
Recognition of Intrusive Alphabets to the Arabic Language Using a Deep Morphological

Gradient

Mouhssine El Atillah*, Khalid El Fazazy

Research Team Complex Systems and Interactions, Faculty of Applied Sciences, Iben Zoher University, Ait Melloul-Agadir

80000, Morocco

Corresponding Author Email: mouhssine.elatillah@edu.uiz.ac.ma

https://doi.org/10.18280/ria.340305 ABSTRACT

Received: 15 February 2020

Accepted: 26 May 2020

The optical character recognition field was one of the key areas of evidence for deep

learning methods and has become one of the most successful applications of this

technology. Despite that the Arabic is among the most spoken languages in the world today.

the optical recognition of Arabic manuscript characters by the algorithms of deep learning

remains insufficient. Recently, some studies are moving towards this side and give

remarkable results either for the recognition of alphabets or Arabic numbers. We present a

deep architecture to solve the problem of the recognition of intrusive handwritten characters

to Arabic language. We use a fusion between the morphological gradient method to detect

the contours of the alphabets, and multi-layer perceptron (MLP) network with

regularization parameters like batch normalization. We apply this model for a database that

we created. The classification accuracy was 100% with a very small loss of 0.2%.

Keywords:

deep learning, multilayer perceptron (MLP),

morphological gradient, optical character

recognition

1. INTRODUCTION

Characters Recognition is one of the difficulties [1] to be

addressed by the field of artificial intelligence until today. It is

the Optical Character Recognition (OCR) field that designates

computer processes for the transformation of images of printed

texts, typewritten, or handwritten in text files. Overall, the

handwritten recognition systems are two: online and offline

systems [2]. The capacity to process large quantities of script

data in specific contexts will be important. The OCR is

interested in old documents through the transcription

automation of their textual contents, given the complex and

irregular nature of writing [3]. The recognition of Arabic texts

is developing slowly compared to other languages [4]. Despite

the fact that Arabic is the main language of the North of Africa

and the Middle East. It is widely spoken in many other

countries. Statistically, Arabic is one of the top five languages

spoken in the world today [5, 6]. In the last two years, the

recognition of Arabic alphabets by deep learning algorithms,

as well as Arabic numerals [7], is a remarkable development

by Arabian researchers. The strong point of the deep learning

compared to the classical algorithms of artificial intelligence

is the extraction of the features of the images by the algorithm

itself using filters at the beginning of the process of training.

Whereas the classical algorithms are based on vectors of

features extracted by experts (searchers, programmers). So, as

long as the images are clear and show the details of its objects,

the results of the deep learning algorithms will be satisfying.

Most of the studies in this area have focused on predefined

deep learning modeling, especially the convolutional neural

network (CNN) [8]. This is the case for the study [9] which

uses the CNN model with regularization parameters like batch

normalization to avoid oversampling. The model is applied on

both databases, AIA9k and AHCD. The classification

accuracies for the two datasets were 94.8% and 97.6%

respectively. Another work model CNN has formed and tested

a dataset of 16,800 Arabic characters in which the

optimization methods implemented to increase the

performance of CNN. The most common machine learning

methods typically apply a combination of feature extractor and

classifier that can be trained. The use of convolutional neural

network leads to huge enhancements on various machine

learning classification algorithms. This CNN proposal gives

an average loss of 5.1% on the test data [10]. The use of a CNN

model with modifications to its parameters to be suitable with

the treated problem is able to give satisfying results even for

more complete databases (colored images). This is the case of

the studies that have been quoted beforehand. While the

images processed by the ROC domain are in general binary or

gray-scale images, this nature can process by classic

classification algorithms (SVM, linear regression ...) and gives

remarkable results better than some models of deep learning,

like the study [11] which combines three classical algorithms:

KNN (K-Nearest Neighbors) classifier, SVM (support vector

machine), and RF (Random Forest) classifier [12]. These

methods give successively 99.71%, 97.88%, and 99.91% as

precision for the MNIST database.

