
A Novel Detection Method for Weak Harmonic Signal with Chaotic Noise 

Huadong Wang 

School of Computer Science and Technology, Zhoukou Normal University, Zhoukou 466001, China 

Corresponding Author Email: wanghuadong@zknu.edu.cn

https://doi.org/10.18280/ts.370316 ABSTRACT 

Received: 10 January 2020 

Accepted: 9 April 2020 

The bit error induced by the chaotic noise is a serious problem among weak harmonic signal 

detection methods for wireless network environment. To solve the problem, this paper puts 

forward a weak harmonic signal detection method for network environment with chaotic 

noise. Firstly, the real-time transmission signal was collected from the wireless network, and 

the noise signal was extracted and suppressed in the light of the chaotic features of the signal. 

In this way, the detection accuracy of weak harmonic signal will not be affected by the noise 

signal. Then, the detection amplitude and frequency were determined according to the 

effective values of harmonic components and harmonic frequency, facilitating the detection 

of weak harmonic signal. Experimental results show that our method outputted a lower bit 

error rate (BER) than existing methods in weak harmonic signal detection, and outperformed 

the contrastive methods in reliability and performance. 
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1. INTRODUCTION

Wireless telecommunication network, as the combination of 

wireless network and telecommunication network, supports 

information exchange and sharing. This network is generally 

applied in the remote control and transmission of 

electromagnetic waves, showing a great significance in life 

and work. The safe and stable operation of the wireless 

network is threatened by the harmonics and inter-harmonics. 

Originating from the massive use of nonlinear loads, the 

harmonics in wireless network cause the failure of various 

network equipment and disrupt the normal data 

communication [1]. For the stability of wireless network, it is 

necessary to suppress or eliminate harmonics in the network. 

As a result, a harmonic signal detection method should be 

designed to answer two questions: Whether the wireless 

network contains harmonic signal? Where is the location of 

the harmonic signal? 

The harmonic signal, generally weak in the wireless 

network, cannot be detected accurately by a low-precision 

method. The difficulty in detecting weak harmonic signal is 

amplified by the chaotic noise produced in the operation of the 

wireless network. In the wireless network, the chaotic noise 

exists as an unstable noise factor with unobvious rules. Chaos 

is an irregular and unstable state of motion that generally exists 

in nonlinear systems, regardless of the system scale. Unique to 

deterministic nonlinear dynamic systems, chaotic motions are 

featured by internal stochasticity, global stability, local 

instability, sensitive dependence, ergodicity, orbital instability, 

to name but a few. In the presence of chaotic noise, the key to 

the detection of weak signal is to judge whether all or part of 

the signal are abnormal [2]. 

At present, the weak signal in the wireless network is 

mainly detected based on sparse decomposition (SD), wavelet 

entropy (WE), or the fluctuation of frequency amplitude. 

However, the existing methods cannot accurately capture 

weak harmonic signal in actual application environment, 

which is severely disturbed by chaotic background noise. To 

solve the problem, the features of chaotic noise and target 

signal should be further analyzed, and used to design a signal 

detection method with better accuracy and applicability. 

Focusing on the chaotic noise environment, this paper 

optimizes the traditional signal detection method, and puts 

forward an effective way to detect weak harmonic signal in the 

wireless network. 

2. METHOD DESIGN

To detect weak signal, it is necessary to examine the law of 

noise and the features of signal, and then extract and measure 

the weak signal features from the chaotic noise background, 

using a series of signal processing methods [3]. Before signal 

detection, the chaotic signal, network signal, and noise signal 

should be separated from the collected equal interval signal. 

Then, the noise data should be removed from the signal to 

facilitate the detection of the target signals. Finally, the weak 

harmonic signal can be detected accurately based on the 

chaotic oscillator and periodic features of the chaotic signal.  

2.1 Real-time signal acquisition and processing 

To detect weak harmonic signal in the wireless network, the 

first step is to acquire the signal transmitted in the network at 

different intervals. The input signal of the wireless network 

can be described as: 

( ) ( )0sin 2s k A fk = + (1) 

where, A, f, and φ0 are the amplitude, frequency, and original 

phase of the input signal, respectively [4]. Then, the sampling 

interval of wireless network signal can be calculated by: 
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where, N is the conversion coefficient of wireless network 

signal.  

