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Image Deblurring is a very popular area of research in all over the world. It is an illposed 

problem which still does not have an ideal solution. Therefore, in order to analyse the 

research problems and to understand the statement of image deblurring we look in to the 

state-of-the-art methods proposed in various recent publications. Hence, the present study is 

focused on the overall review of the techniques used in image deblurring and their solutions 

to tackle the illposed problem using mathematical model. Based on the overall technique 

simple MAP model falls short in either deriving accurate convergence to the global optimum 

or computational implementation. Convergence of the algorithm is the most important factor 

for the effective performance of Lo and L1 norms for regularizers for theoretical 

applications. The importance of the choice of the correct estimator and the role of various 

priors in solving the imaging inverse problem using the MAP estimation method is 

discussed. The consequence of different priors to the rate of convergence of the MAP 

algorithm and its computational complexity are studied and tabulated. 
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1. INTRODUCTION

The process of image capture is not perfect and even under 

best conditions the captured image is prone to degradations. 

The degradations so caused are due to two main factors one is 

noise which is random in nature and the other is blur which is 

deterministic in nature. Image deblurring is the process of 

retrieving the latent sharp image from a captured blurry and 

noisy image. Image deblurring has various applications such 

as in astronomical images, remote sensing, CCTV footage, 

medical images, or in onetime occurring situations where 

multiple images of the same cannot be captured. Degradations 

are unavoidable in such images due to various factors. Such as 

regulated intensity as in medical imaging where the intensity 

levels of the incident rays of an X-ray, CT or MRI machine is 

maintained at a regulated level to avoid damage to the human 

organs; or continuously changing atmosphere, light and 

refraction conditions of astronomical images. Also, 

degradations are caused due to imperfections in the optics used 

such as a camera lens or the lens of a microscope used to 

magnify objects under inspection and relative motion between 

the imaging scene and the camera. 

This paper is a comprehensive survey of the different Image 

deblurring techniques. We analyze the strengths and 

weaknesses of different image deblurring algorithms. 

Many papers on image deblurring have been presented in 

recent times. Despite various publications none of them have 

been able to achieve an ideal solution to the illposed problem. 

This paper takes a fresh approach to tackling the problem, 

instead of proposing an improvement on the existing methods, 

we aim at understanding the concept of image deblurring first. 

Hence, we start from understanding the blurring of images 

during the image formation, and further go on to analyze the 

different methods designed to solve this problem statement, 

their advantages and disadvantages. This research is aimed at 

understanding the fundamentals of image deblurring. This 

paper is divided into various sections. Section II gives insight 

into mathematical model for image formation and further 

discusses in detail the mathematical model for image 

deblurring which is necessary to solve the image deblurring 

problem statement and its few variations seen in literature. 

Section III reviews the different methods used in solving this 

ill-conditioned problem statement. Section IV gives a detailed 

description of the mathematical model of the Maximum A 

Posteriori (MAP) Estimation technique. In section V the 

different additions and improvements proposed for the simple 

MAP model in recent literature are shown and their effect on 

the MAP algorithm is analyzed. Section VI shows the results 

of the experiments on the simple MAP model. The main 

contributions of this paper are it compares and analyses the 

different methods used for image deblurring. 

2. IMAGE DEBLURRING MODEL

Image Deblurring is an imaging inverse problem. In order 

to solve an imaging inverse problem, the process that occurs 

when a scene is sensed by the image sensors and converted 

into an image has to be inversed to recover the objects that 

constitute the image of the scene. The process of sensing the 

light, both incident and reflected from the objects of a scene 

and converting this sensed component of light into image 

components is mathematically represented as integration as 

shown by Ribes and Schmitt [1]. Now to retrieve the scene 

elements from a captured image requires inversing this 

integration process. The integral process of image capture is 

represented by the Eq. (1). Where g(x) is the function 

representing the captured image, φ (x, λ) and o (λ) represents 
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the integral kernel which varies physically depending on the 

operation and the property of the object we are measuring 

respectively. The noise component which is inevitable during 

acquisition is represented by n(x). 

 

𝑔(𝑥) = ∫ 𝜑(𝑥, 𝜆)𝑜(𝜆)𝑑𝜆 + 𝑛(𝑥)
𝜌

𝛾

 (1) 

 

The continuous functions in the above equation have to be 

discretized in order to solve the equation numerically. The 

discretized form of Eq. (1) is given by g = hO+n, where g, o, 

and n represent the vectors of the acquired image, the property 

of the object and the additive white Gaussian noise 

respectively. The term h is the matrix representing the kernel 

of the application.  

The obtained image is a two-dimensional function and can 

be inversed using various methods, such as Fourier Transform 

method, regularization, interpolation method, direct and 

indirect reconstruction methods. Now to represent the 

mathematical model of image deblurring we assume the 

degradations that cause blurring in an image are linear and 

position invariant [2]. This problem is further complicated 

with the inevitable addition of noise n. The degraded & noisy 

image g is represented by the Eq. (2) where ⨂ represents 2D 

convolution and + depicts addition of the white Gaussian noise 

n. Assuming the degradations on the image are linear are space 

invariant it can be represented mathematically as convolution 

of the degradation function h and the unknown sharp image o. 

The blurring of an image during image formation is depicted 

in Figure 1. 

 

 
 

Figure 1. Block diagram representation of the problem 

statement 

 

𝑔(𝑥, 𝑦) = ℎ(𝑥, 𝑦) ⊗ 𝑜(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) (2) 

 

Hence recovery of the sharp 2D image requires a 2D 

deconvolution process. The recovery of the sharp image from 

just the captured image and with no knowledge of the sharp 

image and the degradation function is known as Blind Image 

Deconvolution. It consists of only one known component that 

is the degraded & noisy image g. Hence the problem is 

severely illposed as defined by Hadamard [3], i.e. its solution 

is not unique and small changes to input data (degraded image 

g) lead to large variations in output (latent original image o). 

Since the problem statement in the Eq. (2) is an inverse 

problem and inverse problems are already illposed due to data 

deficiency, the problem statement is an inverse, ill-posed 

problem statement. The Eq. (2). estimates the point spread 

function of the captured image for a space invariant 

assumption. But Šroubek et al. [4] show that blurring is a space 

variant phenomenon, in such a situation the expression in Eq. 

(2) has to be modified to accommodate the change in the blur 

kernel of the captured image as a function of its position. 

Deconvolution with a known degradation function h and a 

known degraded image g is called as Non-Blind 

Deconvolution. Here considering only the degradation and 

ignoring the noise affecting the image and discretizing the 

problem statement shown the Eq. (2) reduces to g = h⨂o, 

which has two known values and just one unknown. Schneider 

et al. [5] present a benchmark to compare non-blind 

deconvolution algorithms. This gives an insight into various 

image de-blurring methods and their use in the automated 

visual inspection systems. Kotera et al. [6] solve the blind 

deconvolution problem using only a single channel of 

observation, this is also called as a single channel blind 

deconvolution (SCBD) problem. While Šroubek and Milanfar 

[7] use multiple channels of observation in an alternating 

minimization algorithm using MAP Estimation to derive the 

sharp image, this is known as a multi-channel blind 

deconvolution (MCBD) where channel of observation 

represents the observed degraded image which is required to 

be deblurred. Hence single channel blind deconvolution 

represents a single observed degraded image. Whereas, in 

multi-channel blind deconvolution represents multiple 

observations or multiple degraded images of the same scene. 

