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The crack identification and classification are essential to the discovery and maintenance of 

early defects in concrete members. This paper designs a novel method that supports accurate 

identification and classification of surface cracks on concrete members. Specifically, each 

sample image was preprocessed through cropping and neighborhood operation, subject to 

gray adaptive thresholding, and further processed based on morphological gradient and local 

gray value dissimilarity. Next, the Gauss-Laplace algorithm was employed to extract the 

contours of the surface cracks, and each image was matched with the normalized crack 

templates one by one. Finally, a densely connected neural network of transfer learning was 

introduced to rapidly classify the surface cracks on concrete members. The effectiveness 

and accuracy of our method were fully demonstrated through experiments. The research 

findings provide a reference for surface crack identification and classification in other fields.  
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1. INTRODUCTION

During infrastructure construction, concrete members could 

be damaged and cracked for reasons of careless operation, 

excess load, etc. The cracking threatens the structure and 

bearing capacity of the building structure [1-5]. The surface 

cracks on concrete member may arise from various factors. 

Currently, these cracks are mostly detected and maintained 

manually. These manual interventions tend to be complex, 

dangerous, and inaccurate [6-9]. For functional reliability of 

concrete members, it is critical to identify and classify the 

surface cracks in an accurate and efficient manner [10-12]. 

At present, some image processing-based methods have 

been applied to detect the cracks on concrete buildings like 

bridges and highways. In these methods, surface crack images 

are collected by multi-function inspection vehicles, and 

subjected to preprocessing, segmentation and crack 

identification; Finally, the type of cracks and the degree of 

building damages are judged and predicted manually [13-18]. 

Based on deep learning, Chen et al. [19] proposed a robust, 

automatic crack detection method, capable of mitigating the 

effect of building shadows on images and effectively 

suppressing noise. In view of crack skeleton, Chen et al. [20] 

also developed an efficient edge detection technique, which 

achieves high accuracy by removing the areas with similar 

gray values. Drawing on approximate watershed algorithm, 

Emmanuel Maggiori et al. [21] constructed a novel crack 

detection and penetration model: the cracks are identified 

rapidly and accurately by simulating the fractal law of liquid 

penetration under stress. Nicolas et al. [22] put forward an 

automatic road crack detection method, which effectively 

detects road surface cracks, using structured random forest 

algorithm and multi-feature crack classifier. 

To identify and classify the surface cracks on concrete 

members, the digital image processing technique must have 

high accuracy in processing and classification and a wide 

application range [23-25]. This paper puts forward a novel 

method that supports accurate identification and classification 

of surface cracks on concrete members. Firstly, each sample 

image was cropped, and subject to neighborhood operation, 

achieving the effect of Gaussian filtering. The preprocessed 

image was subject to gray adaptive thresholding based on 

grayscale probability, and removed of interfering pixels (e.g. 

noise and burrs) based on   morphological gradient and local 

gray value dissimilarity. After that, the Gauss-Laplace 

algorithm was adopted to extract the contours of the surface 

cracks, and each image was matched with the normalized 

crack templates one by one. Finally, a densely connected 

neural network of transfer learning was introduced to rapidly 

classify the surface cracks on concrete members. Our method 

was proved effective through experiments. 

2. PRINCIPLE OF CRACK IDENTIFICATION AND

CLASSIFICATION AND IMAGE PREPROCESSING

As shown in Figure 1, the proposed method can be broken 

down into three stages: image preprocessing, image 

segmentation, and crack identification and classification. 

To realize fast recognition and classification, the collected 

surface images on concrete members were preprocessed 

through cropping and neighborhood operation, based on the 

image enhancement technique for surface cracks on concrete 

members. The preprocessing simplifies the image information 

to the greatest possible extent. Through image preprocessing, 

the redundant information could be removed, and the useful 

information could be enhanced, laying the basis for reliable 

crack classification. During the preprocessing, image 

enhancement was conducted to highlight the surface crack 

features, making the cracks more noticeable. 
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Figure 1. Workflow of our method 

 

Here, every original image of surface crack on concrete 

members was binarized by Otsu’s method. The image was 

cropped along the bounding box in the white area into image 

I(x, y) of the size A×B, where x=0, 1, 2…A-1 and y=0, 1, 2…B-

1. The cropped image was fitted as a straight line along the 

pixels of the bounding box. Based on the preset length a and 

width b, the fitted line was translated to construct a rectangular 

template M of the size a×b. 