Let 1/Ts be the acquisition rate of wireless network signal. 

Then, the collected weak signal can be expressed as a time 

sequence: 
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where, y is the number of signal samples. Combining formulas 

(1) and (3), the collected weak signal can be depicted as: 
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where, fφ is the frequency of the collected weak signal. Then, 

the initial modal components of the collected signal can be 

separated by:  
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where, cj(t) is the j-th modal component separated from the 

collected signal; rn(t) is the residual signal after the n-th 

separation [5]. 

 

2.2 Separation of chaotic noise signal  

 

The collected weak signal contains some chaotic noise 

signal, for the wireless network is disturbed by chaotic noise. 

The chaotic noise signal will dampen the detection accuracy 

of weak harmonic signal [6]. Therefore, the chaotic noise 

signal should be separated from the collected signal, and 

eliminated based on the chaotic features. 

 

2.2.1 Feature analysis of chaotic oscillator 

Suppose f(x) features continuous self-mapping in the closed 

interval [a, b]. Then, a noise is a chaotic noise, if it satisfies 

the following two conditions: (1) Periodic points exist in f(x); 

(2) There exists an uncountable subset 𝑆 ∈ 𝐼 that satisfies: 

 

lim sup ( ) ( ) 0

lim inf ( ) ( ) 0

lim

, & ,

, ,

, inf ( ) ( ) 0

n n

n

n n

n

n n

n

x y S x y

x y S

x S

f x f y

f x f y

f x f y

→

→

→

− 

− =

− =

  


 

 


 
(6) 

 

where, sup(⋅) and inf(⋅) are the upper and lower bounds, 

respectively; fn(⋅) is the n-th iteration of f. The noise content 

of the collected signal can be measured by signal-to-noise ratio 

(SNR) and noise level. The modal components of the collected 

signal can be expressed as a time sequence: 

( ) ( ) ( )s t x t n t= +  (7) 

 

where, x(t) and n(t) are pure time sequence and additive noise, 

respectively. Then, the noise level of a modal component can 

be computed by: 

 

( )( )
( )( )l

n t
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where, σ(⋅) is the variance of the time sequence. The trajectory 

of chaotic signal varies with the noise disturbances [7]. Taking 

white noise for example, the features of the wireless network 

signal with white noise are compared in Figure 1 below. 

 

 
 

Figure 1. The features of the wireless network signals with 

white noise 

 

As shown in Figure 1, the chaotic oscillator is immune to 

noise: the changing noise intensity merely affected the 

trajectory in the phase diagram, and had little to do with the 

state of the chaotic signal. 

 

2.2.2 Feature extraction of chaotic noise 

Based on the results of feature analysis and the properties of 

chaotic oscillator, the features of chaotic noise can be 

extracted [8], including Lyapunov exponent, correlation 

dimension, and Kolmogorov entropy. Among them, the 

correlation dimension can be calculated by: 

 

( ) l

l
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where, η, b and r are three constant terms. Then, x, y and z were 

initialized as 1, 0, and 0.1. Substituting the chaotic noise points 

in the time sequence of chaotic signal into formula (9), the 

correlation dimension of chaotic noise can be obtained. The 

values of other features can be obtained in a similar manner. 

 

2.2.3 Suppression of noise signal 

The extracted features of chaotic noise were utilized to 

determine the minimum embedding dimension of the time 
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sequence for wireless network signal, and to differentiate 

between deterministic and stochastic time sequences. In this 

way, the chaotic noise can be separated from the collected 

signal. In addition, the noise in the wireless network signal was 

suppressed by the noise cancellation device in Figure 2, where 

the inputs are the collected signal and the predicted signal after 

noise suppression; eφ(n) is the error sequence in noise 

cancellation. 