Delbracio and Sapiro [8] use a burst of images, which consists 

of multiple images captured sequentially by the camera. 

Fourier transformation is used on the accumulated burst along 

with blur kernel to derive the sharp image in the Fourier 

domain. MCBD offers more prior information about the 

original image which tends to reduce the ill-posedness of the 

problem statement to some extent. 

 

 

3. SOLVING THE BLIND DECONVOLUTION 

PROBLEM 

 

The Blind image deconvolution problem is solved using 

different approaches by different researchers in various 

publications. Some of the methods of blur kernel estimation in 

literature include restoration through filtering methods for 

example Giannakis and Heath [9] design a series of linear FIR 

filters which are used in a MCBD problem statement to directly 

derive the restored image and a subsequent set of FIR filters 

for blur identification. Hosseini and Plataniotis [10] propose a 

convolutional filtering method using Finite Impulse Response 

filters. 

This section gives a general insight into the different 

methods used for image deblurring described in literature and 

their mathematical models. This gives an understanding of the 

representation of images in different mathematical models and 

their manipulation to derive deblurred images in the various 

methods.  

 

3.1 Linear model theory 

 

In the Linear Model Theory, degradation of an image is 

understood as conversion of sharp edges in it into blurred ones, 

this process is assumed to be linear and the supposition is that, 

the blur is the most significant part of this procedure. The 

initial sharp image and the captured degraded images are 

considered to be digital grayscale images. A blur is the easiest 

form of degradation. For the purpose of mathematical 

implementation of the linear model, both the input blur image 
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and resulting sharp image are assumed to be matrices of size 

(m x n) and the degrading of columns is executed 

autonomously of the degrading of rows. The matrix Ac with 

size m x m and Ar with size n x n are used to denote this 

autonomous blurring. The relation between the latent (sharp) 

and the captured (degraded) images are shown in Eq. (3) 

 

𝐺 =  𝐴𝑐  𝑂 𝐴𝑟
𝑇 (3) 

 

where, the term Ac O denotes the blurring of every column in 

image O & O AT
r denotes the blurring of every row in image 

𝑂and G denotes the degraded blurry image. In order to derive 

the sharp image,𝑂  the expression in Eq. (3) is rewritten to 

derive O as shown in Eq. (4) below 

 

𝑂 =  𝐴𝑐
−1 𝐺 (𝐴𝑟

𝑇 )−1 (4) 

 

But this resulting image O does not mirror the initial sharp 

one due to the exclusion of noise at the time of taking the 

picture. Noise in an image is originated by irregularity and a 

variety of imperfections in the imaging gadgets, such as lens 

imperfections etc. Hence, unessential and false data is added 

with the captured image. In order to address this, we include 

the noise term in our model. Hence by including the additive 

noise in the Eq. (3), the expression representing the model for 

the blurred image changes to the one shown in Eq. (5). 

 

𝐺 =  𝐴𝑐  𝑂 𝐴𝑟
𝑇 + 𝐸 (5) 

 

In the above equation, the noise in the image is represented 

by the matrix E of size m x n. From this the sharp latent image 

can be computed by using the expression shown in Eq. (6). 

 
𝑂 =  𝐴𝑐

−1 𝐺 (𝐴𝑟
𝑇 )−1 − 𝐴𝐴𝑐

−1 𝐺 (𝐴𝑟
𝑇 )−1 (6) 

 

The second term on the RHS denotes the noise inverse term. 

From the above expression we can infer that image 

reconstruction using this model leads to the dominance of the 

inverse noise term in the resulting degraded image. Faramarzi 

et al. [11] design a unified method which performs both single 

image blur deconvolution and multi-image super resolution. 

Deblurring or blur deconvolution can be thought of a special 

case of blind super-resolution with a magnification factor of 1. 

Here a linear forward imaging model is used to derive low 

resolution images from a high resolution captured blurred 

image. The noise factor in these low resolution images are 

assumed to be the same. Since the noise is same in all the LR 

images the blur can be rectified by using non uniform 

interpolation. The pixel values of the new high-resolution 

image are computed from the LR images using either linear, 

cubic, or spline interpolation schemes. 

 

3.2 Singular value decomposition method  

 

In the Singular Value Decomposition method of deblurring 

the problem statement is solved for by finding the SVD. This 

is a more obvious model, as per this model the procedure of 

blurring is carried out on rows and columns of image at the 

same time. In the beginning the sharp image I and the degraded 

image G will be normalized by modifying the size of G & I to 

a predefined size of N=m x n. This normalization is necessary 

to maintain uniformity of results with input images of varying 

sizes. The vectors thus formed are𝐼𝑣which represents the sharp 

image and 𝐺𝑣is the vector representing the blurry and noisy 

image, the vector 𝐸𝑣  represents the additive noise and the 

relation among the vectors is given by the Eq. (7) 
 

𝐺𝑣 = 𝐴𝐼𝑣 + 𝐸𝑣 (7) 
 

Here it is implied that A is the known degradation matrix of 

size N x N, which is estimated by the imaging system. The 

term 𝐸𝑣 denotes the noise vector. Therefore, the sharp image 

reconstruction is given by the Eq. (8) 

 

𝐼𝑣 = 𝐴−1𝐺𝑣 − 𝐴−1𝐸𝑣 (8) 

 

In the above equation, the inverse term indicates the inverse 

of the degradation function. If the effect of the inverse 

degradation function and noise are more on reconstructed 

image, the images which are reconstructed would turn more 

distorted. Hence by utilizing the SVD (singular value 

decomposition) on the degradation function A, we derive two 

orthogonal matrices U and V given by the equation 𝐴 = 𝑈Σ𝑉𝑇 

by using this in the Eq. (8) the effect of the inverse noise terms 

on the reconstructed images can be reduced to particular cases 

only, such as when the singular values decay to a value close 

to zero or when the error components are small and have 

approximately same magnitude for all v. 

 

3.3 Richardson-Lucy deconvolution Algorithm 

 

The Richardson-Lucy deconvolution Algorithm is also 

called as Lucy Richardson Algorithm is a methodology 

utilized to regenerate the sharp image from the degraded 

images. Where the blurring is caused by a known PSF (point 

spread function). Hence the deconvolution method presented 

by Richardson and Lucy is a Non-Blind Deconvolution. The 

main idea of this algorithm is to represent the known degraded 

image pixels with respect to the unknown sharp image and the 

known PSF. The mathematical relation between the 

degradation function H, the degraded image g & the sharp 

image f are described in Eq. (9) and (10). 