Each pixel in the cropped image was subject to 

neighborhood operation: 
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where, I(x, y) is the value of a pixel in the original image; I(x, 

y) is the value of that pixel after neighborhood operation 

(neighborhood pixel value); M(a, b) is the neighborhood 

operation function. The neighborhood pixel values were taken 

as the initial values for the next iteration of neighborhood 

operation. Then, the neighborhood pixel values were subject 

to weighted summation by: 
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where, δ(c, d) is the weight coefficient dependent on the kernel 

values of the domain of definition of range. If the gray value 

difference is small among the pixels in the neighborhood, the 

weighted summation is comparable to Gaussian filtering; if the 

gray value difference is large, the weighted summation has a 

limited effect on the image state. 

 

 

3. SEGMENTATION OF SURFACE CRACK IMAGES 

 

To effectively extract the crack defects, it is necessary to 

segment every preprocessed image of surface crack on 

concrete members. The most popular methods for image 

segmentation include the Otsu’s method and Niblack’s 

method. After neighborhood operation, the gray values of 

pixels are concentrated on the image. In this case, the Otsu’s 

method may overlook the specific information of cracks, while 

the Niblack’s method needs to be coupled with a suitable 

denoising method. 

The absolute difference between a pixel of the original 

image and the corresponding pixel of the image processed by 

neighborhood operation was taken as the high-frequency 

component h(x, y) of that pixel: 
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Let G be the grayscale of I(x, y). Then, the probability pl 

that the grayscale of h(x, y) is l can be estimated by: 
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where, a×b is the size of the neighborhood. Based on 

grayscale, the high-frequency components of pixels in the 

surface crack image were divided into two classes: 

background region of interest (ROI) (grayscale: 0~g-1) and 

target ROI (grayscale: g~G-1), where g is gray value. The 

pixel sets of the two classes are {I(x, y)<g} and {I(x, y)≥g}, 

respectively. The grayscale probabilities of the two classes can 

be respectively calculated by: 
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Since μ1+μ2=1, the mean gray value of h(x, y) is the sum of 

the gray scales of the two ROIs: 
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Let T be the gray adaptive threshold with grayscale 

probability that segments the image h(x, y). Then,  
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After thresholding, the image contains lots of discrete noises 

and burrs on crack edges, which greatly disturb the crack 
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identification. Here, these interfering pixels are removed based 

on morphological gradient and local gray value dissimilarity. 

Let B(x, y) be the rectangular structural element that 

determines the performance of the gray morphological 

gradient operator. Then, the expansion and corrosion can be 

respectively expressed as: 
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The expansion-first closing operation and corrosion-first 

expansion operation can be respectively defined as: 
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On crack boundaries, the gray morphological gradient 

operator can be described as:  
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The noises of the image were processed by the gray 

morphological gradient operator. If the gray value assigned to 

B(x, y) is too large, the peak gradient will not match with the 

image boundary. If the gray value is relatively small, the crack 

edges could be processed well, but the processing effect is 

greatly affected by noises. To prevent the coordinates of edge 

pixels from moving out of boundary, (2a+1)×(2b+1) was 

taken as the calculation window, and I(x, y) was expanded 

outward by a×b pixels. The dissimilarity feature can be 

computed by: 
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where, n1 and n2 are the number of pixels in background ROI 

and target ROI of the calculation window, respectively. The 

corresponding gay value can be predicted as: 

 

( )


=
Mji

est yxD
BA

O
,

,iss
1

 

(14) 

 

where, M is the set of all pixels with nonzero gray values in 

h(x, y). Taking the predicted gray value as the threshold, the 

crack pixels in the image were processed to eliminate the 

interfering pixels. If a pixel has a greater dissimilarity than the 

threshold, the gray value will not be changed; otherwise, the 

gray value will be reset to one. 

Figure 2 compares the image processing results under 

different calculation windows. It can be seen that the smaller 

the calculation window, the more interfering pixels are 

eliminated. After all pixels had been processed, the boundaries 

became smooth, the interfering pixels were separated from 

crack pixels, and some interfering pixels were deleted. 

 

 
 

Figure 2. Results of image segmentation 

  

 

4. IDENTIFICATION AND CLASSIFICATION OF 

SURFACE CRACKS ON CONCRETE MEMBERS  

 

In essence, crack identification and classification are to 

extract the defect features of cracks, that is, distinguish crack 

pixels from non-crack pixels based on data information. In the 

preceding sections, each sample image was preprocessed, 

subject to gray adaptive thresholding, and removed of 

interfering pixels based on morphological gradient and local 

gray value dissimilarity. Then, it is necessary to effectively 

distinguish between crack pixels and non-crack pixels by 

crack features. 

