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The optical character recognition field was one of the key areas of evidence for deep 

learning methods and has become one of the most successful applications of this 

technology. Despite that the Arabic is among the most spoken languages in the world today. 

the optical recognition of Arabic manuscript characters by the algorithms of deep learning 

remains insufficient. Recently, some studies are moving towards this side and give 

remarkable results either for the recognition of alphabets or Arabic numbers. We present a 

deep architecture to solve the problem of the recognition of intrusive handwritten characters 

to Arabic language. We use a fusion between the morphological gradient method to detect 

the contours of the alphabets, and multi-layer perceptron (MLP) network with 

regularization parameters like batch normalization. We apply this model for a database that 

we created. The classification accuracy was 100% with a very small loss of 0.2%. 
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1. INTRODUCTION

Characters Recognition is one of the difficulties [1] to be 

addressed by the field of artificial intelligence until today. It is 

the Optical Character Recognition (OCR) field that designates 

computer processes for the transformation of images of printed 

texts, typewritten, or handwritten in text files. Overall, the 

handwritten recognition systems are two: online and offline 

systems [2]. The capacity to process large quantities of script 

data in specific contexts will be important. The OCR is 

interested in old documents through the transcription 

automation of their textual contents, given the complex and 

irregular nature of writing [3]. The recognition of Arabic texts 

is developing slowly compared to other languages [4]. Despite 

the fact that Arabic is the main language of the North of Africa 

and the Middle East. It is widely spoken in many other 

countries. Statistically, Arabic is one of the top five languages 

spoken in the world today [5, 6]. In the last two years, the 

recognition of Arabic alphabets by deep learning algorithms, 

as well as Arabic numerals [7], is a remarkable development 

by Arabian researchers. The strong point of the deep learning 

compared to the classical algorithms of artificial intelligence 

is the extraction of the features of the images by the algorithm 

itself using filters at the beginning of the process of training. 

Whereas the classical algorithms are based on vectors of 

features extracted by experts (searchers, programmers). So, as 

long as the images are clear and show the details of its objects, 

the results of the deep learning algorithms will be satisfying. 

Most of the studies in this area have focused on predefined 

deep learning modeling, especially the convolutional neural 

network (CNN) [8]. This is the case for the study [9] which 

uses the CNN model with regularization parameters like batch 

normalization to avoid oversampling. The model is applied on 

both databases, AIA9k and AHCD. The classification 

accuracies for the two datasets were 94.8% and 97.6% 

respectively. Another work model CNN has formed and tested 

a dataset of 16,800 Arabic characters in which the 

optimization methods implemented to increase the 

performance of CNN. The most common machine learning 

methods typically apply a combination of feature extractor and 

classifier that can be trained. The use of convolutional neural 

network leads to huge enhancements on various machine 

learning classification algorithms. This CNN proposal gives 

an average loss of 5.1% on the test data [10]. The use of a CNN 

model with modifications to its parameters to be suitable with 

the treated problem is able to give satisfying results even for 

more complete databases (colored images). This is the case of 

the studies that have been quoted beforehand. While the 

images processed by the ROC domain are in general binary or 

gray-scale images, this nature can process by classic 

classification algorithms (SVM, linear regression ...) and gives 

remarkable results better than some models of deep learning, 

like the study [11] which combines three classical algorithms: 

KNN (K-Nearest Neighbors) classifier, SVM (support vector 

machine), and RF (Random Forest) classifier [12]. These 

methods give successively 99.71%, 97.88%, and 99.91% as 

precision for the MNIST database.  

The CNNs mentioned above are very solid architectures at 

the level of deep learning in general because they are based on 

convolutional layers. These layers have the role of extractors 

of the images’ features through filters and pooling layers 

followed by fully connected layers (like the structure of MLP 

that we used in this paper). The advantage of this structure is 

the neglect of human intervention which is limited to choosing 

the general confederations of CNN (number of layers, filters 

and neurons per layer, the activation functions used. etc.) and 

they change several times to get the best accuracy possible. 

This negligence can be considered a weak point sometimes 

despite the roughness of the CNNs because they based on deep 

architecture with complex mathematical functions with 
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thousands of parameters which is out of control for human 

beings. For these reasons, we will focus in this study on the 

database itself through the clarity of the objects of its images 

to overcome the weak points of deep learning methods cited 

above. We will use a combination of two methods of machine 

learning. The first is the morphological gradient to illuminate 

the processed alphabet through the detection of its contours, 

followed by an MLP which is a deep network. Our model is 

applied to a database of Arabic intruder alphabets (gaf, ve, pe). 

