

Detection of Conflicts Between Resource Authorization Rules in Extensible Access Control

Markup Language Based on Dynamic Description Logic

Shaoyu Yang1*, Cong Tan2

1 North China University of Water Resources and Electric Power, Zhengzhou 450000, China
2 Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China

Corresponding Author Email: ysy@ncwu.edu.cn

https://doi.org/10.18280/isi.250301

ABSTRACT

Received: 17 February 2020

Accepted: 29 April 2020

 For resources in an open environment, the access control rules (ACRs), which are described

by extensible access control markup language (XACML), might have conflicts between

each other. To improve the rule management, the root causes of rule conflicts must be

identified. This paper firstly formally models the resource attributes by dynamic description

logic (DDL), and then investigates inference problems like attribute consistency and rule

satisfiability by setting up concept, instance and action knowledge bases. Next, DDL-based

rule conflict detection algorithms were designed to identify possible rule conflicts. Finally,

the feasibility and decidability of the proposed algorithms were verified through

experiments on expanded Continue dataset. The research results provide new insights to the

detection of conflicts between resource authorization rules (RARs).

Keywords:

dynamic description logic (DDL), extensible

access control markup language (XACML),

access control rule (ACR), rule conflict

detection

1. INTRODUCTION

In an open environment, resources are often scheduled and

accessed through the collaboration and combination among

multiple organizations and systems. The access control rules

(ACRs) for descriptive attributes of inter-domain resources

need to be maintained and updated by decision makers from

other domains. This cross-domain resource access control

mode raises new requirements for ACR formulation and

verification.

For one thing, the knowledge sharing and permission

coverage might exist in the conceptual structure and

correlations of resource attributes. For another, the intra-

domain resources could be combined and migrated at any time,

and ACR authorization and revocation add difficulty to rule

management, pushing up the possibility of conflicts between

resource authorization rules (RARs).

Most access control systems provide mitigating methods for

the above-mentioned rule conflicts, namely, prioritizing

“allow”, “deny”, or “use” permissions. Focusing only on the

final judgement of the rules, these mitigation methods merely

ensure the determinism of the evaluation for access control

system. For resource visitors and rule makers, the process and

causes of rule conflicts are not available, making it impossible

to find the source of conflicts from the structure of resource

attributes and RARs.

Considering the RAR conflicts in a distributed environment,

this paper probes into the mitigating methods adopted in

extensible access control markup language (XACML). The

ACRs were formally expressed by dynamic description logic

(DDL). The possible RAR conflicts were verified through

model inference.

2. LITERATURE REVIEW

As a description standard for RARs, the XACML [1] was

formulated by Organization of the Advancement of Structured

Information Standard (OASIS) to promote the consistency of

ACR descriptions on the network layer. With a fine-grained

description method for attribute authorization and an easily

expandable form of rule description, the XACML offers a

suitable tool to describe the access control and authorization

of distributed resources.

In recent years, the XACML has been frequently adopted

for logic description and reasoning of ACRs in distributed

environments. Facing the heterogeneous Internet of things

(IoT), Atlam et al. [2] depicted the ACRs of lightweight IoT

devices with the XACML, and designed a distributed and

flexible cross-domain resource access control method. Based

on the grammar rules of the XACML, the designed method

expands the application scope and enhances the fault tolerance

and authorization validation of the original model. Focusing

on cloud service application scenarios in health services,

Ayache et al. [3] developed an XACML-based cloud service

for verifying ACRs, which realizes data sharing, task

invocation and activity coordination across service domains.

Kanwal et al. [4] tackled the security of data release and

sharing of electronic medical records in a hybrid cloud

environment, made fine-grained XACML description of

resource ACRs in that environment, and thereby improved the

capabilities of the ACRs in privacy protection and access

control. For safe access to IoT devices in distributed network,

Charaf et al. [5] proposed an XACML-based access control

method for terminal devices, which is reliable, available and

confidential.

Ingénierie des Systèmes d’Information
Vol. 25, No. 3, June, 2020, pp. 285-294

Journal homepage: http://iieta.org/journals/isi

285

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250301&domain=pdf

Damiano et al. [6] applied blockchain technology to

describe ACRs and establish a decentralized trust verification

mechanism for cross-domain resources. Specifically, the

security performance of resource attributes was subject to fine-

grained description, and the attributes and rules were linked to

the blockchain in the form of smart contract. The proposed

mechanism was validated in the Ethereum environment. Based

on the blockchain technology, Ma et al. [7] created a

distributed key management architecture for the hierarchical

access control of the IoT. The architecture satisfies the demand

for access control of cross-domain cloud services, supports

decentralized and fine-grained verification of attributes, and

integrates privacy protection into the ACRs. Zyskind and

Nathan [8] combined blockchain technology and off-chain

storage into a data management platform for privacy

protection. In the platform, the access control process mainly

focuses data reading, failing to form a complete access control

system. Sukhodolskiy and Zapechnikov [9] put forward an

access control method for data storage in a cloud environment.

Wang et al. [10] realized data storage and sharing without the

participation of providers, using Ethereum and an attribute-

based access control method. Furthermore, many other

researchers have studied the access control strategy described

by XACML about Policies formalization [11], Automatic

Testing [12], Model testing [13], policy tracing [14],

automated fault localization [15].

The above studies mainly explored the access control

mechanism of cross-domain resources in different application

environments, and developed some mitigation methods for

rule conflicts based on the XACML. Most of these methods

mitigate the impact of rule conflicts on the authorization

process from the perspective of authorization results. However,

the nature of the mitigation has not been analyzed from the

angles of rule description and attribute structure, weakening

the ability of reasoning and verification. The XACML-based

rule combination algorithms neglect the attributes and the

underlying causes leading to rule conflicts, and overlook the

influence of rule correlations and attribute hierarchy on the

rule conflicts. To make up for the gaps, the rule conflicts

should be detected and mitigated before judging the

authorization, using the reasoning ability of dynamic

description logic (DDL). In this way, the security management

personnel in the domain can discover rule conflicts in time,

find the reasons of conflicts, and simplify the relevant rules.

3. DDL-BASED AUTHORIZATION AND REASONING

MODEL

The attributes of cloud resources have an abundance of

semantic ontology descriptions, making the authorization

reasoning between resources a possibility. Here, the ontology

language of resource attributes is mapped to the DDL language

environment, and the resource authorization is formally

verified by the DDL reasoning mechanism.

3.1 Attribute-based access control model

The modelling of attribute access control mainly describes

the knowledge of TBox, ABox, and ActBox. As shown in

Figure 1, the attribute-based fine-grained access control model

encompasses a concept sub-model, an instance sub-model, and

an action sub-model.

The TBox knowledge uses axioms to systematically

describe the conceptual structure of ontology resources. The

structured knowledge can depict the inheritance and inclusion

semantics expressed by attributes.

The ABox knowledge mainly verifies whether the

conceptual implication relationship (CIR) of instance

attributes is consistent.