 

𝐻𝑓 = 𝑔 (9) 

 

∑ ℎ𝑖𝑗𝑓𝑗 = 𝑔𝑖

𝑗

 (10) 

 

where, ℎ𝑖𝑗 ≥ 0, 𝑓𝑗 > 0, 𝑔𝑖 > 0  and ∑ ℎ𝑖𝑗𝑓𝑗 =𝑗 1, ∑ 𝑓𝑗 =𝑗

 ∑ 𝑓𝑔𝑗 = 𝑗 𝑁  and ℎ𝑖𝑗 , 𝑓𝑗, 𝑔𝑗  are considered as probability 

density functions. The algorithm exploits the relationship 

between the variables in the Eq. (10) to derive and find a 

probabilistic solution for the unknown sharp image, Hence the 

estimated sharp image using the RLA is given by the Eq. (11)  

 

𝑓𝑛+1 = 𝑓𝑛𝐻 (
𝑔

ℎ𝑓𝑛
) (11) 

 

The main advantage of this algorithm is that it does not 

require any prior information from the input image and is 

sufficiently effective even in the presence of noise. But the 

noise increases as the number of iterations increases. RLA is a 

popular algorithm in image deblurring with many different 

researchers designing a new blind deconvolution algorithm 

based on the Richardson-Lucy Algorithm. Many modified 

versions of the RLA are seen [12]. The RLD algorithm is also 

used as the subsequent non blind deconvolution method in 

many recent image deblurring researches where a new 
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method for PSF estimation is designed [13]. Further 

Anacona-Mosquera et al. [14] design a hardware 

implementation for the RLA algorithm in an FPGA- based 

platform using filters or masks to perform the convolution 

operation. The dot products in the Eq. (11) becomes 

convolution operators in the spatial domain. Masks can be 

designed to perform any filtering operation such as 

smoothing, edge detection, etc. The hardware architecture 

of the RLA and the convolution filtering operation using 

masks is described. 

 

3.4 Neural networks for image deblurring 

 

For a Neural network method first a scheme for deblurring 

is built using a set of blurred images and their corresponding 

sharp images. Initially the system is fed by blur and their 

corresponding sharp images. This kind of training activates the 

system to guess the sharp image related to the blur images. 

Several neural networks supported methods are utilized in 

literature, such as by Schuler et al. [15]. The algorithms used 

for the neural node or network training may vary depending 

upon the requirements of the algorithm, for example a simple 

LMS (Least Mean Square) is used to predict true pixels to 

regenerate degraded images this forms a purely founded from 

of neural network. Similarly, another algorithm which is based 

on gradient decent and back propagation in a web consisting 

of 3 layers of neural nodes is used for image restoration [11]. 

This non collinear propagation utilized to restore images is 

unsuccessful in generating a full quality restored image. This 

algorithm also has a large scope for improvement in increased 

speed and reduced complexity of calculation since there is 

very little quantity of utilized neurons in this technique of 

training. Hence to improve this back-propagation method the 

neural nodes are designed based on the Artificial Bees Colony 

Algorithm. The ABC algorithm works by finding the global 

best solution for a given criteria. In the algorithm the neural 

nodes imitate a swarm of bees locating food. The ABC 

algorithm is applied to both image enhancement and edge 

detection steps of image deblurring. 

 

3.5 Parametric PSF estimation methods 

 

Parametric estimation methods are where a parametric 

mathematical model for deblurring is used to solve for the true 

blur kernel and the sharp image. Xue and Blu [16] design a 

parametric PSF estimation method using Stein’s unbiased risk 

estimate for MSE. The parametric equation is designed in the 

frequency domain and a minimization algorithm is formulated 

to estimate the PSF. The estimated PSF is then used in a non-

blind deconvolution algorithm to derive the sharp image.  

Shah and Dalal [17] propose a parametric PSF estimation 

technique in the Cepstrum Domain, which estimates the 

motion blur parameters such as length and angle. The 

parametric methods are challenging as they do not have prior 

information available for PSF estimation. They use a method 

based on spectral or cepstral zeroes. The major difficulty of 

solving problems in the spectral domain is that the image 

frequency components and the blur frequency components are 

mixed together which reduces the efficiency of PSF estimation. 

The Cepstrum is derived by taking the Fourier Transform of 

the log magnitude of the blurred image. To avoid the noise 

components the range of the cepstral components which is 

dynamic is reduced by taking the Log of its absolute value, this 

gives the modified cepstrum. Radon Transform is used on the 

modified cepstrum to find the direction of motion. The 

maximum value of the radon transform is subtracted with 90° 

to derive the major direction of motion blur. The blur length is 

calculated from the rescaled and modified cepstrum with the 

help of an algorithm designed specifically to calculate the 

difference between the central peak and side peaks. 

 

3.6 Iterative methods 

 

The Iterative methods seen in literature utilize the iterative 

rebuilding of linear blurs in images brought about by point-

wise non linearity. It is represented that the repetitive 

deconvolution techniques can utilize different sorts of an 

earlier information about the class of accomplishable results to 

expel non-moving foggy spots. They clarify the issue of 

convergence to relate and think about surely understood 

algorithms, for example, Wiener filters, constrained least 

square and inverse filters which are demonstrated to restrict 

arrangements of varieties of the iterations [18]. At last the 

regularization term is used in the algorithm to restrict the 

permitted furthest reaches of noise amplification brought 

about by the inverse nature of the problem statement, for 

example, deconvolution issues in addition the impact of noise 

can be ended after various limited iterations. General class of 

iteration shrinkage threshold algorithm (ISTA) are used to 

clear the issues of linear inverse problems which happens in 

image processing. These methods are popular due to their ease 

of computational application however it is known that the 

convergence is moderate. Hence the FISTA (Fast iterative 

threshold algorithm) was introduced to increase convergence 

speed while retaining the ease of computation of algorithm of 

ISTA this has increased the convergence rates to that of 

average of the state-of-the-art methods. 

 

3.7 Stochastic model 

 

Stochastic models are based on the analysis of the 

probability density function of the input blurred image. Xiao 

et al. [19] design a blind image deblurring algorithm called as 

the Stochastic Random Walk Optimization Algorithm which 

is based on a simple random search technique. In this 

algorithm local solution updates are derived from a random 

walk chain at each pixel location in the captured deblurred 

image, these updates are verified against an objective which 

checks for the energy quantum and decides whether to add or 

remove it into the final estimate of the PSF. This algorithm 

iterates between the above algorithm for accurate PSF 

estimation and a non-blind deconvolution algorithm to derive 

the corresponding sharp image. The non-blind deconvolution 

algorithm used is from their previous work [20] which is 

focused on a stochastic framework for efficient non-blind 

deconvolution. The highlight of this algorithm is its simplicity 

in solving the complex imaging inverse problem. It can easily 

handle priors without the need for changing the already 

complex mathematical model to accommodate the necessary 

priors to regularize the expected solution, which further leads 

to the complication of too many unknowns. 
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3.8 Deblurring based on the probabilistic Bayes model 

 

The two most popular methods of image deblurring are 

based on the Bayesian Framework of estimating the posterior 

distribution using its relationship with the likelihood function 

and the prior distributions. This relationship is shown in the 

Eq. (12), where 𝑝(𝑜, ℎ|𝑔)represents the posterior distribution 

of the image which is proportional to the likelihood function 

given by 𝑝(𝑔|𝑜, ℎ) and the priors on the image and the blur 

kernel 𝑝(𝑜) 𝑝(ℎ) respectively. 

