

An Intrusion Detection Method for Enterprise Network Based on Backpropagation Neural

Network

Fei Chen1*, Rui Cheng1, Yayun Zhu2, Siwei Miao2, Liang Zhou2

1 School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
2 Information & Communication Department, China Electric Power Research Institute, Beijing 100192, China

Corresponding Author Email: chenfei0428@126.com

https://doi.org/10.18280/isi.250313

ABSTRACT

Received: 20 January 2020

Accepted: 8 April 2020

 Network security, as the prerequisite for the normal operation of enterprise network, should

not focus on a single point, but all aspects of the network, ranging from physics, network,

system, application to management. To ensure enterprise network security and prevent

network attacks, it is of great importance to build an intrusion detection system (IDS)

capable of protecting the network and computers from malicious attacks based on the

Internet or host. In light of the above, this paper puts forward an intrusion detection method

for enterprise network based on backpropagation neural network (BPNN), and carries out

Python simulation of the proposed method on four problems, namely, normal state, the SYN

flood (denial-of-service attack), snoop (unauthorized access from a remote host), and saint

(reconnaissance attack). The simulation results show that the BPNN-based method could

effectively check the network security environment, and accurately identify and detect

intrusions.

Keywords:

Backpropagation neural network, intrusion

detection system (IDS), network security,

enterprise network

1. INTRODUCTION

With the development of Internet technology, network

security has become an increasingly prominent issue that can

no longer be guaranteed by firewall alone. This gives rise to

various intrusion detection systems (IDSs) [1]. The IDS

mainly enables the enterprise to monitor the data flow in its

network and identify anomalies, such that no unauthorized

intruder could enter the network or computer system and cause

temporary or permanent losses to the enterprise [2]. During the

operation, the IDS scans the current activities in the network,

monitors and records network traffic, filters the traffic from

the host adapter to the network by preset rules, and issue

alarms in real time.

There are two main design methods for IDSs: misuse

detection and anomaly detection [3]. To detect intrusions, the

IDS for misuse detection looks for activities that correspond

to the signatures of known intrusions or vulnerabilities, while

the IDS for anomaly detection searches for abnormal network

traffic. As a reasonable supplement to firewalls, intrusion

detection helps the system respond to network attacks, and

enhances the capacity of system security administrators,

ensuring the integrity of information security infrastructure.

Considering the various forms of network intrusions faced

by enterprises, relevant experts and scholars have applied

many intelligent algorithms to improve the efficiency of

network intrusion detection [4]. The existing intrusion

detection algorithms are based on either support vector

machine (SVM) or neural networks (NNs) [5-7]. For instance,

Sani and Ghasemi [8] proposed a method to learn a suitable

distance function according to the set of monitored

information, and measured the similarity and difference of

features by the distance function based on SVM clustering.

Their approach could effectively improve the performance of

the IDS. Yang and Karahoca [9] developed a network

intrusion detection method based on cellular neural network

(CNN) model, which features a multi-dimensional array of

neurons and local connections between cells, learned the

templates and biases in the CNN classifier by the recursive

perceptron learning algorithm (RPLA), and applied the CNN

model to select and normalize features from the KDD Cup

1999 dataset; the results show that the CNN model can

effectively detect intrusions, and achieve a higher attack

detection rate and a lower false positive rate than the

backpropagation neural network (BPNN).

Later, Yang et al. [10] developed a CNN template learning

method for network intrusion detection based on tabu search

(TS), in which the TS is coupled with the CNN with symmetric

template, and verified the effectiveness of the method by

simulation; the simulation results show that the TS-based

template learning method outperforms the genetic algorithm

(GA) and simulated annealing (SA) algorithm in the

calculation time and quality of the optimal solution. Based on

adaptive specifications, Mitchell and Chen [11] designed an

IDS to detect the malicious drones in airborne systems, and

proved that the IDS is more accurate and adaptive than multi-

agent system (MAS) and ant colony clustering models. With

the aid of Gaussian mixture model, Hu et al. [12] improved the

traditional online AdaBoost intrusion detection method, and

demonstrated that the improved method has a higher detection

rate and a lower false alarm rate than the traditional method,

which is based on decision stumps. Fung et al. [13] suggested

that the collaborative intrusion detection network can

effectively detect the knowledge of intrusion events, using the

distributed IDS, and thus improving the detection ability of

new intrusion events.