The ActBox knowledge mainly describes the necessary

conditions, formula set, and result set for resource

authorization. The actions in the ActBox fall into atomic

authorization action, combined authorization action and

transfer authorization action.

3.1.1 Concept sub-model

The hierarchical conceptual knowledge in TBox lays the

basis for judging the completeness of resource instance set.

This subsection defines the concept sub-model through formal

description, paving the way for DDL reasoning.

Definition 1. Concept sub-model ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡: For TBox T in

knowledge base KB, there exists a concept sub-model

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡(𝐴1, 𝐴2, …) ⊨ Τ.

(1) If and only if any concept in Τ contains axiom 𝐴 ≡ 𝐴′,

there exists an interpretation I(ω) that satisfies 𝐴𝐼(𝜔) ≡ 𝐴′𝐼(𝜔)

in any space ω of the world W.

(2) If and only if any relationship in Τ contains axiom 𝑅 ⊑

𝑅′ , there exists an interpretation I(ω) that satisfies 𝑅𝐼(𝜔) ⊆

𝑅′𝐼(𝜔) in any space 𝜔 of the world W.

Figure 1. The attributed-based fine-grained access control model

286

3.1.2 Instance sub-model

The resource instances in ABox are formal resource

descriptions based on the ontology resource model, providing

the basic information of resources. These instances are

essential to judging the realizability of authorization actions.

Hence, it is necessary to verify the satisfiability of the concept

sub-model for each instance. The instance sub-model is

defined as follows:

Definition 2. Instance sub-model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒: For ABox A

and TBox T in knowledge base KB, there exists an instance

sub-model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒(𝑎1, 𝑎2, …) ⊨ Τ. If and only if 𝑎1 ∈ 𝐴,

I(A) is an instance sub-model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 in Τ.

3.1.3 Action sub-model

The action sub-model is the abstract description of fine-

grained access control and authorization. Each authorization

action is formally depicted as a transition between instance

sub-models realized by the assignment of a formula set. With

the action sub-model, the decision-maker can assign values

from the instance set in ABox to each action, judge the

realizability of the action, and determine whether the resources

are suitable for authorization access.

Definition 3. Action sub-model ℳ𝐴𝑐𝑡𝑖𝑜𝑛: According to the

authorization rules in ActBox ACT, there exists an assignment

𝛶ℱ in the precondition set ℱ that makes instance sub-model

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃
 satisfy the preconditions of action 𝛼 =

(ℱ, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃
/ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸

) , and transfers the result into

another instance sub-model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸
. The action sub-model

can be denoted as ℳ𝐴𝑐𝑡𝑖𝑜𝑛(𝛼, 𝛽 …) ⊨
∃𝛶ℱ , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃

→𝛼
𝛾

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸
.

3.2 Reasoning based on the authorization model

The preceding subsection models the authorization in

resource access control, using TBox, ABox, and ActBox in

knowledge base KB. The established authorization model can

be reasoned based on the inference engine.

During the authorization, the reasoning task mainly checks

the consistency of concepts and instances, the realizability of

authorization actions, and the containment between actions.

The consistency check ensures that the instances in each ABox

satisfy the attributes and attribute correlations of conceptual

knowledge structure. The realizability check reflects whether

an authorization action on resources is achievable. The

containment check clarifies the partial ordering of

authorization actions among resources, and helps to reduce

redundant RARs. The consistency, realizability, and

satisfiability in model reasoning are defined as follows:

3.2.1 Consistency of concepts and instances

The consistency reasoning targets the instances and

concepts in ABox and TBox under the static scene. The

reasoning deals with the satisfiability of concepts in TBox, and

the instance checking and consistency judgement of ABox

instances under the constraint of TBox.

Definition 4. Concept satisfiability: Any concept A in

concept sub-model ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡 is satisfiable, if there exists an

interpretation 𝐼ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡 ≠ ∅ for that concept in the model.

Definition 5. Instance checking: For instance sub-model

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 , there exists an interpretation 𝐼ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ≠ ∅ of

instance 𝐶(𝑎) about the model in ABox A.

Definition 6. Instance consistency: For instance sub-model

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 , there exist two instances 𝐶(𝑎), 𝐶 ∈ 𝑇𝐵𝑜𝑥 𝑇. The

instance consistency can be denoted as 𝐴𝐼(𝑇) ⊨ 𝐶(𝑎).

For a given instance ABox A, it should first satisfy the

requirement of instance checking, that is, there exists a concept

that matches this instance. Next, the concept should be

satisfiable, as evidenced by the interpretation of TBox in the

concept sub-model. Then, the instance consistency can be

checked by detecting the conflicts between ABox and the

concepts in TBox.

3.2.2 Realizability

The realizability check of authorization actions is a dynamic

reasoning in access control. The realizability of complex

actions can be extended from the realizability of atomic

authorization actions.

Definition 7. Realizability of authorization actions: The

atomic authorization action 𝛼 is realizable, if the instance sub-

model ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 ⊆ 𝐼(𝑢) = (Δ,∙ 𝐼(𝑢)) and concept sub-model

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡 ⊆ 𝐼(𝑣) = (Δ,∙ 𝐼(𝑣)) in the initial ABox A

description and TBox T satisfy 𝑢 →ℱ
ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑣 . The

realizability can be denoted as 𝑅𝑒𝑙𝐼(𝑢)
𝑇 (𝛼).

The realizability of an atomic authorization action contains

the satisfiability of the preconditions and the consistency of

the instances in ABox. The ABox instances in interpretation

𝐼(𝑢) can be judged by the instance consistency check, and

those in interpretation 𝐼(𝑣) can be judged by the concept

consistency check in TBox. Then, it can be determined

intuitively that there is no inconsistency between the

preconditions and the consequences of the authorization action.

The realizability of complex actions can be described as

follows:

For combined authorization actions, the realizability can be

expressed as: 𝑅𝑒𝑙𝐼(𝑊)
𝑇 (𝑃𝐴) ⇒ 𝑅𝑒𝑙𝐼(𝑢)

𝑇 (𝛼)⋁𝑅𝑒𝑙𝐼(𝑢′)
𝑇 (𝛽)⋁ ⋯;

For transfer authorization actions, the realizability can be

expressed as: 𝑅𝑒𝑙𝐼(𝑊)
𝑇 (𝑃𝐴) ⇒ 𝑅𝑒𝑙𝐼(𝑢)

𝑇 (𝛼)⋀𝑅𝑒𝑙𝐼(𝑢′)
𝑇 (𝛽)⋀ ⋯.

3.2.3 Satisfiability

The satisfiability of an authorization action is mainly judged

based on the satisfiability of the precondition set of the action.

The latter is verified against the given TBox, ABox, and

ActBox.

Definition 8. Satisfiability of authorization actions: For the

given TBox, ABox, and ActBox, an action 𝛼 with a

precondition or precondition set ℱ is satisfiable if:

The atomic action with ℱ as the precondition is realizable

in T and A;

There exists a possible space 𝜔 making (ℳ, 𝜔) ⊨ ℱ.