 

𝑝(𝑜, ℎ|𝑔)=
𝑝(𝑔|𝑜,𝑔) 𝑝(𝑜)𝑝(ℎ)

𝑝(𝑔)
 α 𝑝(𝑔|𝑜, ℎ)𝑝(𝑜)𝑝(ℎ) (12) 

 

The first method based on the probabilistic Bayes model is 

the Variational Bayes method [21, 22], which estimates the 

mean posteriori values. This method is effective in accurate 

PSF estimation for various types of blurs such as motion blur, 

out-of-focus blur in various images, but solving the Bayes 

formula requires approximation of integration, which fails in 

computational implementation. Hence, we can infer that 

hardware implementation of Variational Bayes method is not 

a practical option. MAP estimation method is the most popular 

method used to solve the problem statement, due to its ease of 

numerical implementation. The MAP estimate is based on the 

rationale that the optimum value of the logarithm of a function 

is the optimum value of the original function, as the logarithm 

is a monotonic function. Many researchers have used additions 

to a simple MAP model to derive better results. The MAP 

estimation method and its variants provides for ready 

computational implementation. The next section gives a brief 

understanding of the mathematical MAP model and its types. 

 

3.9 MAP estimation 

 

The Maximum a Posteriori Estimation is a probabilistic 

model used to solve the Eq. (2). This is probably the most used 

method for image deblurring by researchers, probably because 

of the versatility it offers in its implementation. The MAP 

model can be designed to use any prior on the image or on the 

PSF at various stages of the algorithm. We observe that this 

method can be applied to deconvolve a blurred image in two 

ways. One is through the simultaneous estimation of the PSF 

and the sharp image as shown by Šroubek and Milanfar [7] 

where they use alternating minimization algorithm for the 

simultaneous estimation of the sharp image o and its blur 

function h. The other method is through the initial estimation 

of the PSF and the subsequent non blind deconvolution to 

restore the image [23]. Traditionally non blind image 

deconvolution is called the classical image deconvolution. 

There are various classical deconvolution algorithms such as 

the Richardson-Lucy algorithm [14] which can be used to 

deblur the image once the blur function h is derived using 

MAP estimation. The MAP estimation for deconvolution was 

previously presumed to derive a trivial delta kernel solution 

only, but recent improvements have shown that the MAP 

method of estimation can derive effective results even for a 

non-trivial blur kernel [15, 24, 25] etc. The severely ill posed 

problem of blind image deconvolution is converted into a 

mathematically solvable problem statement using a MAP 

estimate or Maximum a Posteriori estimate. A MAP 

estimation is similar to maximum likelihood estimation where 

the unknown data is estimated using the known experimental 

data. This is done through maximizing the posterior 

distribution. The MAP estimation can be executed in two ways 

which is described below. 

 

3.9.1 MAPh,o 

This is the simultaneous estimation of both the blurkernel h 

and the sharp image o 

 

𝑚𝑎𝑥
ℎ,𝑜

𝑃𝑟(𝑜, ℎ|𝑔)  α 𝑚𝑎𝑥
ℎ,𝑜

 Pr(𝑔|𝑜, ℎ) Pr(𝑜) Pr(ℎ) (13) 

 

The second term on the RHS of Eq. (13) is the maximum 

likelihood term, Pr(o), Pr(h) are the priors on the image o and 

the blur kernel h. This is represented as a minimization 

expression where the MAP approach seeks new values for h & 

o by minimizing the below expression 

 

(ĥ, ô) = min
ℎ,𝑜

𝜆||(ℎ ⊗ 𝑜 − 𝑔)||2

+ ∑ |𝑘𝑥,𝑖(𝑜)|𝛼 + ∑ |𝑘𝑦,𝑖(𝑜)|𝛼

𝑖𝑖

 
(14) 

 

where, λ||(h⊗𝑜 − 𝑔)||2 is the data fitting term derived from the 

logarithmic function of the maximum likelihood term i.e., the 

second term on the RHS of the Eq. (14). Since algorithm is the 

optimal value of o in the original function. The terms 

|𝑘𝑥,𝑖(𝑜)|𝛼 & |𝑘𝑦,𝑖(𝑜)|𝛼  represent the horizontal and vertical 

derivatives of the pixel i in the image o. Here the data fitting 

term is constant and the prior varies. Varying the exponential 

term α gives different priors that are assumed on the image o. 

For instance, α valueless than1 leads to sparse priors, α value 

of 1 leads to a Laplacian prior, and α value of 2 leads to a 

Gaussian prior. Natural images are in the range of α[0.5,0.8]. 

Different types of priors are successful for different types of 

images, for step edges as parse prior gives a correct sharp 

image while a Gaussian prior gives a blurry explanation, for 

an arrow peak, low values of α are preferred. Natural images 

contain more medium and narrow peaks than step edges hence 

sparse priors are also inefficient. Apart from the selection of 

priors we also note that as the size of the image window is 

increased the blurry result is preferred, whereas near 

significant edges the sharp image results. This can be 

explained as the blur has two opposite effects on the image 

likelihood, near significant edges it induces sparsity and 

decreases likelihood, whereas in natural images it reduces the 

derivatives variance and hence increases its likelihood. We can 

observe that for a simultaneous recovery of both the sharp 

image o and blur kernel h using a MAP estimation the result is 

dominated by the edges. This problem persists even when an 

exact prior is chosen in natural images and a very large number 

of measurements are taken. 