 

 

2. METHOD 
 

2.1 Motivation 

 

The objective of this study is to treat the intrusive alphabets 

to the Arabic language which is not treated previously at the 

level of the recognition of the Arabic characters. All studies in 

this side focused on Arabic characters and numbers [7, 9, 13]. 

The alphabets treated by this study are similar to few Arabic 

alphabets with a difference in the number of points below or 

above the alphabet. This similarity shown in Table 1 requires 

concentration on the points that consist each alphabet for a 

deep learning algorithm to be able to distinguish one to the 

other. 

 

2.2 Database creation 

 

The supervised recognition of images by deep learning 

algorithms consists of the process of training that requires a 

database of images related to the processed alphabets. This 

database must contain maximum images with different shapes 

of alphabets treated. Because of the absence of a database to 

use, it is created, taking into consideration the different 

possibilities of writing processed alphabets. To ensure the 

efficiency of the images created, manuscripts of people of 

different ages have been captured. Each image size is 64x64 

pixels. In general, Arabic alphabets are re-formed according to 

their position in the words as you see in Table 2.  

 

Table 1. The similarity and the differentiation between the original alphabets and intruders to the Arabic language 

 
Name Gaf Pe Ve 

Intruder 

alphabet 
   

Original 

alphabet 
   

Similitude The same basic form 

Difference 

Three points above the 

intruder 

alphabet 

Three points below the intruder alphabet instead of one for the 

original alphabet 

Three points above the 

intruder 

alphabet instead of one or 

two for 

the original alphabets 

 

Table 2. Main forms of intruder characters to the Arabic 

language 

 
Name isolated Initial Median Final 

Gaf  

 

 

- 
 

- 
 

 

Pe 

    

Ve 

    
 

The database consists of 1200 images of handwritten 

alphabets intrusive to the Arabic language divided into: 450 

characters for the Gaf alphabet, 389 for Pe, and 361 for Ve as 

shown in Figure 1.  

 

 
 

Figure 1. Number of alphabets per class 

 

In order to build a solid database we are trying to capture a 

suitable number of images per class based on exiting databases 

such as Arabic Handwritten characters Dataset which contains 

600 images per class. The images in our database are binary 

images (white / black images) with a uniform size of 64x64 

pixels. The alphabets are generally centered in the middle of 

the images for this we have reduced their size to 24x24 pixels 

before processing. This redimensioning which is used in most 

of the image recognition algorithms is capable of removing 

certain images’ features. This is why we are testing several 

forms in order to preserve the images’ features. The Figure 2 

shows samples of our database. 

 

 
 

Figure 2. Samples of our database 
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Figure 3. Deep morphological gradient method 

 

2.3 Architecture 

 

We discuss in this section our method and its ability to 

improve the recognition accuracy of the processed dataset. For 

this purpose, we test our database with a multilayer perceptron 

(MLP) of three layers (input, output and an intermediate or 

hidden layer). This MLP has already used for the recognition 

of Arabic numbers [14]. This is preceded by the binary 

threshold method for Segmenting images based on the fact that 

these are binary images. The first fully connected layer 

receives the image pixels densities vector. Its size is 576 (we 

resize the images to 24x24 since the alphabets are centered in 

the middle of the images). The second fully connected layer as 

the first one consists of 512 neurons with the function of 

activation ReLU in order to eliminate the negative values for 

output values of each neuron. The third layer consist of 3 

neurons is linked to the target classes (the three alphabets) with 

SoftMax as an activation function for each neuron to render 

the results as categorical probabilities between 0 and 1 taking 

a predicate for a class of the three classes (the alphabets treated) 

is true. The Adam Optimizer is used during the training 

process to get the best model possible. 

Our method (deep morphological gradient) shown in The 

Figure 3, is very close to the first method except that the 

morphological gradient method is used instead of binary 

threshold. The gradient algorithm uses the inverse binary 

threshold method, followed by the difference between the two 

morphological methods, dilation and erosion in order to detect 

the contours of the processed images. Dilation enlarges the 

body of the alphabet (i.e. white part of the image). We use an 

array of 3x3 dimension containing ones as kernel. In the same 

way, the erosion corrodes white part of the image. The 

difference between them gives us a clear alphabet outline. 