4. XACML-BASED RULE CONFLICT DETECTION

In the XACML-based resource authorization framework,

there are two kinds of assignments, namely, permit and deny.

Permit allows the subject to acquire the resource access right,

and deny rejects the subject’s access request. Each request for

resource access may have different authorization results,

causing rule conflicts [16-18].

From the hierarchical inheritance of attribute concepts, this

section analyzes the causes of rule conflicts. The attribute-

based fine-grained access control mode was adopted to derive

the CIRs in attribute hierarchy, and thus detect rule conflicts.

287

Figure 2. The hierarchy of RAR conflicts

4.1 Types of rule conflicts

The rule authorization effect depends on whether the subject

is permitted to access or denied from accessing the requested

resource. For the attributes of the subject, rule conflicts may

arise from the CIRs in concepts and instances; for the

attributes of the resource, rule conflicts may arise from the

CIRs. The potential rule conflicts are classified as Figure 2,

where AS is subject attribute, AO is resource attribute, hollow

arrow is the implication and inheritance between attribute

concepts, the plus sign is permit, and the minus sign is denied.

For subject attributes, the lower attributes inherit the rights

of the upper attributes. For resource attributes, the lower

attributes are the fine-grained expression of the upper

attributes. As shown in Figure 2, the RARs were divided into

eight types (a)-(h) according to the CIRs of subjects and

resources, the granularity of resource attributes, and the

requirements on permit and deny. The difference between

RAR types comes from the hierarchy of conceptual knowledge.

The following analyzes the possible rule conflicts in each type

of RARs. Note that Rule1 and Rule2 are denoted as action sub-

models ℳ𝐴𝑐𝑡1
 and ℳ𝐴𝑐𝑡2

, respectively.

(a) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆 →

𝛼+
𝛾

𝐴𝑂1, ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆 →𝛼−

𝛾
𝐴𝑂2

{
ℳ𝐴𝑐𝑡1

⇏ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆 →

𝛼+
𝛾

𝐴𝑂2

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆 →𝛼−

𝛾
𝐴𝑂2

} ⇏ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

In Figure 2, (a) and (b) describe the authorization of

hierarchical resources to the same subject. AS means the

permit for coarse-grained attribute AO1. The permit cannot be

inherited by the fine-grained attribute AO2, that is, there exists

no interpretation of action sub-model ℳ𝐴𝑐𝑡1
′ that meets the

permit for AO2. Therefore, the two RAR actions will not have

any conflict.

(b) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆 →𝛼−

𝛾
𝐴𝑂1, ℳ𝐴𝑐𝑡2

⊨ 𝐴𝑆 →
𝛼+
𝛾

𝐴𝑂2

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆 →𝛼−

𝛾
𝐴𝑂2

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆 →

𝛼+
𝛾

𝐴𝑂2

} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡
ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

If the access to coarse-grained resource attributes is denied,

the deny will be inherited by the lower fine-grained resource

attributes, that is, there exists an interpretation of action sub-

model ℳ𝐴𝑐𝑡1
′ to meet the deny of fine-grained attribute AO2.

In this case, the RARs will conflict each other.

(c) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →

𝛼+
𝛾

𝐴𝑂, ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂

} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

(c) and (d) are the resource authorization of subject

attributes with CIRs. In the case of (c), the permit of AS1 for

AO can be transferred to its sub-attribute AS2, such that there

exists an interpretation of action sub-model ℳ𝐴𝑐𝑡1
′ that permits

AS2 to access AO. This conflicts with the deny of the other rule

ℳ𝐴𝑐𝑡2
.

(d) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →𝛼−

𝛾
𝐴𝑂, ℳ𝐴𝑐𝑡2

⊨ 𝐴𝑆2 →
𝛼+
𝛾

𝐴𝑂

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂
} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡

ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

Both (c) and (d) are resulted from the authorization

inheritance of subject and resource attributes. In the case of (d),

the deny of AS1 for AO leads to the deny of AS2 for AO, that is,

there exists an interpretation of action sub-model ℳ𝐴𝑐𝑡1
′ that

denies AS2 from accessing AO. This conflicts with the permit

of the other rule ℳ𝐴𝑐𝑡2
.

(e) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →𝛼−

𝛾
𝐴𝑂2, ℳ𝐴𝑐𝑡2

⊨ 𝐴𝑆2 →
𝛼+
𝛾

𝐴𝑂1

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂2

ℳ𝐴𝑐𝑡2
⇏ ℳ𝐴𝑐𝑡2

′ ⊨ 𝐴𝑆2 →
𝛼+
𝛾

𝐴𝑂2

} ⇏ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

(a)-(d) are four basic RARs of atomic level attributes.

Considering more complex situations, (e) describes the cross-

authorization of hierarchical subjects and resources. The

subject attributes can inherit the authorization effect of the

upper attributes according to the CIRs. Hence, there exists an

ℳ𝐴𝑐𝑡1
′ that denies AS2 from accessing AO2. Since the permit

for a coarse-grained resource attribute cannot be inherited by

lower fine-grained attribute, there is no ℳ𝐴𝑐𝑡2
′ that describes

the permit for AO2. In this case, the two rules will not have any

conflict.

(f) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →

𝛼+
𝛾

𝐴𝑂2, ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂1

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂2

ℳ𝐴𝑐𝑡2
⇒ ℳ𝐴𝑐𝑡2

′ ⊨ 𝐴𝑆2 →𝛼−
𝛾

𝐴𝑂2

} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

The cross-authorization of (f) is opposite to the effect of (e).

In this case, the CIR of each subject attribute make it possible

to transfer permit to sub-attribute AS2. Hence, there exists an

ℳ𝐴𝑐𝑡1
′ that allows AS2 to access AO2. Meanwhile, the deny for

coarse-grained resource attribute AO1 can be inherited by

lower fine-grained attribute AO2. Thus, there exists an ℳ𝐴𝑐𝑡2
′

that denies AS2 from accessing AO2. As a result, the two rules

will have conflict.

(g) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →

𝛼+
𝛾

𝐴𝑂1, ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂2

288

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂1

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂2

} ⇏ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

(g) and (h) are two parallel authorizations. (g) describes the

different authorization effects between upper resource

attributes to upper subject attributes. The subject attribute AS1

transfers the permit for AO1 to the lower sub-attribute AS2 via

the CIR. Hence, there exists an ℳ𝐴𝑐𝑡1
′ that allows AS2 to access

AO1. For action sub-models ℳ𝐴𝑐𝑡1
′ and ℳ𝐴𝑐𝑡2

, (g) can be

transformed into atomic authorization (a). Therefore, the two

rules will have no conflict.