 

3.9.2 MAPh 

The draw back in MAPh,o is addressed by estimating just the 

blur kernel instead of simultaneous estimation. This leads to 

the second method of MAP, i.e. MAPh. In the MAPh method 

the blur kernel h is estimated and non-blind deconvolution is 

used to recover the sharp image o. We have seen that MAPh,o 

fails to acquire quality measurements even with very large 

number of measurements. Hence in order to increase the 

measurements we take into consideration the strong 

asymmetry of the dimensions of the unknowns h and o. While 

o increases with image size h is a constant value and is small 

in size and given in Eq. (15) and (16) 
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ĥ = 𝑎𝑟𝑔 min
ℎ

𝑝(𝑔|ℎ)𝑝(ℎ)/𝑝(𝑔) (15) 

 

where, 
 

𝑝(𝑔|ℎ) = ∫ 𝑒𝑥𝑝−
1

2ɳ2||(ℎ𝑜−𝑔)||2−
𝛼2

2𝛼2  𝑑𝑥 (16) 

 

3.9.3 The MAP Algorithm 

The MAP Algorithm is implemented in frequency 

domain to reduce the time taken for the complicated 

deconvolution process in the time domain. Hence the first 

step is to convert the input image data into frequency 

domain using Fourier Transformations. Next the Maximum 

A Posteriori (MAP) estimate of the problem statement is 

divided into o - step estimate and h - step estimate. The 

priors for each step are chosen and are integrated into the 

mathematical formula. The alternating minimization 

algorithm is used to alternatingly minimize o and h to the 

global minimum or the global optimum. Each minimization 

problem in the o - step and the h- step is solved using 

Augmented Lagrangian Methods (ALM). Alternating 

Minimization is continued until convergence. When the 

convergence point is reached, estimated PSF h and sharp 

image o are obtained. The main requirement of the 

algorithm here is to achieve this convergence at the true 

minimum. Perrone and Favaro [26] shed light onto the 

workings of the simple MAP model. They shred the MAP 

estimation from all its recent additions and show that the 

most important factor while implementing the maximum a 

posteriori algorithm is in the careful attention to details 

during its execution. They design a new alternating 

minimization algorithm, known as the Projected 

Alternating Minimization (PAM) algorithm, which is 

designed to include these details during execution such as 

the initial assumption of a delta kernel which gives better 

blur prediction and including priors on the kernel in a later 

stage to refine the final estimated PSF. They confirm that 

using a maximum a priori in the both sharp image and the 

blur leads to the selection of local minima hence to derive a 

correct solution simultaneous minimization of both the 

sharp image and the blur is not used in the PAM algorithm. 

Another variation to the existing Alternating Minimization 

algorithm is shown by Padcharoen et al. [27] where an 

accelerated alternating minimization algorithm (AAMA) is 

proposed, which uses a technique called the Accelerated 

Proximal Gradient (APG) method to increase the 

convergence speed of the usually slow gradient descent 

method. 

 

 

4. RECENT IMPROVEMENTS IN THE MAP 

ESTIMATION TECHNIQUE 

 

Even a classical deconvolution problem with only one 

unknown is ill-posed. One popular method of solving this 

kind problem is by using priors on the image. Šroubek et al. 

[28] show that a prior is a set of information about the 

image that is assumed before processing it. The information 

could be any known value about the image, such as the 

colours in it or a distribution it follows [29]. This known 

information is incorporated in the processing such that it 

leads to the algorithm choosing the correct image. Some 

effective additions and variations to the simple MAP model 

seen in literature are mentioned below. 

4.1 Regularization 

 

Regularization is a technique of introducing an additional 

term to solve an inverse ill posed problem. A regularization 

term chosen can be bounds on the vector space norm, or a data 

fitting term restricting the smoothness of a function; it is used 

to force the values to a predetermined set. A Regularization 

term is added to a loss function, the most commonly used 

optimization formula is given in Eq. (17): 

 

min
𝑜

=
1

2
||(𝑜 − 𝑔)||2

2  +
𝜆

2
 ϕ(x) (17) 

 

where, o and g are the sharp and the captured degraded images 

respectively, ϕ (x) is a non-convex regularizer, λ > 0 is the 

regularization parameter. The regularizer term varies 

according to the regularization method opted, for example in 

case of the widely used Lp norm regularization the regularizer 

term is as shown in the expression below, The Lp norm is the 

most often used regularization term in MAP estimation for 

image deblurring The Lp norm is a non-convex regularizer and 

is given in Eq. (18) 

 

ϕ(𝑥) = (∑|𝑥𝑖|𝑝

𝑖

)
1
𝑝 (18) 

 

The Lo norm introduces a sparsity constraint to the objective 

function. It can be defined as the number of non-zero elements 

in the function [30]. But since solving the Lo norm is an NP 

hard problem it will be difficult to solve it. Xu et al. [31] 

propose a sound mathematical model to implement Lo norm. 

This induces sparsity and derives state of the art deblurring 

results. Zhang and Kingsbury [32] use a majorization-

minimization approach to a fast Lo based image deconvolution 

with variational Bayesian inference. Here the Lo norm is 

approximated by iteratively reweighing the L2 norm, 

deconvolution is wavelet based. Another feasible option is the 

L1 norm also called as LASSO which is a convex regularizer 

used by Xu and Jia [33] to design a method of kernel 

estimation consisting of two phases, one to initialize the kernel 

and the other to refine it. Lin et al. [34] design a hybrid L1 - L2 

technique based on Huang et al. [35], where variable splitting 

is incorporated to solve the optimization problem. The 

regularization problem is divided into three sub problems 

applying a different technique for each sub problem the three 

sub problems are PSF estimation, image restoration for which 

Tikhnov regularization is used and an image denoising 

problem optimized using TV regularization. Krishnan et al. 

[36] use a ratio of L1/ L2 norm to induce sparsity. As reducing 

the L1 norm on high frequencies leads to denoising on one 

hand and results in a blurry image on other hand. Hence L1 / 

L2 acts a normalized version of the L1 norm and performs well 

for blur present in natural images. Optimizing the L1 / L2 norm 

leads to the accurate PSF which is used in a non-blind 

deconvolution algorithm designed by them [37], which they 

claim to derive better results than RLA for non-blind 

deconvolution, to result in the latent sharp image. Li et al. [38] 

show that the edge details could possibly be damaged by using 

Hyper-Laplacian priors and propose a regional division 

method which can preserve edge details and avoid the ringing 

artefacts. Here the weighing term which controls the 

regularization factor on the image pixels is used to steer the 

result to preserve edges. A weighing term of larger magnitude 

preserves the image details whereas a smaller value of the 
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weighing term reduces the ringing artefacts. Hence by 

adaptively varying the magnitude of the weighing terms 

according to the region of the image, the Hyper-Laplacian 

priors can be steered to retain image edges as well as reduce 

ringing artefacts. Chen et al. [39] present a simulation study of 

using different regularization parameters in a L2 norm 

regularization model. The numerical results of eight different 

regularization parameters are compared for an input ultra 

sound image. Portilla et al. [40] use L2 norm to convert the Lo 

norm into a computationally implementable format. 

Another significant regularization technique is the 

anisotropic diffusion [41] (also called Perona and Mallik 

diffusion) where an image is restored preserving its details. 

