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Based on big data analysis, precision advertising fully meets the needs of users, and boasts 

a high application value. From the perspective of deep reinforcement learning (DRL), this 

paper attempt to develop a precision advertising strategy, capable of extracting effective 

features from massive advertising data and predicting advertising precision accurately and 

efficiently. Firstly, the advertising data were preprocessed, and organized into an 

advertising data sequence, in which the data are intercorrelated. In addition, the feature 

construction process was detailed. After that, a prediction model of advertising precision 

was developed in three steps, based on the Q-learning algorithm. The proposed strategy was 

found to be effective and accurate through experiments. The research results provide a 

reference for applying Q-learning to precision prediction in other fields. 
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1. INTRODUCTION

With the advancement of social technology and 

informatization, the advertising industry is vigorously seeking 

innovation, optimization, and upgrading. Advertising 

companies have attached greater importance to the reach 

percentage and click-through rate (CTR) and attempted to 

establish personalized advertising systems, in a bid to enhance 

the communication value and economic benefits of ads [1-4]. 

To realize accurate, timely, and effective advertising, a 

feasible and viable strategy is to adopt big data mining 

technology, and implement personalized analysis on user 

behaviors and advertising data, and thus identify potential 

users [5-9]. 

As a brand-new advertising model, precision advertising 

has attracted the attention of scholars at home and abroad. 

Some scholars have explored the communication strategies 

and sales models of specific ads, and some have provided 

reasonable suggestions for decision-making on advertising 

[10-16]. Lillicrap et al. [17] discussed the implementation path 

and ethical issues of precision advertising, and evaluated the 

social impact of advertising communication. From the angles 

of planning, serving, and interaction, Cisco [18] analyzed the 

strategies and advantages of the advertising communication of 

core news apps (e.g. Toutiao). Matta et al. [19] optimized the 

structure of the advertising industry in three aspects: the 

advertising media of best-selling books, the construction of 

social data, and the ecological positioning of the audience. 

In general, big data analysis has not been widely applied to 

implement precision advertising, but to construct user portraits 

[20-22]. Xiao et al. [23] analyzed user portrayal model of JD 

Shufang, which relies on the 4A (Aware, Appeal, Ask, and 

Advocate) model to analyze user information in real time. Lee 

et al. [24] developed a content-based algorithm and a graph-

based algorithm, both of which can portrait users based on 

their consumption features. With the aid of Word2vec, Zeng 

et al. [25] conducted multi-dimensional analysis on the 

keywords searched by users, and then performed customized 

analysis on user portraits using visual charts. 

To sum up, there is little report that systematically discusses 

the feature extraction and selection of advertising data. 

Moreover, the relevant prediction models are inefficient and 

inaccurate. To overcome these defects, this paper tries to 

develop a precision advertising strategy based on deep 

reinforcement learning (DRL). Firstly, the erroneous, 

redundant, and missing items in advertising data were 

preprocessed. Then, the correlations between data in the 

advertising data sequence were sorted out, and the feature 

construction process was detailed. After that, a prediction 

model of advertising precision was developed in three steps, 

based on the Q-learning algorithm oriented at precision 

advertising. The proposed precision advertising strategy was 

proved effective and accurate through experiments. 

2. PREPROCESSING OF ADVERTISING DATA

The original dataset was constructed by summarizing, 

classifying, and integrating the following data in advertising 

logs on Apache Flume: historical data on user behaviors, and 

basic advertising data. Among them, the historical data on user 

behaviors mainly the search keywords, the viewing 

completion, the clicking time, and the consumption time. The 

basic advertising data mainly cover creative keywords, total 

clicks, CTR, consumption rate, ranking, advertising time, and 

advertising frequency. Among them, the ranking can be 

calculated by: 

avg

1

N

i

i

R R N
=

= (1) 

where, N is the total clicks; Ri is the ranking of the i-th ad. 
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Figure 1. The procedure of feature construction 

 

Next, the original dataset was preprocessed into an 

effectively data sequence for the training of the DRL network. 

Specifically, the original dataset was cleaned to remove 

erroneous and redundant items. Besides, the missing items, no 

more than 1/5 of the total amount of data, were imputed 

multiple times through logistic regression.  

In the original dataset, many items were missing in the 

categories of viewing completion, advertising time, 

advertising frequency, and consumption time. The imputation 

results of these items are displayed in Tables 1 and 2. 

After setting up the advertising data sequence, the 

correlations of the data in the sequence were sorted out. From 

the angle of users, the viewing completion of a user on an ad 

is positively correlated with the probability that he/she click 

on the same ad at the next moment. From the angle of ad, the 

relationship between advertising time and the CTR exhibited 

a statistical regularity.  