(h) ℳ𝐴𝑐𝑡1
⊨ 𝐴𝑆1 →𝛼−

𝛾
𝐴𝑂1, ℳ𝐴𝑐𝑡2

⊨ 𝐴𝑆2 →
𝛼+
𝛾

𝐴𝑂2

{
ℳ𝐴𝑐𝑡1

⇒ ℳ𝐴𝑐𝑡1
′ ⊨ 𝐴𝑆2 →𝛼−

𝛾
𝐴𝑂1

ℳ𝐴𝑐𝑡2
⊨ 𝐴𝑆2 →

𝛼+
𝛾

𝐴𝑂2

} ⇒ 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡
ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

Similar to the conflict analysis of (g), the subject attribute

AS1 in the case of (h) transfers the deny for AO1 to the lower

sub-attribute AS2 via the CIR. Hence, there exists an ℳ𝐴𝑐𝑡1
′

that denies AS2 from accessing AO1. For action sub-models

ℳ𝐴𝑐𝑡1
′ and ℳ𝐴𝑐𝑡2

, (h) can be transformed into (b). Therefore,

the two rules will have conflict.

4.2 DDL-based conflict detection

From the above analysis on the types of rule conflicts, the

possible situations of rule conflicts can be divided into four

kinds of atomic authorizations (a)-(d). Based on the subject

CIRs and inheritance of resource granularity, the cases (e)-(h)

could be transformed into (a)-(b).

Among the four cases, no conflict will occur in (a), for the

permit for coarse-grained resource attribute AO1 cannot be

transferred to lower fine-grained attribute AO2. In the other

three cases, rule conflicts may occur due to the presence of

CIR and deny transfer to fine-grained attributes. To detect the

conflicts between XACML rules, two issues must be taken

into account: the CIRs and type of authorization between

subject AS and resource AO.

To facilitate the description of the permit and deny in

XACML rules, the action sub-model was divided into a set of

positive interpretations ℳ𝐴𝑐𝑡
𝑃𝑒𝑟𝑚𝑖𝑡 ≡ 𝐴𝑆 →

𝛼+
𝛾

𝐴𝑂 and a set of

negative interpretations ℳ𝐴𝑐𝑡
𝐷𝑒𝑛𝑦

≡ 𝐴𝑆 →𝛼−
𝛾

𝐴𝑂 . Depending

on the authorization effect, the RAR with resource is included

in different interpretation sets. In case (a), ℳ𝐴𝑐𝑡1
∈ ℳ𝐴𝑐𝑡

𝑃𝑒𝑟𝑚𝑖𝑡

and ℳ𝐴𝑐𝑡2
∈ ℳ𝐴𝑐𝑡

𝐷𝑒𝑛𝑦
. Besides, the subject attributes needed

for each authorization action were represented by an

interpretation of an instance sub-model ℳ𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃

ℱ , where ℱ

is the precondition made up of subject attributes. The

authorized resource attributes were represented by another

instance sub-model ℳ𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸
. Next, the rule conflicts were

detected from subject and resource attributes, respectively.

The inputs of Algorithm 1 include the positive RAR set

ℳ𝐴𝑐𝑡
𝑃𝑒𝑟𝑚𝑖𝑡 and the negative RAR set ℳ𝐴𝑐𝑡

𝐷𝑒𝑛𝑦
, as well as the

conceptual knowledge base TBox T. The algorithm detects the

rule conflicts arising from the hierarchical inheritance of the

resource attributes accessed by the subject, and returns a

conflict symbol 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2 .

In Lines 1 and 2, positive RARs and negative RARs in the

rules are traversed. The action sub-models are expressed as

ℳ𝐴𝑐𝑡1
 and ℳ𝐴𝑐𝑡2

. If there exists an assignment 𝛾ℱ that makes

instance ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃
 satisfy the preconditions of ℳ𝐴𝑐𝑡1

 and

ℳ𝐴𝑐𝑡2
 (Line 3), and if there exist concept sub-models

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸1

𝐼 and ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸2

𝐼 that satisfy instances among the

authorization objects ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸1
 and ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸2

 of the

rules (Line 4), then the satisfiability of the concept sub-models

will be judged by TBox T. If TBox T contains the deny for

fine-grained resource attributes, i.e. there exists a CIR

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸2
⊑ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸1

, then the rules will conflict as in

case (b).

Algorithm 1. Rule conflict detection based on the

hierarchy of resource attributes

Inputs: ℳ𝐴𝑐𝑡
𝑃𝑒𝑟𝑚𝑖𝑡;

 ℳ𝐴𝑐𝑡
𝐷𝑒𝑛𝑦

;

 TBox T;

Outputs: 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

1: For each ℳ𝐴𝑐𝑡1
 in ℳ𝐴𝑐𝑡

𝑃𝑒𝑟𝑚𝑖𝑡 do

2: For each ℳ𝐴𝑐𝑡2
 in ℳ𝐴𝑐𝑡

𝐷𝑒𝑛𝑦
 do

3: ∃𝛾ℱ, ℳ𝐴𝑐𝑡1
⊨ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃

→𝛼−
𝛾

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸1
 AND

ℳ𝐴𝑐𝑡2
⊨ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃

→
𝛼+
𝛾

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸2
;

4: ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸1
 ⊨ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸1

𝐼 , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸2
⊨ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸2

𝐼 ;

5: If ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸2
⊑ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝐸1

 ,in T then

6: 𝐶𝑜𝑛𝑓𝑖𝑐𝑡𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒(ℳ𝐴𝑐𝑡1
 , ℳ𝐴𝑐𝑡2

);

7: Return true;

8: Else

9: Return false;

10: End if

11: End for each

12: End for each

Then, the conflicting action sub-models are processed: the

permit ℳ𝐴𝑐𝑡2
 for fine-grained resource attributes is deleted to

terminate the inheritance between resource attributes (Line 6).

If there is a permit for coarse-grained resource attributes, or if

the rule sets contain no assignment that meets the requirements,

then the rule sets do not contain rule conflicts (Case a).

Algorithm 1 mainly detects the RAR conflicts arising from

the inheritance between resource attributes (Cases a and b).

The algorithm locates the conflicting rules, and calls the

conflict mitigation function to handle these rules.

TBox provides a hierarchical relationship reflecting the

concepts of resource attributes, and determines the existence

of rule conflicts by verifying the ⊆ relationship between

resource attributes. This CIR belongs to the problem of

concept consistency verification in description logic.

The rule conflicts arising from the hierarchy of subject

attributes can also be detected by verifying the ⊆ relationship

(Algorithm 2).

Similar to those of Algorithm 1, the inputs of Algorithm 2

contain rule sets and the conceptual knowledge base. The

algorithm detects the rule conflicts arising from the hierarchy

of subject attributes, and returns a conflict symbol.

The algorithm firstly traverses the rule sets (Lines 1 and 2).

Under the following conditions, the rules will have conflicts

of types (c) and (d): there exist the assignments 𝛾ℱ1 and 𝛾ℱ2

among subject attributes that make instance sub-models

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃1
 and ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃2

 satisfy the preconditions of

ℳ𝐴𝑐𝑡1
 and ℳ𝐴𝑐𝑡2

, respectively (Line 3); TBox T contains

interpretations ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃1

𝐼 and ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃2

𝐼 that satisfy

289

concept sub-models (Line 4); the concept sub-models have the

CIR (Line 5).