This method is also adopted by You and Kaveh [42]. Here 

spatial correlation of the image pixels is exploited. The 

solution here is mainly focused on Shift-Variant blur. The 

authors point out the drawback of using existing techniques 

such as a shifting window Kalmann filter for a shift-variant 

PSF. The anisotropic regularization technique is first 

applied to shift invariantly blurred images. This is further 

adapted to shift variant blurred images. Chan and Wong [43] 

original TV, follow the same approach but use TV (Total 

Variation) Regularization. The TV norm for regularization 

is extremely effective for recovering edges of images and 

also in some blurs such as out-of-focus blur or motion blur 

[44]. This is implemented in an alternating minimization 

algorithm. This is an iterative algorithm that gives effective 

deblurred results in a few iterations. Once the input function 

is regularized the main objective now is to solve the MAP 

model of this regularized function such that it converges 

effectively to a global minimum. Augmented Lagrangian 

Multiplier (ALM) methods along with Split Bergman 

Iterations are used to solve the regularized MAP model as 

shown by Kotera and Šroubek [6]. A TV algorithm based 

on split Bregman iterations with adaptive weights is shown 

by Chen [45] the weight for every parameter is based on the 

property of every pixel. The higher order partial derivatives 

of every pixel are used for this. Split Bregman iteration is 

used to solve the blind deblurring L1 problem. 

The ALM method is proven to converge even with a non-

convex objective. As converging is of prime importance in 

optimizing the solution, regularizers such as Lp norm go hand 

in hand with algorithms such as ALM, Alternating direction 

method Multipliers (ADMM), Split Augmented Lagrangian 

and Shrinkage Algorithm (SALSA). Wang et al. [13] design a 

new half quadratic model which they claim to be the first half 

quadratic mathematical model for the isotropic TV/ L2 used to 

solve the blind deconvolution problem statement. Its 

subsequent algorithm leads to the new alternating 

minimization algorithm which can be implemented on both 

grayscale and RGB images. This algorithm FTVd allows the 

utilization of fast transforms in quadratic minimization. They 

show strong convergence results. For a fixed β they prove their 

half quadratic model converges to a solution then by using the 

finite convergence property they show that their model 

converges with q-linearity which can also be said to be 

quadratic convergence rate, by which the half quadratic model 

converges. They experimentally test the convergence rates for 

different values of βon a set images with synthetic blur. They 

further derive an optimal numerical value for β and compare 

the performance of their algorithm with similar state of the art 

algorithms and show that their algorithm improves the speed 

of execution of an TV/ L2 model thus putting it on par with 

other widely used models in image deblurring. 

The regularizers are the priors which when applied on the 

simple MAP estimation model shown in Eq. (14), it forcefully 

steers the resulting sharp image and the estimated PSF in 

particular direction. For example, Lo norm enforces sparsity 

which is a very desirable property for a prior on the MAP 

algorithm, but solving the Lo norm regularizer is classified as 

an NP-Hard problem. But due to its very desirable property of 

inducing sparsity it has been used in conjunction with L1 norm 

and L2 norm as seen in L2 – Relaxed L0 pseudo norm and L1 – 

Relaxed L0 norm. The main aim of this is to relax the NP-Hard 

nature of the Lo norm. Though these conjunctions have 

managed to incorporate the advantages of the Lo norm they 

have severe shortcomings. In case of the L1–Relaxed L0 norm 

Gradient descent which is a popular method for deriving the 

global optimum cannot be applied. As the gradient descent 

requires the function to be differentiable at 0 and the L1 norm 

is not differentiable at 0. Similarly, the main advantages and 

disadvantages of the various regularizers are tabulated in 

Table 1.  
 

4.2 Edge detection techniques  
 

Edges in an image are distinguished as the begin or end of 

a homogeneous region of the image for example the boundary 

of an object in an image forms an edge in the image as the 

pixels constituting the object vary significantly from the pixels 

of the background. All the pixels of the same object form a 

region, as all these pixels depict a similarity either in colour, 

texture or amplitude. The pixels which form the boundary of 

an object have neighbouring pixels which do not have this 

similarity trait specific to the region. 

Detecting the edges of an image is a definite way of 

sharpening a blurry image. The edges in an image can be 

calculated by the gradient vector. The edges in the images can 

be used as a prior in the MAP estimation, as shown in the 

Figure 2. Shrivakshan and Chandrasekar [46] list and compare 

the results of various edge filters on a test image. Sobel, 

Prewitt and Roberts operators for edge filtering is used 

exhaustively in numerous image processing papers for various 

applications. Finding zero crossings of the second derivative 

is another popular approach. 
 

(ĥ, ô) = min
ℎ,𝑜

𝜆||𝑜 − 𝑔||2 +

 ∑ 𝑤𝑖|𝑘𝑥,𝑖(𝑜)|𝛼
𝑖 +∑ 𝑤𝑖|𝑘𝑦,𝑖(𝑜)|𝛼

𝑖  
(19) 

 

Edge reweighing [23] is implemented on a simple MAP 

estimation using the Eq. (19) shown above. Edge detectors and 

operators such as Sobel, Prewitt etc. are used to reweigh the 

gradients. The non-uniform weights 𝑤𝑖 prevents the delta 

solution, by increasing the smoothness penalty on low contrast 

regions of the image. Also, the likelihood weight λ is updated 

after each iteration. Choosing the likelihood weight from a low 

value to a high value helps in deriving the true blur solution, 

as a low λ is most likely to pick the true blur in the initial 

iterations it is important to have a low λ during the initial 

iterations. It is noticed that recent papers on Image Blind 

Deconvolution [6, 7, 24] incorporate the Laplacian edge 

detection equation in their MAP model for image deblurring.  

McGaffin and Fessler [47], and Cho and Lee [48] aim to 

reduce the computation overhead and increase the speed of the 

deblurring algorithm by choosing filters rather than the 

computationally expensive nonlinear prior. The optimization 

process is accelerated by a formulation that excludes the pixel 
values. The input image is assumed to have sufficient strong 

edges. 
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Table 1. The table compares the different regularizers used for regularizing the objective function. 

 
Sl. No Regularizer Advantages Disadvantages 

1. Lo norm Direct Sparsity Inducer 
NP-Hard Problem, discontinuous- leads to vast changes in 

measurement for tiny changes in signal. 

2. L1 norm Convex Regularizer, sparsity inducer Not differentiable at 0, hence computationally inefficient 

3. 
Lp norm 

(0 ≤ p ≤ 1) 
Smaller values of p give sparser gradients Non-Convex Regularizer 

4. 
Lp norm (negative 

p values) 

Sharpen substantial edges, smooths the 

noise and insignificant details 
Has limitations on patch level structures 

5. L2 norm Differentiable at 0, hence easy computation Non-Convex Regularizer, it does not induce sparsity 

6. 
L2 - Relaxed 

L0 pseudo norm 

Since every step of marginal optimization is 

easy, every step results in a marginal global 

optimum. 