In addition, many enterprises have adopted NNs to detect

intrusions into enterprise network [14, 15]. Cannady [16]

Ingénierie des Systèmes d’Information
Vol. 25, No. 3, June, 2020, pp. 377-382

Journal homepage: http://iieta.org/journals/isi

377

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250313&domain=pdf

designed a three-layer NN to differentiate between the normal

and misuse access records offline; instead of a preliminary

classifier, the designed NN is an independent system, whose

results can be used in a rule-based system. Ryan et al. [17]

presented a BPNN-based offline anomaly detection system,

which relies on the BPNN to identify the user’s configuration

file and evaluate the user’s commands at the end of each log

session, thereby detecting possible intrusions. Ke and Hong

[18] put forward a network intrusion detection algorithm,

which optimizes the NN weights with GA. Specifically, the

GA searches for the most suitable NN weights, and the

optimized NN learns the data on network intrusion detection

before detecting intrusions. Proposed by Rumelhart and

McClelland in 1986, the BPNN is a multi-layer feedforward

NN trained by the error backpropagation algorithm [19]. Being

an important pattern recognition method, the BPNN is capable

of self-organization, self-learning and generalization. If

applied to the IDS, the BPNN could promote the system

capabilities to identify known attacks and to detect unknown

attacks.

Drawing on the above results, this paper presents an

intrusion detection algorithm based on the BPNN. The

proposed algorithm can distinguish attack records from

normal records, and identify the type of attacks. The remainder

of this paper is organized as follows: Section 2 models the

BPNN-based intrusion detection algorithm, according to the

features of network intrusions; Section 3 carries out an

example analysis on the proposed method, revealing the

effectiveness of our method; Section 4 puts forward the main

conclusions.

2. BPNN-BASED INTRUSION DETECTION

ALGORITHM

The BPNN is an information processing paradigm inspired

by the way our brain processes information [20]. As shown in

Figure 1, the BPNN is a multi-layer feedback network,

consisting of an input layer, multiple hidden layers, and an

output layer. The main advantage of the BPNN lies in the

quick classification of highly nonlinear problems.

.

.

.

.

.

.

.

.

.

.

.

Input layer Hidden layer(s) Output layer

Figure 1. The structure of the BPNN

2.1 Hypotheses

The BPNN algorithm mainly divides the learning process

into two stages: the forward computation and the reverse

computation. During the first stage, the hidden layer(s)

processes the input layer information, and computes the actual

output of the output layer. During the second stage, if the

output is below the expected level, the error between the actual

value and the desired value will be calculated to adjust the

network weights. The two stages are repeated until the output

value is as desired. Mathematically, the BPNN algorithm can

be described as follows:

Suppose that the BPNN has n nodes and L layers. The nodes

on each layer can receive the information from the nodes on

the previous layer and forward it to the nodes on the next layer.

Every node satisfies the Sigmoid function.

For simplicity, it is hypothesized that the entire BPNN has

only one output y. For N given samples (xk, yk)(k=1, 2,…, N),

it is assumed that any node i outputs Oi, and the output is yk

corresponding to the input of xk. In this case, the output of node

i is Oik. When the k-th sample is inputted to node j on the l-th

layer, then the input of node j can be expressed as:

𝑛𝑒𝑡𝑖𝑗
𝑙 =∑𝑤𝑖𝑗

𝑙 𝑂𝑗𝑘
𝑙−1

𝑗

 (1)

𝑂𝑗𝑘
𝑙 = 𝑓(𝑛𝑒𝑡𝑗𝑘

𝑙) (2)

378

where, 𝑂𝑗𝑘
𝑙−1 is the output of node j on the l-1-th layer at the

input of the k-th sample; wij is the connection weight between

nodes i and j; f(x) is the Sigmoid function.

The error function can be defined as:

𝐸𝑘 =
1

2
∑(𝑦𝑙𝑘 − 𝑦𝑙𝑘)

2

𝑙

 (3)

where, 𝑦
𝑙𝑘

 is the actual output of node j.

The total error can be computed by:

𝐸 =
1

2𝑁
∑𝐸𝑘

𝑁

𝑘=1

 (4)

It is further assumed that:

𝛿𝑗𝑘
𝑙 =

𝜕𝐸𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙 (5)

Then, we have:

𝜕𝐸𝑘

𝜕𝑤𝑖𝑗
𝑙
=

𝜕𝐸𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙

𝜕𝑤𝑖𝑗
𝑙
=

𝜕𝐸𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙
𝑂𝑗𝑘
𝑙−1 = 𝛿𝑗𝑘

𝑙 𝑂𝑗𝑘
𝑙−1 (6)