Then, the conflicting rules are processed: the lower subject

attributes are deleted to keep the consistency between the

authorization of higher subject attributes (Line 6). If there is

no CIR between subject attributes, then the rule sets will not

face any rule conflict arising from the hierarchy of subject

attributes.

The above-mentioned atomic RAR conflicts can be detected

and resolved by the two algorithms. The complex and cross-

authorizations can be handled similarly.

Algorithm 2. Rule conflict detection based on the

hierarchy of subject attributes

Inputs: ℳ𝐴𝑐𝑡
𝑃𝑒𝑟𝑚𝑖𝑡;

 ℳ𝐴𝑐𝑡
𝐷𝑒𝑛𝑦

;

 TBox T;

Output: 𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡
ℳ𝐴𝑐𝑡1

ℳ𝐴𝑐𝑡2

1: For each ℳ𝐴𝑐𝑡1
 in ℳ𝐴𝑐𝑡

𝑃𝑒𝑟𝑚𝑖𝑡 do

2: For each ℳ𝐴𝑐𝑡2
 in ℳ𝐴𝑐𝑡

𝐷𝑒𝑛𝑦
 do

3: ∃𝛾1
ℱ1 , 𝛾2

ℱ2 , ℳ𝐴𝑐𝑡1
⊨ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃1

→
𝛼+
𝛾1 ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸

AND ℳ𝐴𝑐𝑡2
⊨ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃2

→𝛼−
𝛾2 ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝐸

;

4: ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃1
⊨ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃1

𝐼 , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑃2
⊨ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃2

𝐼 ;

5: If ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃2
⊑ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑃1

 in T then

6: 𝐶𝑜𝑛𝑓𝑖𝑐𝑡𝐷𝑖𝑠𝑠𝑜𝑙𝑣𝑒(ℳ𝐴𝑐𝑡1
 , ℳ𝐴𝑐𝑡2

);

7: Return true;

8: Else

9: Return false;

10: End if

11: End for each

12: End for each

4.3 DDL-based reasoning

The DDL can reason about the ACR authorization based on

the process and transfer, and provide the reasoning ability for

the global rule library via the Tableau algorithm. In rule

conflict detection, the reasoning mainly covers two aspects: if

the rule conflict arises from the hierarchy of attributes, the key

is to validate the CIR that interprets the instance sub-model; if

the rule conflict arises from RAR transfer, the key is to verify

the consistency between the assertion sets of RAR action and

instance sub-models. These reasoning problems are

comparable to the satisfiability problem and the consistency

detection problem in the DDL [19, 20].

Definition 9. Concept sub-models ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
and ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

satisfy the CIR ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
⊑ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

, if and only if TBox T

contains an interpretation I that makesℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
𝐼 ⊆ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

𝐼 .

Theorem 1. The CIR ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
⊑𝑇 ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

 holds

between the concept sub-models in TBox T, if and only if

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
𝐼 ⊓ ¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

𝐼 is unsatisfiable, i.e. ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
𝐼 ⊓

¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2
𝐼 = ∅.

If TBox T contains an interpretation I that makes two sub-

models ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
 and ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

 satisfy the CIR, and if there

exists a concept model ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1
𝐼 ⊓ ¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

𝐼 ≠ ∅ that

satisfies T, then there exists an instance sub-model

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∈ ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡1

𝐼 that satisfies interpretation I. Due to

the existence of the CIR, there also exists ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ∈

ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2
𝐼 , which contradicts ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

𝐼 ∈ ¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2
𝐼 .

Hence, no such instance exists in ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ⊓ ¬ℳ𝐶𝑜𝑛𝑐𝑒𝑝𝑡2

𝐼 .

Definition 10. If the two assertions ℱ1 and ℱ2 in instance

sub-models ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
 and ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

 that transfer RAR

results obey ℱ1 ⊓ ℱ2 = ∅, then the two instance sub-models

are inconsistent, i.e. ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
⊓ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

= ∅.

The satisfiability verification of the DDL can be achieved

by the Tableaux algorithm [19]. The reasoning verification of

two concept or instance sub-models can be realized by the

following rules.

Take the satisfiability verification of instance sub-models

for example. By the following rules, an expansion set ℰ𝒮 of

attributes can be extended from ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
 and ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

.

Then, the satisfiability of the two sub-models can be evaluated

by judging whether the expansion set brings rule conflicts. If

the expansion set contains ⊥ , then the two sub-models are not

satisfiable, and face rule conflicts.

⊓ rule: If there exists an interpretation I in TBox T that

makes ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ⊓ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

𝐼 ∈ ℰ𝒮 (ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∉

ℰ𝒮, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ∉ ℰ𝒮), then {ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
} should

be expanded to ℰ𝒮;

⊔rule: If there exists an interpretation I in TBox T that

makes ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ⊔ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

𝐼 ∈ ℰ𝒮 (ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∉

ℰ𝒮 , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ∉ ℰ𝒮), then ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒∗

 should be expanded

to ℰ𝒮 , where ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒∗
= ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

𝐼 or ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒∗
=

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ;

∃ rule: If there exists an interpretation I in TBox T that

makes ∃𝑅. ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∈ ℰ𝒮 , and

∄ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 , 𝑅(ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

𝐼 , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 ∈ ℰ𝒮, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

𝐼 ∈

ℰ𝒮), then {ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
, 𝑅(ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1

, ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
)} should be

expanded to ℰ𝒮;

∀ rule: If there exists an interpretation I in TBox T that

makes ∀𝑅. ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ∈ ℰ𝒮 , ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

𝐼 ∉ ℰ𝒮 , then

{ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
} should be expanded to ℰ𝒮;

Action 𝛼 rule: If there exist an interpretation I in TBox T

and an assignment set 𝛾ℱ that make

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
𝐼 ⟶𝛼

ℱ ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2
𝐼 (ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

∈ ℰ𝒮), then

ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒1
 should be replaced with ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒2

 in ℰ𝒮.

Theorem 2. Reliability: The DDL-based rule conflict

detection is reliable.

The DDL-based rule conflict detection method targets two

kinds of rule conflicts in authorization: the conflicts arising

from the hierarchy of attributes and those arising from the

transfer of authorization.

For the first kind of rule conflicts, the implication and

inheritance relationships that stem from the hierarchy of

attributes can be converted by Algorithms 1 and 2 into the

CIRs in TBox for satisfiability verification. The satisfiability

problems can be solved by the Tableaux algorithm in

description logic.

For the second kind of rule conflicts, the rule conflict

detection can be converted by RAR transfer rules into the

satisfiability problem of instance sub-models of the

authorization results.

Action α rule is derived from the DDL description and

reasoning mechanism. The correctness of the algorithm can be

ensured by replacing elements in the extended set. Therefore,

the DDL-based rule conflict detection must be correct.

Theorem 3. Decidability: The DDL-based rule conflict

detection is decidable.