Convergence to the global optimum is not obtained 

7. 
L1 - Relaxed 

L0 norm 

Gives a convex approximation to Lo norm, 

improves sparsity and contributes in feature 

selection 

Gradient descent can’t be used 

8. L1 / L2 norm [26] 
induces sparsity, computationally 

efficient 

Non-Convex multiple local minima, Direct optimization is 

hard, cannot be expressed as a probabilistic prior 

 
 

Figure 2. Block diagram representation of edge detection 

 

4.3 Sparse priors 

 

Sparse priors which include assuming sparsity 

constraints on the unknown sharp image have been proven 

to derive the true kernel solution. The remaining of this 

subsection shows some recent examples in literature where 

this is seen. Hanif and Seghouane [49] represent the original 

image to be made up of image patches. Sparse and non-

negative factorization is assumed in each of these image 

patches. The mixing coefficients derived from overlapping 

patches acts as a constraint on the sparsity. They show that 

this kind of approximation can be derived from the input 

image and no prior assumption is required and hence is 

advantageous in blind image deblurring. Shearer, Gilbert 

and Hero III [50] use a sparse approximation of the 

unknown sharp image ‘o’ in the joint MAP blind 

deconvolution algorithm. Initially the image is assumed to 

be sparse with very little information comprising of only 

the strongest edges in the images. The blur kernel is 

estimated for this sharp image ‘o’ such that ℎ ⊗ 𝑜 ≈ 𝑔. Since 

the sharp image is o is very sparse the derived blur kernel 

solution has very less probability of being a delta or a no blur 

solution. But since this sparse approximation of the sharp 

image overestimates the blur kernel, weaker edges are 

included into the image approximation. They further choose a 

L0 optimization technique and argue that it is effective when 

used as a constraint, in spite of it being an NP-hard problem 

when used as a cost function. The downsides of the 

simultaneous MAP estimation can be avoided without 

complexity in the kernel estimation. The sparse edges are 

incrementally approximated and this schedule procedure is 

slow and conservative, hence there is scope for improvement 

of speed by improving the schedule. The algorithm proposed 

here has to be varied to take noise into consideration while 

estimating the initial sparse image in case of very noisy 

images. 

 

4.4 Patch priors  

 

In general, gradient priors show the relationship between 

only a pair of pixels. Priors which are applicable to a larger 

region of pixels are called as patch priors. Patch priors using 

non-blind deconvolution have obtained comparable results to 

the state of the art deblurring methods. Many methods using 

patch priors are presented. Micheli and Irani [51] present a 

paper based on internal patch recurrence property. It is based 

on the belief that a small internal patch of size 5X5 or 7X7 

repeats in a natural image, this reduces significantly in a 

degraded image. Hence the main idea behind this method is to 

find the unknown PSF h such that, it maximizes the recurrence 

of image patches. This is empirically proven by Zontak and 

Irani [52]. This property is also used in super resolution and 

image denoising. In an earlier paper Michaeli shows us that 

blind deconvolution can be thought of a special case of blind 

super resolution with the magnification factor of α = 1. 

 

𝑎𝑟𝑔min
ℎ̂,𝑜̂

 =  ||(𝑔 − ℎ̂  ∗ 𝑜)||2  +  𝜆1𝜌(𝑜̂, 𝑜̂𝛼) +  𝜆2||ℎ̂||2 (20) 

 

The above Eq. (20) shows optimization problem which is to 

be solved to derive the projected blur kernel. Here 𝑜̂𝛼  is an 

alpha times smaller version of the image o. The second term is 

the image prior and it measures the difference in the patches, 

while the third term is the prior on the blur kernel. This 

equation is a variation of the MAPh,o method. The authors 

show that due to the use of their image prior (𝑜̂, 𝑜̂𝛼) , the 

MAPh,o method succeeds to converge, as it implements a large 

penalty on the blurry 𝑜̂ and a smaller penalty on the true sharp 

𝑜̂ hence, the sharp result is preferred over the blurry result at 

each iteration. 

 

4.5 Learned priors  

 

A single filter applied uniformly on all pixels over an entire 

image normally does not provide up to date results. As some 

pixels require sharpening and few others need smoothing 

effects. Adaptive filtering is shown to provide good results in 

natural images. But adaptive filtering can change the type of 

filtering operation applied to each pixel but cannot choose 

534



 

different prior for each pixel. Recent papers show that pixels 

in different regions vary depending on image conditions hence 

priors chosen should also vary accordingly. Zuo et al. [24] 

design an algorithm to train a set of priors to choose the most 

effective prior for each pixel. These priors are also called as 

learned priors. These learned priors though they use a training 

algorithm, they are different from the neural network methods 

described before. The training algorithm here is to train the 

prior selector to choose the most suitable prior and to decide 

as to which operator to use to solve the optimization problem. 
 

min
ℎ,𝑜

=
𝜆

2𝜎2
||(ℎ ⊗ 𝑜 − 𝑔)||2 + 𝜙(𝑜) + 𝜑(ℎ) (21) 

 

The Eq. (21) shows the general expression to include 

learned priors on a MAP model. Where σn is the standard 

deviation of the additive Gaussian white noise, and ϕ (o) and 

φ (h) are the regularizer on o and h, respectively. Zou et al. 

choose a family of hyper-Laplacian distribution as priors, 

where each iteration has its own parameters. A generalized 

thresholding operator is used solve the minimization problem 

thus derived. They further design a training algorithm which 

selects a thresholding operator for each iteration through 

discrimination from a training data set. This thresholding 

operator in turn incorporates both salient edge selection and 

time-varying regularization, as it uses negative p values to the 

Lp norm which acts as a bilateral filter that enhances the salient 

edges and smoothens small textures. Taking into consideration 

the importance of convergence in an image deblurring 

algorithm we have tabulated the methods used if any, to attain 

convergence and its effectiveness in deriving the true kernel in 

Table 2 shown below. Along with the choice of different priors 

accurate Region of Interest identification plays a crucial role 

in the image deblurring algorithm. Region of Interest 

identification is one of the initial pre-processing steps required 

to perform high level image processing techniques. Shapri and 

Abdullah [53] show that the performance of the image 

deblurring algorithm varies with the region of interest. 

Choosing the accurate region of interest facilitates accurate 

PSF estimation. It is more effective when this chosen ROI is a 

small region with more information than a large smooth region 

which has very less data. Hence ROI with sharp edges and high 

spatial information will be a more effective ROI for image 

deblurring. Most algorithms fix the ROI at the centre of the 

image, these algorithms perform poorly when the image 

details are scattered in the image and not concentrated at the 

centre of the image and its neighbours. Kotera et al. [54] stress 

on the fact that various factors such as the deconvolution 

method, its parameters along with the details with which the 

borders in the image are handled whether they are included in 

the calculation or not play a vital role in the measure of error. 

Also due to the lack of a standard test image set and standard 

measure of error in image deblurring they design a new model 

for the measure of error in image deblurring algorithms. 