𝛿𝑗𝑘
𝑙 =

𝜕𝐸𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙 =

{

 𝜕𝐸𝑘
𝜕𝑦

𝑗𝑘

𝜕𝑦
𝑗𝑘

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙 = −(𝑦𝑘 − 𝑦𝑘)𝑓

′(𝑛𝑒𝑡𝑗𝑘
𝑙), 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒, 𝑎𝑛𝑑 𝑂𝑗𝑘

𝑙 = 𝑦
𝑗𝑘

𝜕𝐸𝑘
𝜕𝑦

𝑗𝑘

𝜕𝑂𝑗𝑘
𝑙

𝜕𝑛𝑒𝑡𝑗𝑘
𝑙 =

𝜕𝐸𝑘

𝜕𝑂𝑗𝑘
𝑙 𝑓

′(𝑛𝑒𝑡𝑗𝑘
𝑙), 𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑠 𝑛𝑜𝑡 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑛𝑜𝑑𝑒

 (7)

2.2 Solving algorithm

The workflow of BPNN algorithm is illustrated in Figure 2.

Note that the error index is calculated iteratively until the

index meets the precision requirement:

𝐸 =
1

2𝑁
∑𝐸𝑘 < 𝜀

𝑁

𝑘=1

 (8)

where, ε is the precision requirement.

Figure 2. The workflow of BPNN algorithm

Data initialization

Start

Defining input vectors and

target output

Solving the nodes on hidden

layer(s) and output layer

Forward calculation of the

error e between the actual

output and the target output

Error e satisfies the

 precision requirement

All errors e satisfy the

 precision requirement

Reverse calculation of the

error e between the actual

output and the target output

Solving the error gradient and

adjust the weights by formula

(9)

End

379

If k=1,2……, N, the forward calculation will compute the

𝑂𝑗𝑘
𝑙−1 of the nodes on each layer; the reverse calculation will

compute the 𝑂𝑗𝑘
𝑙−1 and 𝛿𝑗𝑘

𝑙 of the nodes on each layer. If the

error index does not meet the precision requirement, the

weights will be modified according to:

𝜔𝑖𝑗 = 𝜔𝑖𝑗 − 𝜇
𝜕𝐸

𝜕𝑤𝑖𝑗
, 𝜇 > 0 (9)

And the previous step will be executed again until the index

meets the requirement.

During the solving process, the training samples of the

BPNN algorithm are generated randomly, and the learning rate

is adjusted dynamically with the number of iterations.

3. EXAMPLE ANALYSIS

3.1 Classification of attacks on enterprise network

The enterprise network mainly faces four kinds of attacks

[21]. The first kind is denial-of-service (DoS) attacks. During

a DoS attack, the attacker or hacker generates a huge amount

of traffic to occupy memory resources, leaving no room for

legitimate network requests. In this way, any user access to the

computer will be rejected. The common DoS attacks include

SYN flood, teardrop attack, low-rate DoS attack, Internet

Control Message Protocol (ICMP) flood, and peer-to-peer

(P2P) attack.

The second kind is the unauthorized access from a remote

host. During such an attack, the attacker sends data packets to

the computer through the Internet, making users inaccessible.

The common types include xlock, guest, snoop, etc.

The third kind is reconnaissance attacks, which collects the

weaknesses in the network for further attacks. Reconnaissance

attacks are divided into scanning attacks and network

monitoring. Scanning attacks include port scanning, host

scanning and vulnerability scanning. Meanwhile, network

monitoring mainly refers to setting the network card in user’s

computer to promiscuous mode via software only, and then

viewing important plaintext information passing through the

network. The common reconnaissance attacks include

ipsweep, mscan, nmap, portsweep, saint, and satan.

The fourth kind is worms, viruses and Trojan horses.

Sometimes, the host is infected with malicious software,

which damages the system, duplicates itself or denies access

to the network, system or service. Such software is either a

worm, a virus or a Trojan horse.

3.2 Problem description

The proposed intrusion detection algorithm was applied to

solve four problems: normal state, the SYN flood (DoS attack),

snoop (unauthorized access from a remote host), and saint

(reconnaissance attack). The attacks in the problems are all

typical ones that may occur in other cases.

The BPNN transforms the input into output of attack type,

indicating the probability of each kind of attacks. Here, the

four states of each problem are expressed in the form of a

matrix, where 1 means the corresponding problem has

occurred and 0 means the corresponding problem has not

occurred. Hence, the matrices for the four problems can be

expressed as [1, 0, 0, 0] for normal state, [0, 1, 0, 0] for SYN

flood, [0, 0, 1, 0] for snoop, and [0, 0, 0, 1] for saint.