The CNNs mentioned above are very solid architectures at

the level of deep learning in general because they are based on

convolutional layers. These layers have the role of extractors

of the images’ features through filters and pooling layers

followed by fully connected layers (like the structure of MLP

that we used in this paper). The advantage of this structure is

the neglect of human intervention which is limited to choosing

the general confederations of CNN (number of layers, filters

and neurons per layer, the activation functions used. etc.) and

they change several times to get the best accuracy possible.

This negligence can be considered a weak point sometimes

despite the roughness of the CNNs because they based on deep

architecture with complex mathematical functions with

Revue d'Intelligence Artificielle
Vol. 34, No. 3, June, 2020, pp. 277-284

Journal homepage: http://iieta.org/journals/ria

277

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.340305&domain=pdf

thousands of parameters which is out of control for human

beings. For these reasons, we will focus in this study on the

database itself through the clarity of the objects of its images

to overcome the weak points of deep learning methods cited

above. We will use a combination of two methods of machine

learning. The first is the morphological gradient to illuminate

the processed alphabet through the detection of its contours,

followed by an MLP which is a deep network. Our model is

applied to a database of Arabic intruder alphabets (gaf, ve, pe).

2. METHOD

2.1 Motivation

The objective of this study is to treat the intrusive alphabets

to the Arabic language which is not treated previously at the

level of the recognition of the Arabic characters. All studies in

this side focused on Arabic characters and numbers [7, 9, 13].

The alphabets treated by this study are similar to few Arabic

alphabets with a difference in the number of points below or

above the alphabet. This similarity shown in Table 1 requires

concentration on the points that consist each alphabet for a

deep learning algorithm to be able to distinguish one to the

other.

2.2 Database creation

The supervised recognition of images by deep learning

algorithms consists of the process of training that requires a

database of images related to the processed alphabets. This

database must contain maximum images with different shapes

of alphabets treated. Because of the absence of a database to

use, it is created, taking into consideration the different

possibilities of writing processed alphabets. To ensure the

efficiency of the images created, manuscripts of people of

different ages have been captured. Each image size is 64x64

pixels. In general, Arabic alphabets are re-formed according to

their position in the words as you see in Table 2.

Table 1. The similarity and the differentiation between the original alphabets and intruders to the Arabic language

Name Gaf Pe Ve

Intruder

alphabet

Original

alphabet

Similitude The same basic form

Difference

Three points above the

intruder

alphabet

Three points below the intruder alphabet instead of one for the

original alphabet

Three points above the

intruder

alphabet instead of one or

two for

the original alphabets

Table 2. Main forms of intruder characters to the Arabic

language

Name isolated Initial Median Final

Gaf

-

-

Pe

Ve

The database consists of 1200 images of handwritten

alphabets intrusive to the Arabic language divided into: 450

characters for the Gaf alphabet, 389 for Pe, and 361 for Ve as

shown in Figure 1.

Figure 1. Number of alphabets per class

In order to build a solid database we are trying to capture a

suitable number of images per class based on exiting databases

such as Arabic Handwritten characters Dataset which contains

600 images per class. The images in our database are binary

images (white / black images) with a uniform size of 64x64

pixels. The alphabets are generally centered in the middle of

the images for this we have reduced their size to 24x24 pixels

before processing. This redimensioning which is used in most

of the image recognition algorithms is capable of removing

certain images’ features. This is why we are testing several

forms in order to preserve the images’ features. The Figure 2

shows samples of our database.

Figure 2. Samples of our database

278

Figure 3. Deep morphological gradient method

2.3 Architecture

We discuss in this section our method and its ability to

improve the recognition accuracy of the processed dataset. For

this purpose, we test our database with a multilayer perceptron

(MLP) of three layers (input, output and an intermediate or

hidden layer). This MLP has already used for the recognition

of Arabic numbers [14]. This is preceded by the binary

threshold method for Segmenting images based on the fact that

these are binary images. The first fully connected layer

receives the image pixels densities vector. Its size is 576 (we

resize the images to 24x24 since the alphabets are centered in

the middle of the images). The second fully connected layer as

the first one consists of 512 neurons with the function of

activation ReLU in order to eliminate the negative values for

output values of each neuron. The third layer consist of 3

neurons is linked to the target classes (the three alphabets) with

SoftMax as an activation function for each neuron to render

the results as categorical probabilities between 0 and 1 taking

a predicate for a class of the three classes (the alphabets treated)

is true. The Adam Optimizer is used during the training

process to get the best model possible.