Table 3 shows the morphological gradient of some alphabets. 

 

Table 3. Morphological gradient of some alphabets 

 

Original 

image 
     

Gradient 

image 
     

 

We know that a deep learning algorithm goes through two 

main stages (Forward and Backward) to get the best 

parameters (weights and biases) to build the final model. 

Below, the two-step process for our proposed method: 

The process started with a morphological gradient algorithm 

as follows: 

 

G(Ig) = (Ig ⊕ B) – (Ig ⊖ B) (1) 

 

where, Ig: 𝐸 → 𝑅 a grayscale image, E a discrete grid E (like 

R2 or Z2), and B a structuring element in grayscale, ⊕ and ⊖ 

respectively denote the dilatation and erosion [15, 16]. 

 

2.3.1 Forward 

The Forward path is essentially a set of operations that 

transform the network input into an exit space. During the 

inference phase, the neural network is based solely on the 

forward passage. We assume here that each neuron, except the 

neurons of the last layers, uses the ReLU activation function 

(the last layer uses SoftMax). Activation functions are used to 

introduce non-linearity into the system, which allows learning 

of complex functions. So, these are the calculations done in the 

first layer:  

For neuron 1 of the first layer: 

 

hin  =  ∑ Wi

576

i=1

G(xi) +  b1 (2) 

 

hout  = Relu( ∑ 𝑊𝑖

576

𝑖=1

𝐺(𝑥𝑖) + 𝑏1 ) (3) 

 

By rewriting this as a matrix for all the neurons of the first 

layer, we have: 

 

hin  = [ 𝑥1 … 𝑥576 ] × [
𝑤1

1 ⋯ 𝑤1
512

⋮ ⋱ ⋮
𝑤576

1 ⋯ 𝑤576
512

] + [𝑏1 … 𝑏512] (4) 

 

Now, if we represent inputs in the form of matrix I, weights 

of neurons equal to W and bias to B, we obtain: 

 

hin  = I ×  W +  B (5) 

 

hout  = Relu( ℎ𝑖𝑛  ) (6) 

 

This can be generalized for any layer of a fully connected 

neurals network such as 

 

ℎ0
𝑜𝑢𝑡 = 𝐼 (7) 

 

279



 

ℎ𝑖
𝑖𝑛 =  ℎ𝑖−1

𝑜𝑢𝑡 × 𝑊𝑖 + 𝐵𝑖 (8) 

 

ℎ𝑖
𝑜𝑢𝑡 = 𝐹𝑖(ℎ𝑖

𝑖𝑛) (9) 

 

where, i is the layer number and F is the activation function for 

a given layer. Applying this formula to each layer of the 

network, we will implement the forward pass and get the 

network output. 

 

2.3.2 Backward (Backpropagation) 

In order to measure the degree of inconsistency of our 

predicates compared to real labels, we need a metric. This 

metric is called the loss function, which measures the 

performance of the model. This is a positive value that 

decreases as the network becomes more consistent with its 

predicates. The Cross-Entropy is used as loss function for our 

model. It is defined as follows: 

 

𝐶𝐸 =  − ∑ 𝑦𝑗

𝑛

𝑗

× ln(�̂�𝑗) (10) 

 

where, ŷ  is the vector of the network output, y the vector of 

the true labels, and n is the number of classes. Now, in order 

to find the error gradients with respect to each variable, we 

start with the last layer and taking a partial derivative of the 

loss versus the weight of the neurons, we get: 

 

𝜕𝐶𝐸

𝜕𝑊3

=
𝜕𝐶𝐸

𝜕ℎ3
𝑖𝑛

×  
𝜕ℎ3

𝑖𝑛

𝜕𝑊3

 (11) 

 

Knowing that in case of softmax activation function and 

cross-entropy loss, we have: 

 
𝜕𝐶𝐸

𝜕ℎ3
𝑖𝑛

=  �̂� − 𝑦 (12) 

 

Now we can find the gradient for the last layer like: 

 

𝜕𝐶𝐸

𝜕𝑊3

= (�̂� − 𝑦)
𝜕ℎ3

𝑖𝑛

𝜕𝑊3

 

= (�̂� − 𝑦)
ℎ3

𝑜𝑢𝑡𝑊3 + 𝐵3

𝜕𝑊3

 