According to the states detected above, four kinds of nodes

were placed in the input layer, provided that each node

satisfies the Sigmoid function. To prevent the BPNN from

overfitting, the early stopping criteria (ESC) [22] was

introduced to divided the sample data into a training set, a

verification set, and a test set. The training set was used to train

and update the BPNN parameters, the verification set was used

to identify the errors in the training set, and the test set was

used to evaluate the goodness-of-fit of the BPNN. The

principle of the ESC is that, once the overfitting occurs, the

error in the verification set will increase. Thus, the training

will stop at the point of error increment, and the weights at this

time will be selected to check the network performance on the

test set [23].

3.3 Simulation

The BPNN-based IDS was simulated based on Python. It is

assumed that the first hidden layer has 50 nodes and the second

has 30 nodes. The connection weights were maximum

between the input layer and the first hidden layer, and

minimized between the second hidden layer and the output

layer.

Figure 3 shows the cross-validation error rates on the

training set (red line) and the validation set (blue line). It can

be seen that the ESC point appeared at the 100-th iteration on

the verification set, corresponding to the cross-validation error

rate of 0.10.

Then, the data training continued until the 1,000-th iteration.

It is observed that the cross-validation error rate started to

grow after the 100-th iteration, indicating that this point is the

ESC point. The weights at this point were chosen to verify the

performance of the BPNN on the test set. As shown in Table

1, the correct classification rates of the BPNN averaged at

94.50%.

Figure 3. The cross-validation error rates on the training set

and the validation set

380

Table 1. The correct classification rates of the BPNN on four problems and the average values

 Problem

Index
Normal state SYN flood snoop saint Average

Number of test samples 1045 1045 1045 1045 1045

Number of correctly classified samples 982 965 1018 985 987.5

Correct classification rate 93.97% 92.34% 97.42% 94.26% 94.50%

4. CONCLUSIONS

This paper probes deeply into the intrusion detection

problem of enterprise network. Considering the types of

enterprise network intrusions, an intrusion detection method

was proposed based on the BPNN algorithm. Then, the

enterprise network intrusions were classified into four kinds.

After that, four problems were selected to verify the

effectiveness of the BPNN-based method through Python

simulation, namely, normal state, SYN flood, snoop, and saint.

The simulation results show that our method can effectively

detect the network security environment, and classify 94.50%

of all attack states correctly. Therefore, our intrusion detection

method is an excellent tool to identify and detect intrusions,

providing an easy yet effective solution to the security of

enterprise network.

ACKNOWLEDGMENT

This work was supported by the Science and Technology

Project of State Grid Corporation of China (Grant No.:

521304190004) (Project title: Research on Key Technologies

of Integrated Power Network Security Simulation and

Verification Environment).

REFERENCES

[1] McHugh, J. (2000). Testing intrusion detection systems:

a critique of the 1998 and 1999 darpa intrusion detection

system evaluations as performed by Lincoln laboratory.

ACM Transactions on Information and System Security

(TISSEC), 3(4): 262-294.

https://doi.org/10.1145/382912.382923

[2] Kemmerer, R.A., Vigna, G. (2002). Intrusion detection:

a brief history and overview. Computer, 35(4): supl27-

supl30. https://doi.org/10.1109/MC.2002.1012428

[3] Lee, W., Stolfo, S.J., Mok, K.W. (1999). A data mining

framework for building intrusion detection models. In

Proceedings of the 1999 IEEE Symposium on Security

and Privacy (Cat. No. 99CB36344), pp. 120-132.

https://doi.org/10.1109/SECPRI.1999.766909

[4] Kim, D.S., Nguyen, H.N., Ohn, S.Y., Park, J.S. (2005).

Fusions of GA and SVM for anomaly detection in

intrusion detection system. In International Symposium

on Neural Networks, pp. 415-420.

https://doi.org/10.1007/11427469_67

[5] Deng, H., Zeng, Q.A., Agrawal, D.P. (2003). SVM-based

intrusion detection system for wireless ad hoc networks.

In 2003 IEEE 58th Vehicular Technology Conference.

VTC 2003-Fall (IEEE Cat. No. 03CH37484), 3: 2147-

2151. https://doi.org/10.1109/VETECF.2003.1285404

[6] Bonissone, P.P. (1997). Soft computing: the convergence

of emerging reasoning technologies. Soft Computing,

1(1): 6-18. https://doi.org/10.1007%2Fs005000050002

[7] Moezzi, S., Jalali, M., Forghani, Y. (2019). TWSVC+:

Improved twin support vector machine-based clustering.

