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 Laminar mixed convection heat and mass transfer in horizontal circular tube with uniform 

heat and mass fluxes at the walls on part of its length have been investigated numerically 

using a three - dimensional elliptic equations model. The effect of the Schmidt number and 

the buoyancy ratio N, on the development of the hydrodynamic, thermal and solutal fields 

and the axial evolution of the Nusselt and the Sherwood numbers are presented. These results 

showed that the Schmidt number has the highest effect on the flow rather than the Nusselt 

and Sherwood numbers. The Nusselt number and Sherwood number increase for positive N 

and decrease when N is negative. 
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1. INTRODUCTION 

 

The fluid flow with heat and mass transfer is a subject which 

continues to cause much interest within the scientific 

community because of their many industrial applications such 

as the compact heat exchangers, cooling of the electronic 

components, chemical distillation, solar energy collectors, and 

others.  

Generally, these flows are characterized by the presence of 

the temperature and concentration gradients which generate 

thermal and solutal buoyancy forces.  

Mixed convection in ducts due to the effect of thermal 

buoyancy was studied numerically and experimentally for 

both aiding (the flow is in the same direction as the buoyancy 

force) and opposing (the flow is in the opposite direction to the 

buoyancy force) flows by various authors, including Choi and 

Choi (1994), Joye (1996), Choudhury and Patankar (1988), 

Zghal et al. (2001), Maré et al. (2006), and Mohammed (2008). 

However, the mixed convection due to the combined effects 

of thermal and solutal buoyancies has received less attention. 

Chang et al. (1986) investigated numerically the natural 

convection flows in a vertical, open tube resulting from 

combined buoyancy effects of thermal and mass diffusion. 

Results were presented for an air-water system. The effects of 

tube length as well as system temperatures and pressures on 

the heat and mass transfer in the flow are examined in great 

detail. The results show the important role that the liquid film 

plays under the situations of buoyancy-aiding and opposing 

flows. The developing laminar mixed convection with heat 

and mass transfer in inclined rectangular ducts was studied 

numerically by Yan (1995). Typical developments of velocity, 

temperature, and concentration profiles were shown. The local 

friction factor, Nusselt number, and Sherwood number were 

presented for the transported species of interest in air (Pr = 0.7) 

over a Schmidt number range of 0.2–2, and the buoyancy ratio 

N was varied between -0.8 and 2.0. Lee (1999) investigated 

numerically the laminar natural convection heat and mass 

transfer in open vertical rectangular ducts with uniform 

temperature and uniform concentration or uniform heat flux 

and uniform mass flux at the wall. The governing equations 

are solved by the vorticity-velocity method for three-

dimensional parabolic flow.  Results were obtained for a fluid 

with Pr = 0.7 and Sc = 0.2, 0.6 and 1.3, and the buoyancy ratio 

N = 0, 1 and 2 (the solutal buoyancy force acts in the same 

direction as the thermal buoyancy force). The author proposed 

correlations for the volume rate, and average Nusselt and 

Sherwood numbers for both boundary conditions. Orfi and 

Galanis (2005) analyzed the effect of the Lewis number on 

laminar mixed convection heat and mass transfer in a 

horizontal tube with uniform heat and uniform concentration 

at the wall. Results were obtained for Pr = 0.7, the buoyancy 

force from species diffusion assists the thermal buoyancy 

force and values of the Lewis number ranging from 0.2 to 5. 

Recently, the present authors (2013) studied the effects of 

thermal and solutal buoyancy forces and inclination angle on 

the development of laminar mixed convection in a circular 

inclined duct with uniform heat flux and uniform 

concentration at the wall. These results were limited to the case 

when the solutal buoyancy force acts in the same direction as 

the thermal buoyancy force, and Sc = 0.6. Therefore, the 

present work is devoted to study the effect of the Schmidt 

number Sc and the buoyancy ratio N on the development of 

laminar mixed convection heat and mass transfer in horizontal 

circular tube with uniform heat and mass fluxes at the wall. 