There are four typical types of surface cracks on concrete 

members, each has their unique causes: the transverse cracks 

perpendicular to member surface induced by pressure or 

thermal expansion/contraction; the shear cracks induced by 

member movement under vibration or pressure; oblique cracks 

on wall surface induced by foundation settlement or thermal 

expansion/contraction; cross cracks induced by sudden 

external stress. Due to the complex causes of cracking, the 

actual cracks often cover multiple types. Hence, it is not 

suitable to process crack images with a fixed threshold. 

In this paper, Gauss-Laplace algorithm is used to extract the 

contours of the surface cracks on concrete members, and 

normalize the crack templates; the image was matched with 

templates one by one, revealing the salient features of the 

surface cracks. Considering the complex cracks and chaotic 

noises on concrete members, the authors introduced a densely 

connected neural network of transfer learning to rapidly 

classify the surface cracks. 

 

4.1 Surface crack identification 

 

The reciprocal directional Gaussian filter and the Laplace 

edge sharpening filter can be respectively defined as: 

 

𝐺(𝑥) =
𝜌2[𝑐𝑜𝑠 𝜃,𝑠𝑖𝑛 𝜃]
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1

2𝜋𝜆2 𝑒𝑥𝑝 (−
1

2𝜆2 𝐼𝑇𝑅𝜃 (
𝜌2 0

0 𝜌−2) 𝑅𝜃(𝐼))                  (15) 
 

  

𝛻2𝐼(𝑥, 𝑦) = 𝐼(𝑥 + 1, 𝑦) + 𝐼(𝑥 − 1, 𝑦) + 𝐼(𝑥, 𝑦 + 1)
+ 𝐼(𝑥, 𝑦 − 1) − 4𝐼(𝑥, 𝑦) 

(16)
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where, ρ is the compression or stretching ratio coefficient in 

each direction; λ is the scale factor; IT is the transposition of 

pixel coordinates; Rθ is the rotation matrix. The surface crack 

contours were detected through the smoothing and denoising 

by Gauss-Laplace filter. The obtained contour information 

includes crack textures and boundaries. 

To narrow the physical differences between the feature 

components within salient features, the four types of crack 

templates were normalized based on the salient feature 

components. Firstly, a crack template set was constructed 

Model=[Model1, Model2, …Model4]. Then, a sample Modeli 

was selected randomly. Let Modelimax, Modelimin, and Modeliav 

be the maximum, minimum and average of the feature 

component values of Modeli, respectively. Then, the 

component values were normalized into [-1, 1] by: 

 

𝑀odel𝑖
′ (𝑥, 𝑦)

=
4(𝑀odel𝑖(𝑥, 𝑦) − 𝑀odel𝑖𝑎𝑣(𝑥, 𝑦))

∑ (𝑀odel𝑖(𝑥, 𝑦) − 𝑀odel𝑖𝑎𝑣(𝑥, 𝑦))4
𝑖=1

 
(17) 

 

Or, the component values of all crack features were 

normalized into [0, 1] by:  

 

  𝑀odel𝑖
′ (𝑥, 𝑦) =

|𝑀odel𝑖(𝑥,𝑦)−𝑀odel𝑖𝑚𝑖𝑛|||

𝑀odelodel𝑖𝑚𝑖𝑛𝑖𝑚𝑎𝑥

                    (18)  

 

The processed image was matched with the crack templates 

Modeli one by one, revealing all the pixels belong to cracks. 

During template matching, the sum of squares for error (SSE) 

was calculated between the processed image pixels and 

template pixels: 

 

𝐸(𝑥, 𝑦) = 

     ∑ ∑ [𝐼(𝑥 + 𝑘, 𝑦 + 𝑙) − 𝑀odel𝑖(𝑥, 𝑦)]𝐷−1
𝑙=0

𝐶−1
𝑘=0

2
           (19) 

 

 

The above formula can be simplified as: 
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+ 𝑙) 𝑀odel𝑖(𝑥, 𝑦)

+ ∑ ∑[𝑀odel𝑖(𝑥, 𝑦)]
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2

= 𝐸𝑂(𝑥, 𝑦) − 2𝐸𝑂−𝑀(𝑥, 𝑦)
+ 𝐸𝑀(𝑥, 𝑦) 

(20) 

 

where, EO(x, y) and EO-M(x, y) are the positive correlation error 

and cross-correlation error generated when the processed 

image and crack templates were matched on the size of C×D, 

respectively. The position of each crack pixel was estimated 

according to EO(x, y), and EO-M(x, y). 