= (ℎ2
𝑜𝑢𝑡)𝑇(�̂� − 𝑦) 

𝜕𝐶𝐸

𝜕𝑊3

= (ℎ2
𝑜𝑢𝑡)𝑇𝛿3 

(13) 

 

where, 𝛿3 = (�̂� − 𝑦) 

By proceeding with layers 2 and 1, we successively found: 

 
𝜕𝐶𝐸

𝜕𝑊2

= (ℎ1
𝑜𝑢𝑡)𝑇𝛿2 (14) 

 
𝜕𝐶𝐸

𝜕𝑊1

= (ℎ0
𝑜𝑢𝑡)𝑇𝛿1 (15) 

 

Following the same procedure for bias: 

 

 
𝜕𝐶𝐸

𝜕𝐵3

= (�̂� − 𝑦)
𝜕ℎ3

𝑖𝑛

𝜕𝐵3

= (�̂� − 𝑦)
ℎ3

𝑜𝑢𝑡𝑊3 + 𝐵3

𝜕𝐵3

= (�̂� − 𝑦) =  𝛿3 

(16) 

 

By proceeding with layers 2 and 1, we find successively δ2 

and δ1. We can now follow a common pattern, which can be 

generalized as follows: 

 
𝜕𝐶𝐸

𝜕𝐵𝑖

= 𝛿𝑖 (17) 

 

With these equations, we can calculate the error gradient as 

a function of each weights / biases. To reduce the error, we 

need to update our weights / biases in a direction opposite to 

the slope. This idea is used in the Adam algorithm, and is 

defined as follows: 

 

𝑚𝑡+1 = 𝛽1𝑚𝑡 + (1 − 𝛽1)
𝜕𝐶𝐸𝑡

𝜕𝑥𝑡

 (18) 

 

𝑣𝑡+1 = 𝛽2𝑣𝑡 + (1 − 𝛽2)
𝜕𝐶𝐸𝑡

𝜕𝑥𝑡

2

 (19) 

 

mt is the estimate of the first moment (the average), and vt 

is the estimate of the second moment (the non-centered 

variance) of the gradients, hence the name of the method. 

Since they are initialized as vectors of 0, the authors of Adam 

observe that they are biased towards zero, during the initial 

time steps, and especially when the decay rates are low (that is 

to say 𝛽1 and 𝛽2 are close to 1). 𝑥𝑡 takes the two variables (𝑤𝑡  

or 𝑏𝑡 ). They neutralize these biases by calculating the first and 

the second moment estimates of biases: 

 

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡 And 𝑣𝑡 =

𝑣𝑡

1−𝛽2
𝑡 (20) 

 

Then, we get the Adam update equation: 

 

𝑥𝑡+1 = 𝑥𝑡 − 𝛼
�̂�𝑡

√�̂�𝑡  +  𝜀
 (21) 

 

where, x is a variable that can be dragged (W or B), t is the 

current step (iteration of the algorithm) and α is a learning rate. 

Now, set 𝜀  = 108, α = 0.001 (small values imply a longer 

formation process, whereas high values lead to an unstable 

formation process), β1 = 0:9 and β2 = 0:999. 

 

2.3.3 Morphological gradient 

The erosion and dilation are the two elementary operators 

of mathematical morphology. They are noted respectively Ig 

⊖ B and Ig ⊕ B, where Ig corresponds to the binary image to 

be processed and B the structuring element [17]. We define 

these operators mathematically as follows: 

 

 Ig ⊕  B = ⋃ Igbb∈B   

= ⋃ Bxx∈Ig   

= {x + b, x ∈ B, b ∈ B} 

(22) 

 

Ig ⊖ B = ⋂ Ig − b 𝑏∈𝐵  

= {p ∈  E, Bp ⊆  Ig}  
(23) 

 

A morphological dilation consists in moving the structuring 

element on each pixel of the image, and to see if the structuring 

element "touches" (or more formally intersects) the structure 

of interest. The result is a structure that is larger than the 

original structure. Depending on the size of the structuring 

element, certain particles may be connected, and certain holes 
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may disappear. Conversely, Erosion is the opposite operation, 

which is defined as a dilation of the complementary of the 

structure. It consists in searching for all the pixels for which 

the structuring element centered on this pixel touches the 

outside of the structure. The result is a cropped structure. We 

observe the disappearance of particles smaller than the 

structuring element used, and the possible separation of large 

particles. The gradient is the difference between dilation and 

erosion of an image [18]. The result will appear as an outline 

of the image. 