Then, the ads were divided into multiple classes by the 

creative keywords. It was learned that the CTRs of ads in the 

same class fluctuated slightly between adjacent periods. From 

the perspective of ad-user correlation, the fitness between 

creative keywords and search keywords is positively 

correlated with the probability that users click on the ad. 

The above data correlations were relied on to construct the 

DRL model and design the advertising strategy, aiming to 

optimize the effect of precision advertising. 

The next step is to extract the features of advertising data 

effectively, and balance the data in different classes. Hence, 

the features of advertising data were constructed and then 

optimized. The procedure of feature construction is illustrated 

in Figure 1. Note that redundant data removal is to delete the 

features that can be characterized by other features, aiming to 

shorten the training of the DRL model. Here, only 4 features 

of the historical data on user behaviors and 7 features on basic 

advertising data are retained for clustering and optimization.  

Feature optimization aims to highlight and optimize the 

salient features. Since the DRL model needs to consider the 

fitness between creative and search keywords, the 

corresponding tags were attached to the characteristic 

keywords. Based on the keywords, the feature data with large 

magnitudes (e.g. high ranking) were normalized by interval 

scaling into [0, 1]. 

After the above preprocessing, the feature information was 

obtained as shown in Table 3. 

 

Table 1. Imputation methods and categories of missing items 

 
Imputation method Category 

Fully conditional 

iteration 

Click time, consumption time, 

advertising time, viewing completion, 

advertising frequency 

Imputed 
Viewing completion, advertising 

frequency 

Not imputed (too 

many missing items) 
/ 

Not imputed (too 

many missing items) 

Clicks, click rate, consumption rate, 

ranking 

Imputation from 

sequence 
Search keywords, creative keywords 

 

Table 2. Imputation information 

 

Category Type of model 
Missing 

items 

Imputed 

items 

Viewing 

completion 

Linear 

regression 
402 402 

Advertising 

time 

Linear 

regression 
113 113 

Advertising 

frequency 

Linear 

regression 
102 102 

Consumption 

time 

Linear 

regression 
658 658 

398



 

Table 3. The feature information of advertising data 

 
Category Name Type 

User 

behavior 

features 

Search keywords Text features 

Viewing completion Digital features 

Click time Time features 

Consumption time Time features 

Ad 

features 

Creative keywords Text features 

Clicks Digital features 

CTR Digital features 

Consumption rate Digital features 

Ranking Digital features 

Advertising time Time features 

Advertising frequency Digital features 

 

 

3. Q-LEARNING ALGORITHM 

 

The DRL usually involves two entities: the agent and the 

environment. Let st be the state perceived by the agent in the 

environment, at be the action taken by the agent, and rt be the 

reward obtained by the agent for taking the action at under 

state st, where t is the time period. Then, the interaction 

between the agent and the environment can be viewed as a 

Markov decision process (as shown in Figure 2 below):  

The environment provides the agent with the state st, under 

which the agent takes the action at on the environment; after 

receiving the reward rt from the environment, the agent enters 

into a new state st+1; then, the agent will take another action 

under the new agent, receive the corresponding reward, and 

enter a newer state… 

In the Markov decision process, each action at leads to a 

unique reward rt, which is dependent on the corresponding 

time period t. 

 

 
 

Figure 2. The Markov decision process 

  

The biggest difference between Q-learning algorithm and 

DRL is that the algorithm is not based on the entity of 

environment, but measures the state value with a Q function. 

The algorithm allows the agent to choose between real-time 

reward or delayed reward. Here, the feature information is 

imported to the following formula for iterative update: 

 

( ) ( ) ( ) ( )

( ) ( )

1 target

target 1 1 1

, , , ,

, max ,

t t t t t t t t t t t

t t t t t
a

Q s a Q s a Q s a Q s a

Q s a r Q s a





+

+ + +


 = + − 

= +
 (2) 

 

where, Qtarget(st, at) is the target value of Q-learning. It can be 

seen from formula (2) that, under a given state st, the target 

value decays by γ times after action at is taken; then, the agent 

and the environment will interact by a learning strategy α to 

obtain the cumulative expectation, that is, to approximate the 

optimal Q function through accumulation.  