 

 

2. PHYSICAL MODEL AND MATHEMATICAL 

FORMULATION 

 

The geometry of the problem under consideration is shown 

in Fig. 1. The fluid is a mixture of two non-reacting gases 

(large amounts of species A and small amounts of species B). 
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The fluid enters into a horizontal circular duct of radius R at z* 

= -L1 with a uniform velocity V0
* and a constant inlet 

temperature T0
* and concentration C0

* (mass of B per total 

mass). A uniform heat flux qw and uniform mass flux mw are 

imposed at the wall from z* = 0 to z* = L2 while the rest of 

wall is adiabatic and impermeable. The flow is considered to 

be unsteady, laminar, and three-dimensional. The following 

assumptions are adopted:  

 

1) The fluid is Newtonian and incompressible; all its 

thermo-physical properties are considered constant except for 

the density in the buoyancy terms which varies linearly both 

with temperature and concentration;  

 

   * * * *
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     (1) 

 

Here βT and βC are the thermal and concentration expansion 

coefficients, respectively; 

2) The heat transfer by radiation in the walls is 

negligible because the temperature range considered is small, 

(Gebhart and Pera, 1971; Yan, 1995; Orfi and Galanis, 2005). 

 

 
 

Figure 1. Geometrical configuration of the studied case 

 

3) The species diffusion due to the temperature gradient 

(Soret effect) and the heat diffusion due to the concentration 

gradient (Dufour effect) are considered negligible. These 

secondary effects are not taken into account since the 

temperature and concentration gradients considered in the 

present work are low (Gebhart and Pera, 1971; Yan, 1995; Orfi 

and Galanis, 2005).  

4) The interfacial velocity at the tube walls as a result of 

species diffusion process is neglected. This is because the 

model is based on species diffusion processes with very low 

concentration levels (Yan, 1995; Orfi and Galanis, 2005).    

5) Viscous dissipation, enthalpy interdiffusion, and 

pressure work are negligible. 

 

Dimensionless variables are obtained by taking the diameter 

(2R) and the axial velocity (V0
*) as the characteristic length 

and velocity, respectively. Dimensionless time, pressure, 

temperature, and concentration are given respectively by the 

following expressions: 

 

𝑡 =
𝑡∗𝑉0

∗

2𝑅
 ,    

 𝑃 =
𝑃∗  + 𝜌0 𝑔(𝑟∗  cos 𝜃)

𝜌0 𝑉0
∗2  , 

  𝑇 =
(𝑇∗ − 𝑇0

∗)

𝑞𝑤(2𝑅 𝑘⁄ )
   , 

  𝐶 =
(𝐶∗−𝐶0

∗)

𝑚𝑤 (2𝑅∕𝐷)
                     (2) 

 

It should be noted that all the results presented in this work 

pertain to the steady flow solution. Unsteady-state effects were 

not explored. The use of transient terms in the equations is 

advantageous from the point of view of the numerical method 

of solution. 

The mass, momentum, energy, and concentration equations 

in cylindrical coordinates (r, θ, z) can then be written in the 

following nondimensional form: 
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The dimensionless numbers characterizing the phenomenon 

are: the Prandtl number    Pr = ν ⁄a, where a  is the thermal 

diffusivity of the fluid and  ν is the kinematic viscosity of the 

fluid, the Schmidt number Sc = ν/D, where  D is the mass 

diffusivity, the Reynolds number Re = V0
∗ 2R/ν, the thermal 

Richardson number RiT = GrT/Re2 , where the thermal Grashof 

number GrT = g βT qw (2R)4/ ν2k, and the solutal Richardson 

number RiC = GrC /Re2, where the solutal Grashof number GrC 

= g βC mw (2R)4⁄ ν2D. The buoyancy ratio N = RiC /RiT 

represents the ratio between solutal and thermal buoyancy 

forces. The buoyancy force from species diffusion assists the 

thermal buoyancy force when N > 0, whereas it opposes the 

thermal buoyancy force when N < 0.  When N = 0, there is no 

species diffusion and the buoyancy force is due to the thermal 

diffusion only. 