The above-mentioned rules can solve the rule conflict

detection problem, for the problem can be converted into the

satisfiability and consistency reasoning problems in the DDL.

290

Among these rules, ⊓ , ∃ and ∀ rules can be completed in

polynomial time. Despite the uncertainty of its completion

time, ⊔ rule is a complete binary tree in the worst-case

scenario, which can be completed in a limited time. Action α

rule contains replacement operations, which can also be

completed in a limited time. The final judgement based on the

extension set has two results ⊥ and ⊺. Therefore, The DDL-

based rule conflict detection is decidable.

5. EXPERIMENTAL VERIFICATION

5.1 Experimental environment

The DDL-based reasoning of RAR conflicts between fine-

grained resource attributes was verified through experiments

on rule inference and conflict detection. As shown in Figure 3,

the experimental model contains three main parts: an

XACML-DDL converter, a rule analyzer, and an output

generator.

The XACML-DDL converter is responsible for converting

XACML rules into DDL semantics. During the working, the

converter firstly traverses the element nodes in each rule, and

loads the information of the corresponding rule. Then, the

DDL-Converting is called to convert the information into a

rule described in DDL language. Based on the instance and

concept sub-models in the PIP ontology library, the rule

analyzer performs logic reasoning on the rules described in

DDL language, and feedbacks the reasoning results and

anomaly handling to the output generator.

The rule inference components include attribute matching

(Comparison), satisfiability verification (Verification) and

conflicting rule checking (Conflict Checking). The rule

analyzer provides an inference engine interface, allowing

different DL inference engines (e.g. Pellet, Fact++, and Racer)

[21-23] to participate in the rule inference of description logic.

During Tableau-based rule inference, the inference engine is

supported by the data from the ontology library provided by

the decision-maker. The rules being inferred and their

inference results are forwarded by the rule analyzer to the

output generator for further processing. The output generator

aggregates the abnormal rules into a rule set and feeds it back

to the rule administrator, who will handle the abnormal rules.

The experimental data consists of two parts: Continue

dataset and its expansion. Continue dataset was adopted by the

XACML rule analyzer Margrave [24, 25], which is based on

binary decision diagram (BDD). This dataset was selected to

validate the XACML-based DL inference engine. The

Continue dataset contains various complex and available

XACML rules, which control the access of qualified users to

article resources. A total of 26 rule files are provided in the

dataset, including 86 RARs and 37 kinds of elements about

user and article attributes. There are five description structures

for identities and roles: pc-member, pc-chair, subreviewer,

editor and admin. As shown in Table 1, the inheritance

relationship in the dataset has a maximum of four layers:

𝑝𝑐𝑀𝑒𝑚𝑏𝑒𝑟 ≺ 𝑝𝑐𝐶ℎ𝑎𝑖𝑟 ≺ 𝑠𝑢𝑏𝑅𝑒𝑣𝑖𝑒𝑤𝑒𝑟 ≺ 𝑒𝑑𝑖𝑡𝑒𝑟 ≺
𝑎𝑑𝑚𝑖𝑛.

The Continue dataset was also expanded, according to the

situation in lightweight applications of attribute set and rule

set in the IoT. The attribute descriptions of resources were

refined, and the descriptions of IoT resource attributes were

added to the original dataset. The expansion process is detailed

in the next subsection.

Four layers of inheritance relationships may exist,

depending on the identities and roles. The number of service

attributes in the rules of the dataset and the number of rules is

denoted as ⋕ ∑ 𝑎𝑡𝑏𝑠𝑟𝑢𝑙𝑒 and ⋕ ∑ 𝑟𝑢𝑙𝑒𝑠𝑝𝑜𝑙 , respectively.

Different layers of inheritance may have the same RAR. The

greater the number of inheritance layers, the more the attribute

values in the rules. The experiments were carried out on Intel

Pentium 4 2.4GHz CPU, 2GB memory, Windows XP SP3, and

Java Runtime Environment 1.6.

-CourterExample

-Tracing

Rule analysis framework

Output generator

XACML-DDL

Converter

Rule analyzer

-Comparison

-Verification

-ConflictChecking

-RulesLoading

-DDL-Converting

Policy

Decision

Point

（PDP）

PIP

ontology

library
-Concept

-Instance

-Action

-Policy

Rule

administrator

Reasoning engine

-Pellet

-Fact++

-Racer

Figure 3. Analysis framework of rule inference experiments

Table 1. Inheritance relationships between attributes

Inheritance relationship CIR # ∑ 𝒂𝒕𝒃𝒔𝒓𝒖𝒍𝒆 , # ∑ 𝒓𝒖𝒍𝒆𝒔𝒑𝒐𝒍

One-layer inheritance (admin, editor) 9, 24

Two-layer inheritance (editor, subreviewer) (admin, subreviewer) 16, 33

Three-layer inheritance (subreviewer, pc-chair) (editor, pc-chair) (admin, pc-chair) 28, 42

Four-layer inheritance
(pc-chair, pc-member) (subviewer, pc-member) (editor, pc-

member) (admin, pc-member)
31, 69

291

Table 2. Time overheads of inference engines on authorization reasoning (unit: second)

Inheritance relationship
Pellet Racer Fact++ Margrave

Loading Verify Loading Verify Loading Verify Loading Verify

One-layer inheritance 0.715 0.582 0.746 0.631 0.683 0.660 0.915 0.014

Two-layer inheritance 0.752 0.577 0.781 0.659 0.714 0.689 1.298 0.019

Three-layer inheritance 0.929 0.625 0.912 0.647 1.057 0.729 1.553 0.026

Four-layer inheritance 1.602 0.697 1.419 0.720 1.377 0.741 2.084 0.028

5.2 Performance evaluation

Rules with different inheritance layers were selected from

the dataset to measure the time overhead of loading and

reasoning for Continue dataset rules on the experimental

platform. The time overhead on the platform is made up of the

rule loading time (Loading) and rule verification time (Verify).

The former refers to the time to traverse the elements in

XACML rules and convert them into DDL logic description.

The latter refers to the time to logically reason about DDL

formal models based on the PIP.

The time overheads of four inference engines, namely,

Pellet, Racer, Fact++ and Margrave, were compared. The first

three inference engines are grounded on DDL formal

descriptions, and the formal description and reasoning of the

last engine are based on the BDD.

Firstly, a rule instance needs to be converted into a formal

DDL description. Take a one-layer inheritance rule in

Continue dataset for example. If the subject is an admin or

editor, then the meetingflag of the conference turntable can be

modified. The assertion P of the rule can be converted into a

DDL formal description. In the sub-instance model, the

instances and actions satisfy: 𝑃 ≡

(∃ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒
𝐴𝑑𝑚𝑖𝑛 ⨆ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

𝐸𝑑𝑖𝑡𝑜𝑟) ⊓ ∃ℳ𝐴𝑐𝑡𝑖𝑜𝑛
𝑊𝑟𝑖𝑡𝑒 ⊓ ∃ℳ𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒

𝑀𝑒𝑒𝑡𝑖𝑛𝑔𝐹𝑙𝑎𝑔
.