Ingénierie des Systèmes d’Information, 24(5): 463-471.

https://doi.org/10.18280/isi.240502

[8] Sani, R.A., Ghasemi, A. (2015). Learning a new distance

metric to improve an SVM-clustering based intrusion

detection system. In 2015 The International Symposium

on Artificial Intelligence and Signal Processing (AISP),

284-289. https://doi.org/10.1109/AISP.2015.7123497

[9] Yang, Z., Karahoca, A. (2006). An anomaly intrusion

detection approach using cellular neural networks. In

International Symposium on Computer and Information

Sciences, pp. 908-917.

https://doi.org/10.1007/11902140_94

[10] Yang, Z., Karahoca, A., Yang, N., Aydin, N. (2008).

Network intrusion detection by using cellular neural

network with tabu search. In 2008 Bio-inspired, Learning

and Intelligent Systems for Security, 64-68.

https://doi.org/10.1109/BLISS.2008.29

[11] Mitchell, R., Chen, R. (2013). Adaptive intrusion

detection of malicious unmanned air vehicles using

behavior rule specifications. IEEE Transactions on

Systems, Man, and Cybernetics: Systems, 44(5): 593-

604. https://doi.org/10.1109/TSMC.2013.2265083

[12] Hu, W., Gao, J., Wang, Y., Wu, O., Maybank, S. (2013).

Online adaboost-based parameterized methods for

dynamic distributed network intrusion detection. IEEE

Transactions on Cybernetics, 44(1): 66-82.

https://doi.org/10.1109/TCYB.2013.2247592

[13] Fung, C.J., Zhang, J., Boutaba, R. (2012). Effective

acquaintance management based on bayesian learning

for distributed intrusion detection networks. IEEE

Transactions on Network and Service Management, 9(3):

320-332.

https://doi.org/10.1109/TNSM.2012.051712.110124

[14] Aslahi-Shahri, B.M., Rahmani, R., Chizari, M., Maralani,

A., Eslami, M., Golkar, M.J., Ebrahimi, A. (2016). A

hybrid method consisting of GA and SVM for intrusion

detection system. Neural Computing and Applications,

27(6): 1669-1676. https://doi.org/10.1007/s00521-015-

1964-2

[15] Manzoor, I., Kumar, N. (2017). A feature reduced

intrusion detection system using ANN classifier. Expert

Systems with Applications, 88: 249-257.

https://doi.org/10.1016/j.eswa.2017.07.005

[16] Cannady, J. (1998). Artificial neural networks for misuse

detection. In National Information Systems Security

Conference, 26: 443-456.

[17] Ryan, J., Lin, M.J., Miikkulainen, R. (1998). Intrusion

detection with neural networks. In Advances in Neural

Information Processing Systems, 943-949.

[18] Ke, G., Hong, Y.H. (2014). The research of network

intrusion detection technology based on genetic

algorithm and bp neural network. In Applied Mechanics

and Materials, 599: 726-730.

https://doi.org/10.4028/www.scientific.net/AMM.599-

381

https://doi.org/10.1145/382912.382923
https://doi.org/10.1109/MC.2002.1012428
https://doi.org/10.1109/SECPRI.1999.766909
https://doi.org/10.1109/VETECF.2003.1285404
https://doi.org/10.1109/AISP.2015.7123497
https://doi.org/10.1109/BLISS.2008.29
https://doi.org/10.1109/TSMC.2013.2265083
https://doi.org/10.1109/TCYB.2013.2247592
https://doi.org/10.1109/TNSM.2012.051712.110124
https://doi.org/10.1016/j.eswa.2017.07.005
https://doi.org/10.4028/www.scientific.net/AMM.599-601.726

601.726

[19] Rumelhart, D.E., Hinton, G., Williams, R. (1986).

Parallel distributed processing: Explorations in the

microstructure of cognition. vol. 1.

[20] Sarle, W. (1997). Neural network FAQ, part 1 of 7:

Introduction, periodic posting to the usenet newsgroup

comp. ai. neuralnets. ftp://ftp. sas. com/pub/neural/FAQ.

html.

[21] Das, K.J. (2000). Attack development for intrusion

detector evaluation. Doctoral dissertation, Massachusetts

Institute of Technology.

[22] Haykin, S. (2010). Neural Networks: A Comprehensive

Foundation. 1999. Mc Millan, New Jersey, 1-24.

[23] Lawrence, S., Giles, C.L. (2000). Overfitting and neural

networks: Conjugate gradient and backpropagation. In

Proceedings of the IEEE-INNS-ENNS International

Joint Conference on Neural Networks. IJCNN 2000.

Neural Computing: New Challenges and Perspectives for

the New Millennium, 1: 114-119.

https://doi.org/10.1109/IJCNN.2000.857823

382

https://doi.org/10.4028/www.scientific.net/AMM.599-601.726