The system of preceding equations is elliptic in the three 

directions. It is subjected to the following boundary conditions: 

at the tube entrance 
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at the tube outlet  

 

 *

2 3 : 0, 0, 0, 0 0
u w v T C

z L L and
z z z z z

    
      

    
(9b) 

at the wall  0.5 : 0, 0, 0,r u w v     

 

*

2

1 1,

0 ,

 
 

 

 

T C
and

r z

for z L

                                                             (9c) 

 



 

0 0 ,
T C

and elsewhere
r z

 
 

 
                                           (9d) 

 

at the tube axis  
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The local and circumferentially average Nusselt numbers 

are given by: 
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The local and circumferentially average Sherwood numbers 

are defined as:  
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where: 
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3. NUMERICAL METHODS 

 

In the present work, the discretization of the coupled, 

nonlinear, elliptic partial differential equations was based on 

the finite volume approach. For the convective and diffusive 

terms a power-law scheme was used while the SIMPLER 

procedure (Patankar, 1980) was introduced for the velocity–

pressure coupling. The fully implicit scheme was used to 

discretize the temporal terms. The resulting discretized 

equations were solved iteratively, using the Tri-Diagonal 

Matrix Algorithm. The time increment is Δt =10-4. The 

numerical mesh generated is uniform in the circumferential 

direction and non-uniform in the axial and radial directions so 

as to capture the relatively important variation in the thermal, 

concentration, and hydrodynamic fields, particularly in the 

heated zone. The convergence of the solution was considered 

reached when the maximum relative change of all the variables 

(u, w, T and C) between two successive time steps was lower 

than 10-6. 

To ensure the independence of results for the grid used, 

three grids were tested (Bouhezza et al. 2013). In addition, the 

numerical model was validated by comparing our results with 

experimental and numerical published results, considering the 

configurations reported in Orfi and Galanis (2002), and Kays 

and Crawford (1993), and Kakac et al. (1987).    

 

 

4. RESULTS AND DISCUSSION 

 

Numerical results were obtained for species diffusion in air 

(Pr = 0.7) with Schmidt numbers ranging from 0.22 to 2.01. 

This covers diffusion into air of hydrogen (Sc = 0.22), water 

vapor (Sc = 0.6), ethanol vapor (Sc = 1.3) and benzene vapor 

(Sc = 2.01) (Yan, 1995). The values of the buoyancy ratio N 

was varied from -1.0 to 2.0. For each case the Reynolds 

number and thermal Richardson number are fixed at 400 and 

0.62, respectively. The results presented relate to the middle 

part of the tube where a uniform heat and mass fluxes value 

are prescribed. 

 

4.1 Effect of the Schmidt number  

 

 
(a) 

 
(b) 

 

Figure 2. Projected vector plots (A, B, C, D, E and F) 

showing the secondary flow in a tube: (a) Schmidt number Sc 

= 0.22; (b) Schmidt number Sc = 2.01 

 

The effects of Schmidt number on the flow, temperature and 

concentration fields are presented and discussed.  

Figures 2a and 2b shows the buoyancy induced secondary 

flow distribution, at six different cross sections A, B, C, D, E 

and F, of the tube situated at z = 0.6053, 3.2286, 7.4664, 

14.5291, 20.3811 and 24.8206, respectively. For two cases Sc 

= 0.22 and Sc = 2.01 at the first axial position, z = 0.6053, it is 

clear that the secondary flow is already affected by the thermal 

and solutal buoyancy forces. The magnitudes of the velocity 

vectors are relatively larger when    Sc = 0.22. As the fluid 

moves downstream, the buoyancy forces are an important 

effect for the two cases. On the other hand, the strength of the 

secondary flow increases and becomes most intense at z = 

7.4664 (section C) for Sc = 0.22 and Sc = 2.01. The ascending 

part of the vortices is greater for Sc = 0.22. Farther downstream, 

at z = 24.8206 the effects of thermal and solutal buoyancy are 

never disappeared since the conditions of heat and mass fluxes, 

and after this part the flow becomes fully developed.  