Our method (deep morphological gradient) shown in The

Figure 3, is very close to the first method except that the

morphological gradient method is used instead of binary

threshold. The gradient algorithm uses the inverse binary

threshold method, followed by the difference between the two

morphological methods, dilation and erosion in order to detect

the contours of the processed images. Dilation enlarges the

body of the alphabet (i.e. white part of the image). We use an

array of 3x3 dimension containing ones as kernel. In the same

way, the erosion corrodes white part of the image. The

difference between them gives us a clear alphabet outline.

Table 3 shows the morphological gradient of some alphabets.

Table 3. Morphological gradient of some alphabets

Original

image

Gradient

image

We know that a deep learning algorithm goes through two

main stages (Forward and Backward) to get the best

parameters (weights and biases) to build the final model.

Below, the two-step process for our proposed method:

The process started with a morphological gradient algorithm

as follows:

G(Ig) = (Ig ⊕ B) – (Ig ⊖ B) (1)

where, Ig: 𝐸 → 𝑅 a grayscale image, E a discrete grid E (like

R2 or Z2), and B a structuring element in grayscale, ⊕ and ⊖

respectively denote the dilatation and erosion [15, 16].

2.3.1 Forward

The Forward path is essentially a set of operations that

transform the network input into an exit space. During the

inference phase, the neural network is based solely on the

forward passage. We assume here that each neuron, except the

neurons of the last layers, uses the ReLU activation function

(the last layer uses SoftMax). Activation functions are used to

introduce non-linearity into the system, which allows learning

of complex functions. So, these are the calculations done in the

first layer:

For neuron 1 of the first layer:

hin = ∑ Wi

576

i=1

G(xi) + b1 (2)

hout = Relu(∑ 𝑊𝑖

576

𝑖=1

𝐺(𝑥𝑖) + 𝑏1) (3)

By rewriting this as a matrix for all the neurons of the first

layer, we have:

hin = [𝑥1 … 𝑥576] × [
𝑤1

1 ⋯ 𝑤1
512

⋮ ⋱ ⋮
𝑤576

1 ⋯ 𝑤576
512

] + [𝑏1 … 𝑏512] (4)

Now, if we represent inputs in the form of matrix I, weights

of neurons equal to W and bias to B, we obtain:

hin = I × W + B (5)

hout = Relu(ℎ𝑖𝑛) (6)

This can be generalized for any layer of a fully connected

neurals network such as

ℎ0
𝑜𝑢𝑡 = 𝐼 (7)

279

ℎ𝑖
𝑖𝑛 = ℎ𝑖−1

𝑜𝑢𝑡 × 𝑊𝑖 + 𝐵𝑖 (8)

ℎ𝑖
𝑜𝑢𝑡 = 𝐹𝑖(ℎ𝑖

𝑖𝑛) (9)

where, i is the layer number and F is the activation function for

a given layer. Applying this formula to each layer of the

network, we will implement the forward pass and get the

network output.