Then, the satisfiability of the DDL formal description can be

verified by the inference engine.

The time overheads of each inference engine on inheritance

rules of different layers were recorded on the experimental

platform (Table 2).

As shown in Table 2, the DL-based inference engines

differed slightly in time overhead in the rule loading phase.

Their time overheads were basically 1s, which is smaller than

the BDD-based Margrave. The superiority of DL-based

inference engines comes from the convenient conversion of

XACML resource attributes into DL descriptions. Compared

with Margrave, the DL-based inference engines are strong and

efficient in formal expression of subjects, resources and RAR

ontologies in the XML format.

In the verification phase, Margrave had an obvious

advantage, as its time overheads were basically on the order of

10ms. This inference engine has a high efficiency in assertion

verification, due to the rule inference based on the BDD. As

for the three DL-based inference engines, the time overhead in

rule inference and verification basically stabilized within 1s.

The mean time overhead of Pellet stood at 0.6s, and that of

Racer and Fact++ fell between 0.6s and 0.8s. Considering the

actual application environment, the time overheads of DL-

based inference engines, coupled with XACML conversion

mechanism, are acceptable in the verification phase.

The Continue dataset offers a limited number of attributes

and rules, which are insufficient to effectively simulate the

application environment of the access authorization for cloud

resources. Therefore, the dataset was expanded from two

aspects, aiming to disclose the effects of the massive resources

and RARs in cloud environment on the time overhead in DDL

reasoning.

(1) Expanding attribute values without changing rule

structure

Each attribute description in a rule was expanded by adding

new attribute values. First, a similar attribute list
{𝑣1, 𝑣1, ⋯ , 𝑣𝑙𝑖𝑚𝑖𝑡} was prepared for each attribute description

in the rule, where limit is the threshold for the scale of attribute

expansion. Next, each element node in the rule is traversed. If

the original attribute value 𝑣 was detected, it would be

replaced by a random attribute in the similar attribute list. The

expansion was terminated once all attribute values were

replaced. The hierarchy of attributes was not changed through

the expansion.

(2) Expanding rule set

The original rule set was expanded to increase the number

of rules available. Specifically, a new reference node was

added to the root node rule file (RPSlist.xml) in the Continue

dataset. Under the node, new rules were generated by the

XACML rule generator [26]. During the generation, the

number of generated rules was controlled by configuring the

following parameters: the maximum depth of rule tree

(maxDepth), the maximum number of attributes

(maxAttributePerCategory), the maximum attribute value

(maxValuesPerAttribute), and the maximum number of rules

(maxChildren). The attributes in the expanded rules must be

those s that already exist in the Continue dataset.

The number of attributes and rules in the expanded

Continue dataset could be controlled according to the

experimental needs.

To verify the time overheads in conflict detection in Table

2, three experiments were designed to reveal (1) the effects of

growing number of rules on the time overheads in detecting a

single rule conflict, (2) the time overheads in detecting

multiple rule conflicts at a fixed number of rules, and (3) the

effects of the number of attributes on the efficiency of conflict

detection.

Figure 4. Effects of the number of rules on time overhead in

detecting a single conflict

292

Figure 5. Effects of the number of rules on time overhead in

detecting multiple conflicts

Figure 6. Effects of the number of attributes on the

efficiency of conflict detection

In Experiment 1, six rule sets containing rule conflicts were

selected from the expanded Continue dataset. The six sets

include 50, 75, 100, 125, 175, and 200 rules, respectively. The

algorithms in Subsection 4.2 were applied to detect the single

rule conflict in these sets. The time overheads in conflict

detection are recorded as Figure 4.

In Experiment 2, the number of rules in the rule set was

controlled at 126. The proposed algorithms were adopted to

detect the multiple rule conflicts. The time overheads in

conflict detection are recorded as Figure 5.

The experimental results demonstrate that the efficiency of

the conflict detection algorithms depends on the number of

rules and conflicts in the rule set. As shown in Figure 4, the

time overhead in detecting a single conflict increased linearly

with the number of conflicts in the rule set. As shown in Figure

5, the time overhead in detecting multiple conflicts also

increased linearly with the number of conflicts, except slight

fluctuations at some nodes. For example, the time overhead in

detecting 9 conflicting nodes differed from that in detecting 19

nodes. However, the fluctuation of time overhead was within

2s, and the time overheads for neighboring nodes exhibited no

significant changes. Hence, the fluctuations can be neglected

in actual applications. To sum up, the efficiency of conflict

detection is basically linearly correlated with the number of

conflicts. The proposed algorithms could detect the conflicts

in the expanded Continue dataset within polynomial time,

which satisfies the description in Theorem 3.

In Experiment 3, the Continue dataset was expanded by

increasing attribute values without changing rule structure.

Five rule sets with the same number of rules (175) were

selected for the experiment. The number of attributes in the

five sets was 27, 49, 65, 81 and 107, respectively. According

to the hierarchical inheritance relationship among the policies,

the data in five data sets are classified as four data groups. The

proposed algorithms were adopted to detect the rule conflicts

in these four data groups. The time overheads in conflict

detection are recorded in Figure 6.

The four rule sets, which have different layers of inheritance,

performed differently with the changing number of attributes.

With the growing number of attributes, the time overheads of

all four sets in conflict detection increased. The reason is that

the addition of attributes increases the traversal time of all

resource attribute nodes. The time overheads increased

linearly with the number of attributes, which are acceptable on

the expanded Continue dataset.

Owing to the difference in inheritance relationship, the four

rule sets also differed in the time overhead under the same

number of attributes. The difference is attributable to the

following factors: a lower rule set has a smaller time overhead,

because it contains fewer rules and the CIRs between its

concepts could be computed in a shorter time. With the growth

in the number of attributes, the time overhead difference

between the rule sets continued to widen. This means, when

the number and structure of rules remain the same, the number

of attributes is the main influencing factor of the time overhead

in conflict detection.

6. CONCLUSIONS

The XACML, as an attribute-based ACR description

language, is suitable for authorizing access to resources in an

open environment. Focusing on the possible RAR conflicts,

this paper explores the causes of rule conflicts, and formally

describes resource attributes with the DDL. Next, problems

like attribute consistency and rule satisfiability were examined

by setting up concept, instance and action knowledge bases.

Then, a conflict detection algorithm was designed to identify

the rule conflicts arising from the hierarchy of resource

attributes. The algorithm relies on Tableau rules to detect rule

conflicts in the light of satisfiability. The reliability and

decidability of the algorithm were fully demonstrated. After

that, three experiments were carried out to verify the feasibility

of DDL-based authorization and reasoning, and to analyze the

actual time overheads in loading and verification phases on

expanded Continue dataset. The efficiency of the proposed

algorithm was analyzed from three aspects: the number of

rules, the number of conflicts, and the hierarchy of attributes.