The effects of the Schmidt number on the development of 

the axial velocity profiles along the vertical diameter of 

symmetry are presented in Figs. 3. Close to the entrance of the 



 

middle part of the tube (position A, at z = 0.6053 Fig 3 (a)) the 

velocity profiles are uniform in the central part and 

symmetrical with respect to the tube axis and these profiles for 

all cases are quite close. But as the fluid goes downstream Fig 

3 (b) (c), this symmetry is lost, and the fluid is accelerated and 

the maximum axial velocity move toward the lower half of the 

tube. So, the axial velocity is reduced with the reduction in the 

Schmidt number. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 3. Effect of Schmidt number Sc on the evolution of 

axial velocity at different positions A, D and F 

The isoconcentrations at the same axial positions are 

presented in Figs. 4a, b. In both cases, near the entrance of the 

middle part of the tube (z = 0.6053, position A), the 

isoconcentrations are nearly circular, due to the weak 

secondary flow. Further downstream, at z = 7.4664 the 

isoconcentrations contours are distorted. The distortion of 

these contours is more important in the upper half of the tube 

because of the high intensity of the secondary flow (Figs. 2). 

In the lower half of the tube these contours are almost circular. 

It is noted that the distortion of these contours is much more 

important when Sc = 2.01.  

 

 
(a) 

 
(b) 

 

Figure 4. Contours of the isoconcentration in a horizontal 

tube: (a) Schmidt number Sc = 0.22; (b) Schmidt number Sc 

= 2.01 

 

The profiles of the concentration for various values of the 

Schmidt number and different positions of the tube are shown 

in Figs. 5a, 5b, 5c.  From these figures, it is clear that, close to 

the entrance of the middle part of the tube, the concentration 

profiles are symmetrical with the axis of the tube for the four 

cases considered and also, the concentration do not vary 

according to θ. But as the fluid goes downstream, the 

concentration profiles lose their symmetry, and the minimal 

values of concentration moves towards the lower half of the 

tube. The concentration varies according to θ, its maximum 

value always corresponds to the top of the tube (θ = 0), while 

its minimal concentration is at the bottom of the tube (θ = π).  

The gradients of concentration decrease when the Schmidt 

number increases. Finally, it is noted that the concentration 

field develops very quickly compared to the temperature field 

when Sc < Pr, and when Sc > Pr, the concentration field 

develops slower than the thermal field. 

 

 
(a) 



 

 
(b) 

 
(c) 

 

Figure 5.  Effect of Schmidt number Sc on the evolution of 

the concentration profiles at different positions A, D and F 

 

Figure 6 illustrates the effect of the Schmidt number on the 

axial evolution of the circumferentially averaged Nusselt 

number. The pure forced convection curve, has been obtained 

with Sc = 0.6. It can be seen from this figure that the Schmidt 

number effect is nonexistent near the inlet of the middle part 

of the tube (where the effects of thermal and solutal buoyancy 

forces does not exist) and the NuZ decreases in close agreement 

with the corresponding evolution for forced convection. As the 

buoyancy effects become important (at about z = 3.5), the NuZ 

curves for solutal and thermal mixed convection rise above the 

forced convection curve. The Sc = 0.22 curve is markedly 

different compared to the Sc = 0.6, Sc= 1.3 and Sc = 2.01 

curves. In addition, the vigorous secondary flow result causes 

an increase in the heat transfer. The circumferentially averaged 

Nusselt number results show a diminishing influence of 

increasing the Schmidt number from 0.6 to 2.01. 

The effect of Schmidt number on the axial evolution of the 

circumferentially averaged Sherwood number is presented in 

Figure 7. It is clearly seen that the ShZ curves are quite different. 

Near the entrance of the middle part of the tube, the values of 

ShZ are smaller than the corresponding values for forced 

convection when Sc < Pr and the values of ShZ are higher than 

the corresponding values for forced convection when Sc > Pr. 

Further downstream, for all cases, the ShZ are larger than the 

corresponding values for forced convection. On the other hand, 

the Sherwood number increases as the Schmidt number 

increase.  This is explained by the reduction of the 

concentration boundary layer thickness compared to the 

dynamic boundary layer thickness with the increase in the 

Schmidt number. Therefore, the rate of mass transfer increases 

(the Sherwood number increases). 