Because the features of advertising data are high-

dimensional, the traditional Q-learning algorithm cannot deal 

with the strong correlations between the user features and ad 

features. Therefore, Q-learning algorithm was fused into the 

convolutional neural network (CNN) into a deep Q network 

(DQN). In the DQN, the value function Q can be 

approximately expressed as: 

 

( ) ( )1 1, , ,t t t t t tQ s a Q s a

+ +  (3) 

 

 
 

Figure 3. The basic architecture of the DQN 

 

As shown in Figure 3, the DQN predicts the Q value by 

neural networks, rather than record the value in a Q table. The 

neural networks are updated constantly to optimize the action 

path. There are two neural networks in the DQN, namely, 

target-net and eval-net. The former acquires the value of Q-

target, and the latter acquires the value of Q-evaluation.  

For the scenario of precision advertising, the input state is 

denoted as st, representing 11 advertising data features in a 

time period t. Then, the state of advertising effect is denoted 

as st=(s1, s2, …, s11). The output of the DQN is a value Q*
t+1(st, 

aj, ω), reflecting the value function Q of action aj under state 

st. 

 

The neural networks were trained by the loss function: 

 

( ) ( )( )
2

1 target 1max , , , ,t t t t t
a

L r Q s a Q s a  + +


 = + −  (4) 

 

where, Qt(st, aj, ω) is the network output in time period t; 

Qtarget(st+1, a, ω) is the output value of Q-target. Network 

parameter ω was updated interactively, and ω was obtained 

by delayed update: 
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 (5) 

 

 

4. DRL-BASED PREDICTION MODEL FOR 

ADVERTISING PRECISION  

 

To realize precision advertising, a DRL-based prediction 

model was established in three steps to forecast the advertising 

precision. 

Step 1. Setting up the state space and action space 

In the model, the information received by the agent from the 

environment generally describes the basic states of users and 

ads, namely, viewing completion, real-time CTR, and tags of 

search keywords. Let Wk(t) be the viewing completion of user 

k in time period t; Ph(t) be the CTR of ad h in time period t; 
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Fk(t) be the fitness between the tags of the search keywords of 

user k and the tags of the creative keywords of all ads in time 

period t. Then, the state space for the prediction of advertising 

precision can be defined as: 

 

( ) ( ) ( ), ,k h kS W t P t F t=     (6) 

 

where, the Ph(t) value can be calculated by:  

 

      

         
( )

100%

h

Total effective clicks in time period t

Total number of ads served in time period t
P t =



 (7) 

 

After observing the state of the environment, the agent 

needs to select an action from the action space A based on its 

own decision set. In the prediction model for advertising 

precision, the user action is clicking or consumption in time 

period t, and the ad action is serving in time period t. Hence, 

the action space of advertising can be defined as: 

 

( ) ( ) ( ), ,k k hA C t B t T t=     (8) 

 

where, Ck(t) is the clicking of user k in time period t; Bk(t) is 

the consumption of user k in time period t; Th(t) is the serving 

of ad h in time period t. To facilitate the processing of 

continuous actions, the action space was discretized into the 

granularity of μ: 

 

( ) ( ) ( )dis , , |k k hA C t B t T t =     (9) 

 

Step 2. Establishing state-action relationship by the DQN  

Firstly, the Q table was set up based on the state space and 

action space, and the initial fitness between states and actions 

were recorded. Besides the advertising time, the clicking and 

consumption of users are related to multiple attributes (e.g. 

market coverage and price) of the advertised product. 

Therefore, the willingness of a user to take an action 

(hereinafter referred to as action willingness) can be 

characterized by: 
 

( ) 2, ,v r u v r u u   = + + −  (10) 
 

where, v is the expected price of the advertised product; r is 

the market coverage of the product; u is the effectiveness of 

feature extraction from advertising data. If the r is large, the 

influence of advertising precision Aa over action willingness 

Ub is mainly manifested on the expected price v and actual 

price p of the product: 

 

( , , )v r u v p

u u u

  
= =

  
 (11) 

 

 
 

Figure 4. The relationship between action willingness and 

advertising precision 

The relationship between action willingness and advertising 

precision is shaped like an inverted U (as shown in Figure 4 

above). 

If the r is small, the users have limited knowledge and 

access to the product. Then, the action willingness could be 

greatly enhanced by increasing the advertising precision. 

Setting the ratio of user utility to marginal price increment σu 

of product to 1/3, we have: 

 

3 ( , , )

4

u v r up

u


=


 (12) 

 

If the change of action willingness induced by advertising 

precision is treated as the effect of precision advertising, it can 

be assumed that the advertising company and users share the 

results of precision advertising at a small r value.  