 

4.2 Surface crack classification 

 

In our research, the surface cracks are classified based on 

the correlation errors generated in the matching between 

processed image and crack templates. Based on the densely 

connected neural network DenseNet, the first four trained 

dense blocks were constructed on ImageNet dataset, and 

adopted as a four-dimensional (4D) fully-connected layer in 

crack identification and classification. The new classifier 

updates the correlation errors by the cross-entropy loss 

function: 

 

𝐸′(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 + 𝑘, 𝑦 + 𝑙) 𝑙𝑜𝑔 𝑀 odel(𝑥, 𝑦)𝐷−1
𝑙=0

𝐶−1
𝑘=0 (21)  

 

The classifier uses the stochastic gradient descent function 

to train the classification network. The weight coefficient was 

set to represent the learning rate of the u-th node on the t-th 

layer of the classifier. During the classification training, the 

first dense blocks of the DenseNet were frozen, and the 

convolution layers and pooling layers were finetuned. These 

operations were repeated until the classifier started to 

converge. Then, the output of the last dense block was 

extracted, and imported to the global average pooling in the 

classification layer. The output of that layer was converted into 

the classification probability by the Softmax function, and 

outputted as the classification result of the surface cracks on 

concrete members. 

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

Our experiments were carried out in Visual Studio 

2020 with a computer (CPU: Intel® Core™ i7-9700K 

Processor, 3.1 GHz; memory: 16GB) running on Windows 10. 

The software environment is Open Source Computer Vision 

(OpenCV) and C++, a general-purpose programming 

language.  

Our image segmentation method was applied to process 

different types of surface cracks on concrete members. Figure 

3 compares the original images with the images processed 

based on morphological gradient and local gray value 

dissimilarity. The comparison shows that, even if the cracks 

are formed under complex reasons, the interfering pixels in 

local dark areas were effectively removed by our method. 

 

 
 

Figure 3. Image segmentation effects on different types of 

cracks 

 

Then, the surface cracks on concrete members were 

classified by cracking causes into ten categories: improper 

operation, freezing, inadequate concrete strength, pressure 

effect, thermal expansion/shrinkage, rebar corrosion, 

foundation settlement, seismic action, fire, and improper use 

of materials. 

Figures 4 and 5 compare the Niblack’s method and our 

image segmentation method in denoising effect and the 

accuracy of salient feature extraction on different types of 

cracks. It can be seen that our method extracted salient features 

more accurately and reduced noise rate more effectively than 

the Niblack’s method. 

Next, our method was adopted to process an image with 

weak crack information and small inter-pixel grayscale 

difference. As shown in Figure 6, the salient features extracted 
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by our method were continuous and complete. 

Figure 7 displays the cross-correlation error curves before 

and after the normalization of crack templates. Obviously, the 

image-template matching produced a smaller cross-correlation 

error after the normalization. Through 3,000 rounds of training, 

the matching error was reduced to the desired range. 

 

 
 

Figure 4. Comparison of denoising effect 

 

 
 

Figure 5. Comparison of the accuracy of salient feature 

extraction 

 

 
 

Figure 6. Contour extraction effect of our method 

 

Table 1 lists the classification results of the transfer 

learning-based ResNet on the 10 kinds of crack images. The 

classification results were desirable, thanks to the saliency of 

crack features being extracted. Figure 8 compares the 

classification accuracies of our method and the 

backpropagation neural network (BPNN), a traditional deep 

convolutional neural network (D-CNN). It can be seen that our 

method, which relies on transfer learning, achieved higher 

classification accuracy than the BPNN (80%). 

 

 
 

Figure 7. Cross-correlation error curves 

 

Table 1. Classification results on different kinds of cracks 

 

Type 
Number of training 

rounds 

Sample 

size 

Accuracy 

/% 

1 146 520 92.35 

2 153 607 96.42 

3 141 498 97.52 

4 155 541 89.75 

5 150 612 95.43 

6 168 523 91.51 

7 154 458 90.47 

8 165 498 94.22 

9 139 546 96.57 

10 158 468 90.24 

 

 
 

Figure 8. Classification accuracy curves 

 

 

6. CONCLUSIONS 

 

This paper comes up with a strategy to identify and classify 
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the surface cracks on concrete members. Firstly, each original 

image was cropped and subject to neighborhood operation. 

The preprocessed image was segmented by gray adaptive 

threshold, and also processed based on morphological gradient 

and local gray value dissimilarity. Experimental results 

confirm that the image segmentation process can effectively 

remove interfering pixels like noises and burrs. Afterwards, 

the Gauss-Laplace algorithm was introduced to extract the 

contours of the surface cracks, and each image was matched 

with the normalized crack templates one by one. Further 

experiments show that the image-template matching produced 

a smaller cross-correlation error after the normalization. In 

addition, the DenseNet of transfer learning was adopted to 

rapidly classify the surface cracks on concrete members. The 

experiments on 10 kinds of crack images prove that our 

method realized an average classification accuracy of above 

90%. 
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