2.3.2 Backward (Backpropagation)

In order to measure the degree of inconsistency of our

predicates compared to real labels, we need a metric. This

metric is called the loss function, which measures the

performance of the model. This is a positive value that

decreases as the network becomes more consistent with its

predicates. The Cross-Entropy is used as loss function for our

model. It is defined as follows:

𝐶𝐸 = − ∑ 𝑦𝑗

𝑛

𝑗

× ln(�̂�𝑗) (10)

where, ŷ is the vector of the network output, y the vector of

the true labels, and n is the number of classes. Now, in order

to find the error gradients with respect to each variable, we

start with the last layer and taking a partial derivative of the

loss versus the weight of the neurons, we get:

𝜕𝐶𝐸

𝜕𝑊3

=
𝜕𝐶𝐸

𝜕ℎ3
𝑖𝑛

×
𝜕ℎ3

𝑖𝑛

𝜕𝑊3

 (11)

Knowing that in case of softmax activation function and

cross-entropy loss, we have:

𝜕𝐶𝐸

𝜕ℎ3
𝑖𝑛

= �̂� − 𝑦 (12)

Now we can find the gradient for the last layer like:

𝜕𝐶𝐸

𝜕𝑊3

= (�̂� − 𝑦)
𝜕ℎ3

𝑖𝑛

𝜕𝑊3

= (�̂� − 𝑦)
ℎ3

𝑜𝑢𝑡𝑊3 + 𝐵3

𝜕𝑊3

= (ℎ2
𝑜𝑢𝑡)𝑇(�̂� − 𝑦)

𝜕𝐶𝐸

𝜕𝑊3

= (ℎ2
𝑜𝑢𝑡)𝑇𝛿3

(13)

where, 𝛿3 = (�̂� − 𝑦)

By proceeding with layers 2 and 1, we successively found:

𝜕𝐶𝐸

𝜕𝑊2

= (ℎ1
𝑜𝑢𝑡)𝑇𝛿2 (14)

𝜕𝐶𝐸

𝜕𝑊1

= (ℎ0
𝑜𝑢𝑡)𝑇𝛿1 (15)

Following the same procedure for bias:

𝜕𝐶𝐸

𝜕𝐵3

= (�̂� − 𝑦)
𝜕ℎ3

𝑖𝑛

𝜕𝐵3

= (�̂� − 𝑦)
ℎ3

𝑜𝑢𝑡𝑊3 + 𝐵3

𝜕𝐵3

= (�̂� − 𝑦) = 𝛿3

(16)

By proceeding with layers 2 and 1, we find successively δ2

and δ1. We can now follow a common pattern, which can be

generalized as follows:

𝜕𝐶𝐸

𝜕𝐵𝑖

= 𝛿𝑖 (17)

With these equations, we can calculate the error gradient as

a function of each weights / biases. To reduce the error, we

need to update our weights / biases in a direction opposite to

the slope. This idea is used in the Adam algorithm, and is

defined as follows:

𝑚𝑡+1 = 𝛽1𝑚𝑡 + (1 − 𝛽1)
𝜕𝐶𝐸𝑡

𝜕𝑥𝑡

 (18)

𝑣𝑡+1 = 𝛽2𝑣𝑡 + (1 − 𝛽2)
𝜕𝐶𝐸𝑡

𝜕𝑥𝑡

2

 (19)

mt is the estimate of the first moment (the average), and vt

is the estimate of the second moment (the non-centered

variance) of the gradients, hence the name of the method.

Since they are initialized as vectors of 0, the authors of Adam

observe that they are biased towards zero, during the initial

time steps, and especially when the decay rates are low (that is

to say 𝛽1 and 𝛽2 are close to 1). 𝑥𝑡 takes the two variables (𝑤𝑡

or 𝑏𝑡). They neutralize these biases by calculating the first and

the second moment estimates of biases:

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡 And 𝑣𝑡 =

𝑣𝑡

1−𝛽2
𝑡 (20)

Then, we get the Adam update equation:

𝑥𝑡+1 = 𝑥𝑡 − 𝛼
�̂�𝑡

√�̂�𝑡 + 𝜀
 (21)

where, x is a variable that can be dragged (W or B), t is the

current step (iteration of the algorithm) and α is a learning rate.

Now, set 𝜀 = 108, α = 0.001 (small values imply a longer

formation process, whereas high values lead to an unstable

formation process), β1 = 0:9 and β2 = 0:999.