During the iteration, all variables must obey the constraints 

on the effect of precision advertising on action willingness. In 

addition, the current round of learning should terminate 

automatically and a new round of learning should start, 

whenever the fitness between action willingness and the 

current state becomes too low. Through the iteration, the final 

Q table can characterize the matching between state space and 

action space. 

Step 3. Weighing the indices 

Let A1, A2, …, An be the random variables corresponding to 

actions a1, a2, …, an, respectively. Then, λ1, λ2, …, λn that 

maximize the independence of each action satisfy:  

 

1 1 2 2

2 2 2

1 2

( , , , )

1

n n

n

MaxVar R R R  

  




+ + + =
 (13) 

 

Then, λ1, λ2, …, λn were taken as the weights of the actions 

in the final Q table. Based on these weights and the previously 

mentioned constraints, each state and its corresponding action 

could be quantified to reflect the precision of advertising. 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

To verify its effectiveness, the proposed model was applied 

to predict the reach percentages of four kinds of ads served in 

different time periods. According to the prediction results 

(Figure 5), the reach percentages of the different kinds of ads 

were very close in the same time period, despite an extremely 

small fluctuation. The results show that our model can adapt 

to the advertising time to a certain extent, and output 

predictions within a certain error range; the predictions of our 

model are not dependent on the type of ads.  

Figure 6 compares our model with long short-term memory 

(LSTM) network, gated relation unit (GRU) network, and 

traditional Q-learning in terms of the mean relative error in 

100 rounds of learning. It can be seen that our model achieved 

the lowest mean relative error and the highest prediction 

accuracy. 

Figure 7 shows how the mean relative error of each of the 

four contrastive methods changes with the times of learning in 

each round. It can be seen that, when the learning surpassed 

3,000 times, the mean relative errors of the LSTM network, 

GRN and traditional Q-learning stabilized at 28%, 21%, and 

16%, respectively, while the mean relative error of our model 

stabilized at 4%. Regardless of the times of learning in each 
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round, our model always had a much lower mean relative error 

than the other three methods. 

 

Table 4. Logloss and AUC of each feature  

 

Feature 

number 

Feature 

construction? 

Feature 

optimization? 

Model result 

Logloss AUC 

1 No Yes 0.146  0.634  

2 Yes Yes 0.175  0.948  

3 Yes No 0.142  0.993  

4 Yes No 0.196  0.833  

5 No Yes 0.145  0.979  

6 Yes No 0.096  0.909  

7 Yes Yes 0.156  0.928  

8 Yes Yes 0.132  0.934  

9 Yes Yes 0.106  0.843  

10 Yes No 0.126  0.899  

11 Yes No 0.099  0.946  

 

Table 4 lists the logarithmic loss (logloss) and area under 

the curve (AUC) of the 4 user features and 7 ad features. It can 

be seen that the data redundancy was effectively reduced by 

feature construction and optimization, which speeds up data 

processing and promotes the prediction accuracy of our model. 

Figure 8 compares the AUC trends of traditional Q-learning 

and our model. With the growing number of iterations, both 

methods continued to converge. At the 100th iteration, the 

AUC basically remained stable, indicating that the two 

methods had achieved the optimal Q value. However, the AUC 

curve of our model stayed above that of traditional Q-learning 

throughout the convergence. The superiority of our model in 

the AUC is attributable to the state-action relationship 

constructed by the DQN, based on the correlations between 

such data as the viewing completion of the same user on 

different ads, the probability for a user to click on the same ad 

in the next moment, and the fitness between the tags of creative 

keywords and those of search keywords. 

 

 
 

Figure 5. Comparison of reach percentages at different advertising times 

 

 
 

Figure 6. Comparison of mean relative errors in different rounds 

401



 

 
 

Figure 7. Comparison of mean relative errors in each round 

 

 
 

Figure 8. The AUC trends of traditional Q-learning and our model 

 

 

6. CONCLUSIONS 

 

Based on Q-learning algorithm, this paper constructs a 

prediction model for advertising precision. Specifically, the 

erroneous, redundant, and missing items of the advertising 

data were preprocessed, the correlations between the data in 

the advertising data sequence were sorted out, and the process 

of feature construction and optimization was detailed. 

Experimental results show that, through feature construction 

and optimization, our model can make accurate predictions, 

whiling reducing data redundancy. 

Next, the advertising precision prediction model was 

constructed in three steps based on Q-learning algorithm: 

setting up the state space and actions space, determining the 

state-action relationship with the DQN, and assigning weights 

to indices. Through repeated experiments, our model was 

found to achieve a lower mean relative error and a higher 

accuracy than the other methods. 
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