 

 
 

Figure 6. Effect of Schmidt number Sc on the 

circumferentially averaged Nusselt number in a horizontal 

tube 

 

 
 

Figure 7. Effect of Schmidt number Sc on the 

circumferentially averaged Sherwood number in a horizontal 

tube 

 

4.2 Effect of the buoyancy ratio N 

 

The axial evolution of the secondary flows induced by the 

thermal and mass buoyancy forces for different buoyancy 

ratios N are compared in Figs. 8a, b, c, d. Near the entrance of 

the middle part of the tube (section A), it is observed that the 

appearance of the secondary flow for case N = 2 (Figure 8a). 

At the same axial location, for the other cases (Figs. 8b, c, d), 

the secondary flow is negligible. As the fluid moves 

downstream, for the three cases (N=2, 1, 0), one notes the 

appearance of the secondary flow.  These secondary 

movements become more important at about z = 7.4664, and 

thereafter decrease tending towards different fully developed 

states. By comparing the results of these cases, one notes that 

the increase in the buoyancy ratio N amplifies the intensity of 

the secondary flow and the reduction in this parameter reduces 

these secondary movements. For N = -1, these secondary 

movements disappear along the tube. This indicates that the 

solutal buoyancy force acts in the opposite direction of the 

thermal buoyancy force, and whose total contribution is null, 



 

thus, the mixed convection behaves then like a forced 

convection.  

Figures 9a, b, c illustrates the effect of the buoyancy ratios 

N on the development of the axial velocity profiles along the 

symmetry diameter. Near to the entrance of the middle part of 

the tube (z = 0.6053, section A), the axial velocity profiles are 

uniform in the central zone and symmetrical with respect to 

the tube axis and essentially identical for the all cases. But as 

the fluid goes downstream, this symmetry is lost, and the 

profiles are distorted due to buoyancy effects, and the nature 

of distortion depends on the buoyancy ratio N. The secondary 

flow induced by the buoyancy forces has a direct influence on 

axial velocity, and the maximum axial velocity moves towards 

the lower half of the tube, but for N = -1 the axial velocity 

profile is always symmetrical. At the position z = 24.8206 (far 

from the entrance), by comparing maximum velocities for all 

the cases, one deduces that the maximum value of the axial 

velocity for the case N = -1 is definitely higher than that for 

other cases.   

The effect of the buoyancy ratio N on the axial evolution of 

the local Nusselt and Sherwood numbers is illustrated in Figs. 

10 and 11.  These figures show clearly that the curves of the 

Nuθ and Shθ numbers are symmetrical compared to the vertical 

diameter of the tube (θ = π) along the tube.  Close to the 

entrance of the middle part of the tube these curves are 

independent of θ, and primarily identical for all the cases, i.e. 

the influence of the buoyancy ratio is negligible.  But as the 

fluid goes downstream, the shape of the curves of Nuθ and Shθ 

is influenced by ratio N.  For cases N≠-1, one notes that the 

values of these numbers increase when z increases and 

thereafter decrease tending towards different fully developed 

states with the increase in z. The maximum values of Nuθ and 

Shθ are located at the bottom of the tube (θ = π), while its 

minimal values are located at the top of the tube (θ = 0). For 

the case N = -1 these numbers do not vary according to the 

angular direction along the tube because of the absence of the 

secondary movements, as noticed in the Figure 8d.    

  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 8. Projected vector plots showing the secondary flow: 

(a) buoyancy ratio N = 2; (b) buoyancy ratio N = 0; (c) 

buoyancy ratio N = -0.5; (d) buoyancy ratio N = -1 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 9. Effect of buoyancy ratio N on the evolution of 

axial velocity profiles at different positions A, D and F 

 

 
(a) 



 

 
(b) 

 
(c) 

 

Figure 10. Effect of buoyancy ratio N on the local Nusselt 

number at different positions A, D and F 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 11. Effect of buoyancy ratio N on the local Sherwood 

number at different positions A, D and F 

 

 
 