The results show that the DL-based inference is decidable in

polynomial time.

REFERENCES

[1] http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-

spec-os-en.pdf.

[2] Atlam, H.F., Alassafi, M.O., Alenezi, A., Walters, R.J.,

Wills, G.B. (2018). XACML for building access control

policies in internet of things. In IoTBDS, pp. 253-260.

http://doi.org/10.5220/0006725102530260

[3] Ayache, M., Erradi, M., Khoumsi, A., Freisleben, B.

(2016). Analysis and verification of XACML policies in

a medical cloud environment. Scalable Computing:

293

Practice and Experience, 17(3): 189-206.

http://doi.org/10.12694/scpe.v17i3.1180

[4] Kanwal, T., Jabbar, A.A., Anjum, A., Malik, S.U., Khan,

A., Ahmad, N. (2019). Privacy-aware relationship

semantics–based XACML access control model for

electronic health records in hybrid cloud. International

Journal of Distributed Sensor Networks, 15(6): 97-114.

http://doi.org/10.1177/1550147719846050

[5] Charaf, L.A., Alihamidi, I., Addaim, A., Abdessalam,

A.I.T. (2020). A distributed XACML based access

control architecture for IoT systems. In 2020 1st

International Conference on Innovative Research in

Applied Science, Engineering and Technology

(IRASET), pp. 1-5.

http://doi.org/10.1109/IRASET48871.2020.9092276

[6] Damiano, D., Paolo, M., Laura, R. (2019) A blockchain

based approach for the definition of auditable access

control systems. Computers & Security, 84: 93-119.

https://doi.org/10.1016/j.cose.2019.03.016

[7] Ma, M., Shi, G., Li, F. (2019) Privacy-Oriented

blockchain-based distributed key management

architecture for hierarchical access control in the IoT

scenario. IEEE Access, 7: 34045-34059.

https://doi.org/10.1109/ACCESS.2019.2904042

[8] Zyskind, G., Nathan, O. (2015). Decentralizing privacy:

Using blockchain to protect personal data. In 2015 IEEE

Security and Privacy Workshops, pp. 180-184.

https://doi.org/10.1109/SPW.2015.27

[9] Sukhodolskiy, I., Zapechnikov, S. (2018). A blockchain-

based access control system for cloud storage. In 2018

IEEE Conference of Russian Young Researchers in

Electrical and Electronic Engineering (EIConRus), pp.

1575-1578.

https://doi.org/10.1109/EIConRus.2018.8317400.

[10] Wang, S., Zhang, Y., Zhang, Y. (2018). A blockchain-

based framework for data sharing with fine-grained

access control in decentralized storage systems. IEEE

Access, 6: 38437-38450.

https://doi.org/10.1109/ACCESS.2018.2851611

[11] Turkmen, F., den Hartog, J., Ranise, S., Zannone, N.

(2017). Formal analysis of XACML policies using SMT.

Computers & Security, 66: 185-203.

https://doi.org/10.1016/j.cose.2017.01.009

[12] Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.

(2018, May). An automated model-based test oracle for

access control systems. In 2018 IEEE/ACM 13th

International Workshop on Automation of Software Test

(AST), pp. 2-8.

https://doi.org/10.1145/3194733.3194743

[13] Hsaini, S., Azzouzi, S., Charaf, M.E.H. (2019). FSM

modeling of testing security policies for MapReduce

frameworks. In 2019 6th International Conference on

Control, Decision and Information Technologies

(CoDIT), pp. 1480-1485.

https://doi.org/10.1109/CoDIT.2019.8820685

[14] Lonetti, F., Marchetti, E. (2018). On-line tracing of

XACML-based policy coverage criteria. IET Software,

12(6): 480-488. https://doi.org/10.1049/iet-

sen.2017.0351

[15] Xu, D., Wang, Z., Peng, S., Shen, N. (2016). Automated

fault localization of XACML policies. In Proceedings of

the 21st ACM on Symposium on Access Control Models

and Technologies, pp. 137-147.

https://doi.org/10.1145/2914642.2914653

[16] Calabrò, A., Lonetti, F., Marchetti, E. (2017). Access

control policy coverage assessment through monitoring.

In International Conference on Computer Safety,

Reliability, and Security, pp. 373-383.

https://doi.org/10.1007/978-3-319-66284-8_31

[17] Mourad, A., Tout, H., Talhi, C., Otrok, H., Yahyaoui, H.

(2016). From model-driven specification to design-level

set-based analysis of XACML policies. Computers &

Electrical Engineering, 52: 65-79.

https://doi.org/10.1016/j.compeleceng.2015.09.021

[18] Mejri, M., Yahyaoui, H., Mourad, A., Chehab, M. (2020).

A rewriting system for the assessment of XACML

Policies Relationship. Computers & Security, 97: 101957.

https://doi.org/10.1016/j.cose.2020.101957

[19] Chernov, A.V., Butakova, M.A., Kartashov, O.O.,

Alexandrov, A.A. (2019). Intelligent decision support by

means of dynamic description logic. In 2019 XXII

International Conference on Soft Computing and

Measurements (SCM), pp. 138-141.

https://doi.org/10.1109/SCM.2019.8903760

[20] Baader, F., Gil, O.F., Marantidis, P. (2018). Matching in

the Description Logic FL0 with respect to General

TBoxes. In LPAR, pp. 76-94.

https://doi.org/10.29007/q74p

[21] Vijayalakshmi, K., Jayalakshmi, V. (2020). A priority-

based approach for detection of anomalies in ABAC

policies using clustering technique. In 2020 Fourth

International Conference on Computing Methodologies

and Communication (ICCMC), pp. 897-903.

https://doi.org/10.1109/ICCMC48092.2020.ICCMC-

000166

[22] Silvestre, D., Hespanha, J., Silvestre, C. (2020). Resilient

desynchronization for decentralized medium access

control. IEEE Control Systems Letters, 5(3): 803-808.

https://doi.org/10.1109/LCSYS.2020.3005819

[23] Sabitha, S., Rajasree, M.S. (2017). Access control based

privacy preserving secure data sharing with hidden

access policies in cloud. Journal of Systems Architecture,

75: 50-58. https://doi.org/10.1016/j.sysarc.2017.03.002

[24] Fisler, K., Krishnamurthi, S., Meyerovich, L.A.,

Tschantz, M.C. (2005). Verification and change-impact

analysis of access-control policies. In Proceedings of the

27th International Conference on Software Engineering,

pp. 196-205.

https://doi.org/10.1109/ICSE.2005.1553562

[25] http://www.margrave-

tool.org/v1+v2/margrave/versions/01-

01/documentation/.

[26] Sanchez, M., López, G., Gómez-Skarmeta, A.F.,

Cánovas, Ó. (2006). using microsoft office infopath to

generate XACML policies. In International Conference

on E-Business and Telecommunication Networks,

Springer, Berlin, Heidelberg, pp. 134-145.

https://doi.org/10.1007/978-3-540-70760-8_11

294