 

2.3.4. Multilayer perceptron 

An MLP (Multilayer Perceptron) is a type of formal neural 

network that is organized into several layers. Information 

flows from the input layer to the output layer [19, 20]. It is 

used to classify groups that are not linearly separable. The 

Figure 4 shows an MLP with a hidden layer.  
 

 
 

Figure 4. MLP with a hidden layer 

 

Each MLP node (neuron) calculates the weighted sum of the 

inputs. This sum passes as a parameter to a transfer function 

which will calculate the value of the state of the neuron that is 

referred to as an activation function. In our network, we use 

two activation functions. The ReLU function in the input and 

the hidden layers. The Softmax function in the output layer in 

order to give us the class prediction. 

 

(1) Rectified Linear Units  

These are the most popular functions these days. They allow 

faster training compared to the sigmoid and tanh functions, 

being lighter. Widely used for CNN, RBM, and multi 

perceptron networks. The input of this function is always 

greater than zero (i.e. belongs to R+) [7]. 

 

𝜎(𝑌𝑖
𝑙) = max (0, 𝑌𝑖

𝑙) (24) 

 

Because of its simplicity and non-linearity, ReLU is the 

most used activation function. Its principle is to get positive 

input. As well as its derivative is a constant function equal to 

1. The speed of the models is among the most important 

creditors, especially when we talk about large networks, 

research has shown that ReLUs are the most efficient in this 

area. The frameworks TensorFlow [21] and TFLearn make it 

easy to use ReLU on hidden layers [22]. 

 

(2) Softmax function 

Softmax assigns decimal probabilities to each class of a 

problem to several classes. The sum of these decimal 

probabilities must be equal to 1. This additional constraint 

allows learning to converge more quickly than it would 

otherwise. SoftMax indicates the probability that one of the 

classes is true using a categorical probability distribution. 

SoftMax is implemented via a neural network layer just before 

the result layer. The SoftMax layer must have the same 

number of nodes as the result layer. It is writing 

mathematically as: 

 

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 (25) 

 

It takes as input a vector z = (z1, … , zk) of K real numbers 

and a vector 𝜎(𝑧) of K strictly positive real numbers and of 

sum 1. 

In the backpropagation phase, we need to use an 

optimization function in order to update the network 

parameters (weights and bais). We used one of the newest and 

most efficient algorithms which is ADAM algorithm. 

 

(3) Adam’s method 

There are many possible improvements to the classic 

stochastic gradient descent; we use the ADAM algorithm 

which estimates the average, and the variance of the gradient 

for each parameter geometrically decreasing with respect to 

time. There is also a momentum which adds inertia to the 

update. Thanks to these estimates, the updating of the 

parameters is smoother and the variance is reduced. However, 

in this algorithm, it is necessary to define an overall learning 

rate α [23, 24]. 

 

 

3. EXPERIMENTAL ENVIRONMENT AND 

EXPERIMENTAL CONDITIONS 

 

The two proposed models are tested against a database of 

1200 images and validated against the samples of 200 images 

of data. The number of parameters that make up our model is 

559619. We use the Tensoflow and Keras libraries [25] to 

implement our source code using the python programming 

language. The supervised training of proposed method is 

carried out with 1000 training samples, and then validated with 

200 test samples. The working material is a computer of the 

following configuration: Intel CPU i3-3120M Processor (3M 

Cache, 2.50 GHz) and 4 GB of RAM. 

The first method gives unsatisfactory results. The accuracy 

of the training dataset is 85.8% which devalues this model 

compared to other optical character recognition (OCR) models. 

The validation samples give acceptable results that tend 

towards 84.6%. That shows the limitation of knowledge of the 

new images outside the training dataset. The loss of data 

during the execution process is remarkable, and tends to 31.5% 

for the training data. The Figure 5 shows the Accuracy / loss 

with regard to the number of iterations performed for the two 

databases (training and validation). 