2.3.3 Morphological gradient

The erosion and dilation are the two elementary operators

of mathematical morphology. They are noted respectively Ig

⊖ B and Ig ⊕ B, where Ig corresponds to the binary image to

be processed and B the structuring element [17]. We define

these operators mathematically as follows:

 Ig ⊕ B = ⋃ Igbb∈B

= ⋃ Bxx∈Ig

= {x + b, x ∈ B, b ∈ B}

(22)

Ig ⊖ B = ⋂ Ig − b 𝑏∈𝐵

= {p ∈ E, Bp ⊆ Ig}
(23)

A morphological dilation consists in moving the structuring

element on each pixel of the image, and to see if the structuring

element "touches" (or more formally intersects) the structure

of interest. The result is a structure that is larger than the

original structure. Depending on the size of the structuring

element, certain particles may be connected, and certain holes

280

may disappear. Conversely, Erosion is the opposite operation,

which is defined as a dilation of the complementary of the

structure. It consists in searching for all the pixels for which

the structuring element centered on this pixel touches the

outside of the structure. The result is a cropped structure. We

observe the disappearance of particles smaller than the

structuring element used, and the possible separation of large

particles. The gradient is the difference between dilation and

erosion of an image [18]. The result will appear as an outline

of the image.

2.3.4. Multilayer perceptron

An MLP (Multilayer Perceptron) is a type of formal neural

network that is organized into several layers. Information

flows from the input layer to the output layer [19, 20]. It is

used to classify groups that are not linearly separable. The

Figure 4 shows an MLP with a hidden layer.

Figure 4. MLP with a hidden layer

Each MLP node (neuron) calculates the weighted sum of the

inputs. This sum passes as a parameter to a transfer function

which will calculate the value of the state of the neuron that is

referred to as an activation function. In our network, we use

two activation functions. The ReLU function in the input and

the hidden layers. The Softmax function in the output layer in

order to give us the class prediction.

(1) Rectified Linear Units

These are the most popular functions these days. They allow

faster training compared to the sigmoid and tanh functions,

being lighter. Widely used for CNN, RBM, and multi

perceptron networks. The input of this function is always

greater than zero (i.e. belongs to R+) [7].

𝜎(𝑌𝑖
𝑙) = max (0, 𝑌𝑖

𝑙) (24)

Because of its simplicity and non-linearity, ReLU is the

most used activation function. Its principle is to get positive

input. As well as its derivative is a constant function equal to

1. The speed of the models is among the most important

creditors, especially when we talk about large networks,

research has shown that ReLUs are the most efficient in this

area. The frameworks TensorFlow [21] and TFLearn make it

easy to use ReLU on hidden layers [22].

(2) Softmax function

Softmax assigns decimal probabilities to each class of a

problem to several classes. The sum of these decimal

probabilities must be equal to 1. This additional constraint

allows learning to converge more quickly than it would

otherwise. SoftMax indicates the probability that one of the

classes is true using a categorical probability distribution.

SoftMax is implemented via a neural network layer just before

the result layer. The SoftMax layer must have the same

number of nodes as the result layer. It is writing

mathematically as:

𝜎(𝑧)𝑗 =
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 (25)

It takes as input a vector z = (z1, … , zk) of K real numbers

and a vector 𝜎(𝑧) of K strictly positive real numbers and of

sum 1.

In the backpropagation phase, we need to use an

optimization function in order to update the network

parameters (weights and bais). We used one of the newest and

most efficient algorithms which is ADAM algorithm.

(3) Adam’s method

There are many possible improvements to the classic

stochastic gradient descent; we use the ADAM algorithm

which estimates the average, and the variance of the gradient

for each parameter geometrically decreasing with respect to

time. There is also a momentum which adds inertia to the

update. Thanks to these estimates, the updating of the

parameters is smoother and the variance is reduced. However,

in this algorithm, it is necessary to define an overall learning

rate α [23, 24].