Figure 12. Effect of buoyancy ratio N on the 

circumferentially averaged Nusselt number 

 

 
 

Figure 13. Effect of buoyancy ratio N on the 

circumferentially averaged Sherwood number 

 

The effect of the buoyancy ratio N on the axial evolution of 

the circumferentially averaged Nusselt and Sherwood 

numbers characterizing the heat and mass transfer are 

illustrated in Figs. 12 and 13. These figures clearly show that 

the values of NuZ and ShZ close to the entrance of the middle 



 

part of the tube are identical, i.e. the influence of the buoyancy 

ratio N is negligible. Further downstream, the curves of NuZ 

and ShZ are influenced by buoyancy ratio N. Thus, it is noted 

that these numbers increase when the solutal buoyancy force 

acts in the same direction as the thermal buoyancy forces (i.e. 

N > 0). In the case of N < 0 (the solutal buoyancy force acts in 

the opposite direction of the thermal buoyancy force), the 

numbers of NuZ and ShZ decrease with the increase in buoyancy 

ratio N. Similar results were obtained by Yan (1994) for a 

rectangular duct using parabolic model.  

 

 

5. CONCLUSIONS 

 

In this work, combined heat and mass transfer in mixed 

convection in a horizontal tube with uniform heat and mass 

fluxes on a part of its length was studied numerically.  The 

three-dimensional elliptic form of the conservation equations 

was used. The effects of the Schmidt number and buoyancy 

ratio N on the fluid flow and heat and mass transfer are 

examined. The principal results are as follows: 

1) Near the entrance of the middle part of the tube where 

a constant heat and mass flux values are prescribed, the effects 

of the Schmidt number Sc and buoyancy ratio N are negligible.  

2) As the fluid moves downstream, the secondary flow 

appears because of the effect of thermal and solutal buoyancy 

forces, and the intensity of these secondary movements 

depends on a Schmidt number Sc and on the buoyancy ratio N. 

In addition, the velocity profiles are highly distorted by the 

solutal buoyancy force when N is positive. 

3) The increase in the Schmidt number Sc improves the 

rate of mass transfer. 

4) Smaller Sc increases the rate of heat transfer. 

5) The rates of heat and mass transfer increase when N 

is positive and decreases when N is negative. 
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NOMENCLATURE 

 
a  thermal diffusivity, m2.s-1 

C dimensionless species concentration 

C* dimensional species concentration, (kg of 

species B / kg of mixture (A+B))  

Cp specific heat of the fluid, J.kg−1.K−1 

D mass diffusivity, m2.s−1 

g gravitational acceleration, m.s−2 

GrC solutal Grashof number   

GrT thermal Grashof number 

k 

L1, L3 

 

L2 

NuZ 

thermal conductivity, W.m−1.K−1 

lengths of adiabatic and impermeable zones, 

m 

length of heated zone, m 

average Nusselt number 

P* fluid pressure, Pa 

P dimensionless pressure 

Pr Prandtl number 

qw heat flux imposed at the walls, W.m−2 

r dimensionless radial coordinate 

R duct radius, m 

Re Reynolds number 

RiC solutal Richardson number 

RiT thermal Richardson number 

Sc Schmidt number 

ShZ average Sherwood number 

T* fluid temperature, K 

T dimensionless temperature 

t dimensionless time 

u dimensionless radial velocity 

u* fluid radial velocity, m.s−1 

v dimensionless axial velocity 



 

v* fluid axial velocity, m.s−1 

w dimensionless circumferential velocity 

w* fluid circumferential velocity, m.s−1 

z dimensionless axial coordinate 

 

Greek symbols 

 

 

 

βT coefficient of thermal expansion, K−1 

βC coefficient of concentration expansion 

θ circumferential coordinate 

ν kinematic viscosity, m2.s−1 

ρ density, kg.m−3 

  

Subscripts 

 

b bulk fluid quantity 

0 inlet conditions 

r, θ, z radial, circumferential and axial 

directions, respectively 

w value at the wall 

 

Superscripts 

 

 

* dimensional quantity 

− average value 

 

 
 


