

 

g   gravitational acceleration (ms-2) 

Gr   Grashof number  (=  
𝑔𝛽(∆𝑇)𝐿3

ν3 )   

L   Length of the cavity (m) 

Nu   Local Nusselt number  

𝑁𝑢̅̅ ̅̅    Average Nusselt number  

p   non-dimensional pressure 

Pr   Prandtl number (=  
ν

𝛼
)  
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𝑅𝑎   Rayleigh number (=  
𝑔𝛽(∆𝑇)𝐿3𝑃𝑟

ν3 )   

Re   Reynolds number (= 𝑈0ℎ/ν)  

Ri   Richardson number (= Gr.Re-2 

𝑇   Dimensional temperature (K) 

𝑇∗            Dimensionless temperature (=  
𝑇−𝑇𝐶

∆𝑇
) 

U0   Top wall velocity (m s-1) 

V   Dimensionless velocity vector 

X,Y,Z   Cartesian coordinates (m) 

 

Greek symbols 

α   coefficient of thermal diffusion (m2s-1) 

β   coefficient of thermal expansion ( K-1) 

ν   molecular kinematic viscosity (m2s-1) 

ρ   density 

ΔT   temperature difference, (= TH - TC > 0) 

Subscripts 

C   Cold wall  

H   Hot wall  

m   mean
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