3. EXPERIMENTAL ENVIRONMENT AND

EXPERIMENTAL CONDITIONS

The two proposed models are tested against a database of

1200 images and validated against the samples of 200 images

of data. The number of parameters that make up our model is

559619. We use the Tensoflow and Keras libraries [25] to

implement our source code using the python programming

language. The supervised training of proposed method is

carried out with 1000 training samples, and then validated with

200 test samples. The working material is a computer of the

following configuration: Intel CPU i3-3120M Processor (3M

Cache, 2.50 GHz) and 4 GB of RAM.

The first method gives unsatisfactory results. The accuracy

of the training dataset is 85.8% which devalues this model

compared to other optical character recognition (OCR) models.

The validation samples give acceptable results that tend

towards 84.6%. That shows the limitation of knowledge of the

new images outside the training dataset. The loss of data

during the execution process is remarkable, and tends to 31.5%

for the training data. The Figure 5 shows the Accuracy / loss

with regard to the number of iterations performed for the two

databases (training and validation).

Our model gives exceptionally successful outcomes than

the first. The training dataset accuracy starts with a high value

equal to 78%, the same for the validation base which starts

with 93% precision. These values are due to the morphological

gradient method which we added before the MLP to highlight

the bodies of the alphabets through the detection of their

contours. We use the same number of iterations as the first

method to show the preference of our method. The accuracies

of the two databases are incremented during the course of the

algorithm until reaching 100% and 96% of the training and

loss base successively. The loss of data during the execution

process is too low at 0.2% for the training data. It starts with a

small value (45%) comparing to the first method which starts

with 100% of loss.

281

(a) Model accuracy

(b) Model loss

Figure 5. The variation of accuracy and loss for Deep

threshold method

These results are given based on:

(1) Morphological gradient which increases the detection

capacity of the alphabets constituting the images of our

database. It helps the perceptrons of the first layer to detect

pixels of high densities. The backpropagation plays the most

important role in the process of regulating the biases and

weights of the perceptrons with the aim of activating some and

deactivating the rest.

(2) The Relu activation function which preserves the

densities of positive pixels and replaces any negative input

value with 0. And for its gradient, it becomes zero for negative

values and is worth 1 for positive values. This property is very

interesting in the learning phase because it avoids and corrects

the problem of vanishing gradient [26, 27].

The Figure 6 shows the variation of precision / loss with

respect to the number of iterations performed for the two

databases (training and validation). The Table 4 shows the

difference between the two methods proposed in terms of

precision and loss of data.

(a) Model accuracy

(b) Model loss

Figure 6. The variation of accuracy loss for the deep

morphological gradient method

(a) Arabic handwritten digits

(b) Arabic handwritten characters

(c) MNIST

Figure 7. The accuracies of datasets

282

Table 4. Comparison between the performances of the

proposed methods

Method Accuracy (%) Loss (%)

Deep threshold 85.8 31.5

Deep morphological gradient 100 0.2

Table 5. Results obtained by the application of our method

on the four databases quoted in our study

Dataset Number

of images

Accuracy

(%)

Loss

(%)

Arabic Handwritten Digits 60,000 99.9 0.09

Arabic Handwritten characters 16,800 99.9 0.32

MNIST 60,000 100 10−5

Our Dataset 1,200 100 0.2

To ensure the effectiveness of our proposed method, we

tested it against three other databases: Arabic Handwritten

Digits Dataset [28], Arabic Handwritten characters Dataset

[29] and the MNIST database of handwritten digits [30]. The

results obtained are ideal for the three databases. The

accuracies were successively 99.9%, 99.9% and 100% for the

three databases. The results obtained show the robustness of

our method for the recognition of manuscripts in general. For

the three databases the algorithm started with very high values

from the first iteration (more than 97%). The Figure 7 shows

the variation of accuracy of each database in relation to the

number of model iterations. The Table 5 shows the accuracies

and the losses obtained by the application of our method on

the four databases quoted in our study.