 

Table 2. Comparison of the performance of a simple MAP model together with the recent improvements on it 
 

Sl. No Improvements on MAP Effect on convergence Kernel Derived 

1. Edge detectors [30, 35] Converges to a global minimum 

Avoids the delta kernel solution (True kernel is 

favored when the likelihood term gradually 

increases from a low value) Not sufficiently sharp 

2. L0 norm [22, 23] NP-Hard Problem 

NP-Hard Problem 

(Smoothing effect, 

preserves the structure) 

3. L1 norm [25] 

Augmented Lagrangian Multiplier (ALM) 

methods along with Split Bergman Iterations are 

used to solve and facilitate convergence of the L1 

norm regularized convex function 

L1 norm alone fails to recover the true kernel. It is 

used in conjunction with other norms for effective 

performance 

4. 
Lp norm (0 ≤ p ≤ 1) [13, 

15] 

The Alternating Direction Method of Multipliers 

(ADMM) family of Algorithm such as SALSA is 

proven to converge even a Non- Convex function 

Most effective in the range p =0.3, 0.5-0.8 

5. L2 norm [6, 17, 28] ALM with Split Bregman Iterations are used. 

Most widely used due its computational ease, 

derives effective 

results with heuristic techniques 

6. Patch priors [36] 

Priors are for a larger region and not limited to 

just a pixel. Iterative Reweighted Least Squares 

(IRLS) for optimization 

Comparable results to the state-of-the-art methods, 

but the system is less practical due to 

computational inefficiency 

7. 
Learned priors or 

Trained priors [15] 
One step hybrid ALM is used for optimization. 

Iteration-wise updation of 

λ and p. The priors are re-trained using a synthetic 

blurred dataset. Lead effective recovery of the 

Blur Kernel 

8. Sparse Priors [45] 
Alternating Projected Gradient method is used to 

achieve convergence 

The sharp image is initially assumed to be sparse, 

hence the estimated blur kernel cannot be a trivial 

solution, sharp image is refined in subsequent 

iterations to derive the true kernel 
 

Table 3. Performance comparison of a simple MAP model for different regions of an image using different types of priors 
 

Sl. No Prior For Step Edges For Narrow Peaks Natural Images 

1. Sparse prior (α< 1) True Kernel 
Blurry explanation of o (o denotes the 

deblurred result) 
Blurry explanation of o 

2. Laplacian prior (α=1) 
Approximately True 

Kernel 
Trivial Delta Kernel Blurry explanation of o 

3. Gaussian Prior (α=2) Trivial Delta Kernel Trivial Delta Kernel Trivial Delta Kernel 

4. Low α values True Kernel Blurry explanation of o True Kernel only near Edges 
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5. EXPERIMENTAL RESULTS AND INFERENCES 
 

In spite of this paper being entirely a survey paper, with no 

new method proposed by the authors, we have performed 

preliminary experiments on the simple MAP model. The main 

idea behind this is to understand the working of the basic MAP 

model sans all the recent improvements and decoding where 

exactly the MAP model succeeds and where it fails. Table 3 

depicts how the performance of the simple MAP model varies 

with respect to two parameters, the first being the prior used 

and the second depends on the region of the image which is 

being deblurred. The performance of the MAP model with 

respect to these two parameters are tabulated, considering the 

algorithm to be most efficient when it successfully estimates 

the true kernel and the least effective when it derives a no blur 

or trivial delta kernel. The Figure 3 gives a graphical 

representation of this comparison, we can see that a gaussian 

prior fails or results in a trivial delta kernel for all image 

regions such as step edges, narrow peaks, and natural images. 

Sparse priors and low values of α are the best option of priors, 

considering they never result in a delta kernel but except for in 

the case of step edges they too fail to derive the true kernel. 

This elaborates why a simple MAP model fails in most cases. 

The comparison sheds light on the performance of the simple 

MAP model. It also helps in understanding the best course of 

action to be taken by a researcher to improve the existing 

Image deblurring algorithms. 

 

 

 
 

Figure 3. Kernel estimated varies as the prior used varies for different image region 

 

The simple MAP algorithm is used to deblur standard test 

images blurred using various synthetic blurs. The original 

image, blurred input and the deblurred results are shown in 

Figure 4.  

 

 
 

Figure 4. Estimated sharp images for an unknown PSF using 

a simple MAP Estimation 

The images are arranged such that the first column shows 

the initial sharp image, the second column shows the 

synthetically blurred images which are the input image to the 

algorithm and the third column shows the deblurred result and 

the fourth and the last column shows their corresponding 

estimated PSF for each case. The synthetic blur applied to the 

first row is a circular motion blur, to the second row is a simple 

Gaussian blur, to the third row is a median blur, the fourth row 

is applied with a zoom and motion blur. 

From the above images in Figure 4, we can infer that a 

simple MAP model works well only when the input blurry 

image is blurred by a Gaussian blur (second row), but fails for 

derive the true sharp image for a circular motion blurred image 

(first row), where the blur edges are perceived as image edges 

and are enhanced by the MAP algorithm. While the deblurred 

results for a median blurred input image and a zoom & motion 

blurred image in rows three and four respectively are 

comparatively better. It is also seen that the simple MAP 

model fails miserably in many cases such as shown in Figure 

5 below. 

 

 
Figure 5. Case of failure of the simple MAP model. The first 

image (a) Original sharp image (b) Image blurred with a 

synthetic linear motion blur (c) Deblurred result (d) 

Estimated PSF 
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This is because the simple MAP model fails in deblurring 

the image blurred with a synthetic linear motion blur. This blur 

adds degradations in the form of shallow edges, medium and 

narrow peaks very similar to natural images. The MAP model 

is very effective in deblurring step edges but fails to deblur 

images with shallow edges, medium and narrow peaks. 

 

 

6. CONCLUSIONS 

 

A simple MAP model i.e. the MAPh, o will work only on an 

image dominated by edges. Hence it is not enough for effective 

utilization for deblurring. The various methods designed to 

improve the simple MAP model fall short in either deriving 

accurate convergence to the global optimum or computational 

implementation. Since convergence of the algorithm is the 

most important factor for its effectiveness, L0 and L1 norms 

are theoretically the best regularizers to obtain a better work 

output. The main problem here is to design an algorithm which 

can implement them practically. The L2-Relaxed L0 pseudo 

norm and the L1-Relaxed L0 norm are designed to make the 

L0 and L1 regularizes computationally implementable. But 

they are still far from converging to the global optimum. 

Hence, these criteria required for convergence an algorithm 

which effectively implements the regularizer to derive the 

global optimum is a major requirement to improve the existing 

deblurring methods. Though various methods for image 

deblurring are designed, they lack in real world, real time 

implementation and results and commercial success.  
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NOMENCLATURE 

 

g Blurred and noisy image 

h Blur kernel 

o Deblurred sharp image 

n Additive white Gaussian noise 

w Weights assumed 

A Autonomous blurring 

I Identity Matrix 

 

Greek symbols 

 

 Prior in the simple MAP model  

 Prior on o 

φ Prior on h 

σn Standard deviation 

𝜆 Data fitting term 

 

Subscripts 

 

h Blur kernel 

o Deblurred sharp image 
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