Our model gives exceptionally successful outcomes than 

the first. The training dataset accuracy starts with a high value 

equal to 78%, the same for the validation base which starts 

with 93% precision. These values are due to the morphological 

gradient method which we added before the MLP to highlight 

the bodies of the alphabets through the detection of their 

contours. We use the same number of iterations as the first 

method to show the preference of our method. The accuracies 

of the two databases are incremented during the course of the 

algorithm until reaching 100% and 96% of the training and 

loss base successively. The loss of data during the execution 

process is too low at 0.2% for the training data. It starts with a 

small value (45%) comparing to the first method which starts 

with 100% of loss. 
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(a) Model accuracy 

 
(b) Model loss 

 

Figure 5. The variation of accuracy and loss for Deep 

threshold method 
 

These results are given based on: 

(1) Morphological gradient which increases the detection 

capacity of the alphabets constituting the images of our 

database. It helps the perceptrons of the first layer to detect 

pixels of high densities. The backpropagation plays the most 

important role in the process of regulating the biases and 

weights of the perceptrons with the aim of activating some and 

deactivating the rest.  

(2) The Relu activation function which preserves the 

densities of positive pixels and replaces any negative input 

value with 0. And for its gradient, it becomes zero for negative 

values and is worth 1 for positive values. This property is very 

interesting in the learning phase because it avoids and corrects 

the problem of vanishing gradient [26, 27]. 

The Figure 6 shows the variation of precision / loss with 

respect to the number of iterations performed for the two 

databases (training and validation). The Table 4 shows the 

difference between the two methods proposed in terms of 

precision and loss of data.  
 

 
(a) Model accuracy 

 
(b) Model loss 

 

Figure 6. The variation of accuracy loss for the deep 

morphological gradient method 

 

 
(a) Arabic handwritten digits 

 
(b) Arabic handwritten characters 

 
(c) MNIST 

 

Figure 7. The accuracies of datasets 
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Table 4. Comparison between the performances of the 

proposed methods 

 
Method Accuracy (%) Loss (%) 

Deep threshold 85.8 31.5 

Deep morphological gradient 100 0.2 

 

Table 5. Results obtained by the application of our method 

on the four databases quoted in our study 

 
Dataset Number 

of images 

Accuracy 

(%) 

Loss 

(%) 

Arabic Handwritten Digits 60,000 99.9 0.09 

Arabic Handwritten characters 16,800 99.9 0.32 

MNIST 60,000 100 10−5 

Our Dataset 1,200 100 0.2 

 

To ensure the effectiveness of our proposed method, we 

tested it against three other databases: Arabic Handwritten 

Digits Dataset [28], Arabic Handwritten characters Dataset 

[29] and the MNIST database of handwritten digits [30]. The 

results obtained are ideal for the three databases. The 

accuracies were successively 99.9%, 99.9% and 100% for the 

three databases. The results obtained show the robustness of 

our method for the recognition of manuscripts in general. For 

the three databases the algorithm started with very high values 

from the first iteration (more than 97%). The Figure 7 shows 

the variation of accuracy of each database in relation to the 

number of model iterations. The Table 5 shows the accuracies 

and the losses obtained by the application of our method on 

the four databases quoted in our study. 

 

 

4. CONCLUSION AND PERSPECTIVES 

 

The industrial field and the government sectors use some 

automated software systems which are based on the OCR 

models. Therefore, the recognition of intrusive Arabic 

alphabets could enrich these systems. In this study, we present 

a deep learning system based on the morphological gradient, 

followed by a multilayers neuron network (MLP) capable of 

classifying intrusive handwritten characters to the Arabic 

language with 100% classification accuracy for our database. 

We implement our model using python language, Keras and 

Tensorflow frameworks. As future work, in addition to 

working more with deep learning, we plan to test a larger and 

more diverse database. We can do that by merging several 

database sources that aim at recognizing characters, numbers, 

and characters intruding to the Arabic language at the same 

time. We plan to set up a deeper network that is able to 

recognize a database of 41 classes (28 Arabic characters, 10 

Arabic numbers and 3 intruder characters to the Arabic 

language). 
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NOMENCLATURE 

 

G(Ig) gradien of image I 

Ig ⊕ B the dilation of image x per the structuring 

element B 

Ig ⊖ B the erosion of image x per the structuring 

element B 

hi
in the input matrix of a layer i 

hi
out the output matrix of a layer i 

CE function cross-entropy 

mt estimate of the first moment (the average) of 

the gradients 

vt estimate of the second moment (the non-

centered variance) of the gradients 

𝜎(𝑌𝑖
𝑙) rectified linear units function (ReLUs) 

𝜎(𝑧)𝑗 softmax function 
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