4. CONCLUSION AND PERSPECTIVES

The industrial field and the government sectors use some

automated software systems which are based on the OCR

models. Therefore, the recognition of intrusive Arabic

alphabets could enrich these systems. In this study, we present

a deep learning system based on the morphological gradient,

followed by a multilayers neuron network (MLP) capable of

classifying intrusive handwritten characters to the Arabic

language with 100% classification accuracy for our database.

We implement our model using python language, Keras and

Tensorflow frameworks. As future work, in addition to

working more with deep learning, we plan to test a larger and

more diverse database. We can do that by merging several

database sources that aim at recognizing characters, numbers,

and characters intruding to the Arabic language at the same

time. We plan to set up a deeper network that is able to

recognize a database of 41 classes (28 Arabic characters, 10

Arabic numbers and 3 intruder characters to the Arabic

language).

REFERENCES

[1] Ashiquzzaman, A., Kawsar, T.A. (2018). KERTAS:

Dataset for automatic dating of ancient Arabic

manuscripts. International Journal on Document

Analysis and Recognition (IJDAR), 21: 283-290.

https://doi.org/10.1007/s10032-018-0312-3

[2] Plamondon, R. (2000). On-line and off-line handwriting

recognition: A comprehensive survey. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 2(1): 63-84.

https://doi.org/10.1109/34.824821

[3] Volker, M., Haikal E.A. (2011). Guide to OCR for

Arabic. Springer-Verlag, Berlin.

[4] Abandah, G., Khedher, M., Younis, K. (2008). c. The 5th

IASTED International Conference on Signal, Innsbruck,

22: 128-133.

[5] Das, N., Mollah, A.F., Saha, S., Haque, S.S. (2006).

Handwritten Arabic numeral recognition using a multi

layer percepron. National Conference on Recent Trends

in Information Systems, pp. 200-203.

[6] Abdleazeem, S., El-Sherif, E. (2008). Arabic handwritten

digit recognition. International Journal of Document

Analysis and Recognition (IJDAR), 11: 127-141.

https://doi.org/10.1007/s10032-008-0073-5

[7] Ahmed, E.S., Hazem, E.B., Mohamed, L. (2016). CNN

for handwritten Arabic digits recognition based on

LeNet-5. The International Conference on Advanced

Intelligent Systems and Informatics, pp. 566-575.

https://doi.org/10.1007/978-3-319-48308-5_54

[8] Yiğit, A., Işik, Z. (2020). Applying deep learning models

to structural MRI for stage prediction of Alzheimer’s

disease. Turkish Journal of Electrical Engineering &

Computer Sciences, 28: 196-210.

https://doi.org/10.3906/elk-1904-172

[9] Younis, K.S. (2017). Arabic handwritten character

recognition based on deep convolutional neural networks.

Jordanian Journal of Computers and Information

Technology (JJCIT), 3(3).

[10] Ahmed E.S., Mohamed, L., Hazem, E.B. (2017). Arabic

handwritten characters recognition using convolutional

neural network. WSEAS Transactions on Computer

Research, 5: 11-19.

[11] Anuj, D., Aashi, D. (2017). Handwritten digit

recognition using deep learning. International Journal of

Advanced Research in Computer Engineering &

Technology (IJARCET), 6(7): 990-997.

[12] Nudrat, N., Muhammad, H.Y., Aun, I., Sergio, A.V.

(2020). Deep temporal motion descriptor (DTMD) for

human action recognition. Turkish Journal of Electrical

Engineering & Computer Sciences, 28: 1371-1385.

https://doi.org/10.3906/elk-1907-214

[13] Ahmed, E.S., Mohamed, L., Hazem, E.B. (2017). Arabic

handwritten characters recognition using convolutional

neural network. WSEAS Trasctions on Computer

Research, 7: 11-19.

[14] Ashiquzzaman, A., Tushar, A.K. (2017). Handwritten

Arabic numeral recognition using deep learning neural

networks. 2017 IEEE International Conference on

Imaging, Vision & Pattern Recognition (icIVPR), pp. 1-

4. https://doi.org/10.1109/ICIVPR.2017.7890866

[15] Jean, F., Pierre, S., Serge, B. (1993). Morphological

gradients. Journal of Electronic Imaging, 2(4): 326-336.

https://doi.org/10.1117/12.159642

[16] Jufriadif, N., Johan, H., Sarifuddin, M., Eri, P. (2016).

The algorithm of image edge detection on panoramic

dental X-Ray using multiple morphological gradient

(mMG) method. International Journal on Advanced

Science, Engineering and Information Technology, 6:

1012-1018. https://doi.org/10.18517/ijaseit.6.6.1480

[17] Sheeren, D., Lefèvre, S., Weber, J. (2017). La

morphologie math´ematique binaire pour l’extraction

automatique des batiments dans les images THRS.

Traitment des image, 17(3-4): 333-352.

283

https://doi.org/10.3166/geo.17.333-352

[18] OpenCV. Morphological Transformations.

https://docs.opencv.org/3.0-

beta/doc/py_tutorials/py_imgproc/py_morphological_o

ps/py_morphological_ops.html. accessed on Jul. 29,

2019.

[19] Marius-Constantin, P., Valentina, E.B., Liliana, P.,

Nikos, M. (2009). Multilayer perceptron and neural

networks. World Scientific and Engineering Academy

and Society, 8(7): 579-588.

[20] deeplearning. Multilayer Perceptron.

http://deeplearning.net/tutorial/mlp.html, accessed on

Jan. 03, 2020.

[21] Tensorflow. https://www.tensorflow.org, accessed on

Feb. 12, 2020.

[22] Github. Relu and Softmax activation functions.

https://github.com/Kulbear/deep-learning-nano-

foundation/wiki/ReLU-and-Softmax-Activation-

Functions. accessed on Jan. 29, 2020.

[23] Machine learning mastery. Gentle Introduction to the

Adam Optimization Algorithm for Deep Learning.

https://machinelearningmastery.com/adam-

optimization-algorithm-for-deep-learning, accessed on

Feb. 22, 2020.

[24] Kingma, D., Ba. J. (2014). Adam: A Method for

Stochastic Optimization. The 3rd International

Conference for Learning Representations, San Diego, pp.

1-15.

[25] Github. keras: Deep learning for humans.

https://github.com/keras-team/keras, accessed on Feb. 27,

2020.

[26] Hidenori, I., Takio, K. (2017). Improvement of learning

for CNN with ReLU activation by sparse regularization.

International Joint Conference on Neural Networks

(IJCNN), 17010663: 2161-4407.

https://doi.org/10.1109/IJCNN.2017.7966185

[27] Shumin, K., Masahiro, T. (2017). Hexpo: A vanishing-

proof activation function. International Joint Conference

on Neural Networks (IJCNN), 17010651: 2161-4407.

https://doi.org/10.1109/IJCNN.2017.7966168

[28] The American University in Cairo. The Arabic

Handwritten Digits Databases ADBase & MADBase.

http://datacenter.aucegypt.edu/shazeem, accessed on

Mar. 09, 2020.

[29] Kaggle. Arabic Handwritten Characters Dataset.

https://www.kaggle.com/mloey1/ahcd1, accessed on

Mar. 10, 2020.

[30] Yann lecun. The MNIST Database of handwritten digits.

http://yann.lecun.com/exdb/mnist, accessed on Mar. 15,

2020.

NOMENCLATURE

G(Ig) gradien of image I

Ig ⊕ B the dilation of image x per the structuring

element B

Ig ⊖ B the erosion of image x per the structuring

element B

hi
in the input matrix of a layer i

hi
out the output matrix of a layer i

CE function cross-entropy

mt estimate of the first moment (the average) of

the gradients

vt estimate of the second moment (the non-

centered variance) of the gradients

𝜎(𝑌𝑖
𝑙) rectified linear units function (ReLUs)

𝜎(𝑧)𝑗 softmax function

284

https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions
https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions
https://github.com/Kulbear/deep-learning-nano-foundation/wiki/ReLU-and-Softmax-Activation-Functions