 

Channel I

ESN
+

s'φ(n+1)

Output

Error of 

Channel I

Target 

signal

+

- ( )e n

( 1)S n +

( )S n

 
 

Figure 2. Structure of the noise cancellation device 

 

2.3 Calculation of effective values of harmonic components 

 

Let g(t) and g(n) be the weak signal of the wireless network 

after noise suppression and its corresponding digital signal, 

respectively. Then, the following can be derived by weighting 

the wavelet basis function: 
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where, 𝑑𝑗
𝑖(𝑘) is the coefficient of the scale function. Then, the 

root mean square (RMS) of the wireless network signal can be 

expressed as: 
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where, 𝑉𝑗
𝑖  is the effective value of harmonic components in 

different frequency bands:  
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Then, the effective value of harmonic components in the 

wireless network signal can be obtained by reverse deduction. 

 

2.4 Solution of harmonic frequency 

 

Based on the effective values of harmonic components in 

the wireless network signal, the harmonic matrix was 

constructed, and the eigenvalue of covariance matrix R was 

computed. Then, the likelihood function can be solved by 

substituting the eigenvalue into the following formula: 
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where, M is the number of array elements of the signal; n is 

the number of harmonic components; λi is the eigenvalue of 

covariance matrix R of signal X. Next, the function expressed 

by formula (13) was represented by a curve. The number of 

inflection points on the curve is the number of harmonic 

signals in the wireless network signal [9]. Then, the 

eigenvalues of covariance matrices were sorted in descending 

order, creating the eigenvector matrix. On this basis, the 

frequency of each harmonic component can be estimated by: 
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where, λk is the composite eigenvalue of the eigenvector 

matrix. 

 

2.5 Determination of the amplitude and frequency for 

weak signal detection  

 

Under the background of chaotic noise, the frequency of 

weak periodic signal can be expressed as: 

 

( )
( ) ( )

k

k t m t
r t

f

+
=  (15) 

 

where, k(t) is the weak sine harmonic signal of the wireless 

network; m(t) is the white noise signal with an SNR<-20dB. 

To determine the detection frequency, the frequency of weak 

sine harmonic signal should be estimated first [10]. 

Considering the structural variation in chaotic coefficient, the 

SNR curve with synchronization error can be obtained (Figure 

3). 

 

 
 

Figure 3. The SNR-frequency curve 

 

As shown in Figure 3, the SNR exhibited a decline with the 

growing frequency of the input signal [11-15]. Considering the 

synchronization error of the chaotic noise background, the 

detection threshold for weak harmonic signal was set to -15dB. 

Under the current parameters, the effective interval of 

detection frequency was obtained as [0Hz, 200Hz]. 

The critical threshold for chaotic signal and detection 

amplitude of sine signal were derived from the effective values 

of harmonic components. To obtain an accurate critical 

threshold, the position of the threshold was approximated 

based on the amplitude bifurcation [16-20].  

Let P1 and P2 correspond to the chaotic state and periodic 

state of the noise signal, respectively. The threshold could fall 
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on the halfway between P1 and P2, i.e. x=
𝑃1+𝑃2

2
. Since 

𝑃1+𝑃2

2
 and 

𝑃1+𝑃2

2
+ 0.1 both correspond to the chaotic state and 

𝑃1+𝑃2

2
+

0.2corresponds to the periodic state, the interval of f can be 

determined as [
𝑃1+𝑃2

2
+ 0.1,

𝑃1+𝑃2

2
+ 0.2]. In this interval, the 

compensation was increased with a step of 0.001, such as to 

find the transition point from the chaotic state to the periodic 

state. This point was taken as the critical threshold for signal 

detection. 

At the critical threshold, the target wireless network signal 

was mixed with noise, and used to perturb the chaotic 

oscillator. By observing the variation of phase trajectory, all 

the sine signals of the weak harmonics were identified from 

the mixed signal. After that, the amplitude position was 

adjusted again and the noisy signal was controlled at the 

critical threshold of chaotic state, creating a new threshold. 

Therefore, the sine signal amplitude of the input mixed signal 

can be computed by: 

 

( ) 1 2( )A r t  =  −  (16) 

 

where, γ1 and γ2 are the initial critical threshold and the new 

threshold, respectively. 

 

2.6 Detection of weak harmonic signal 

 

According to the effective values of harmonic components, 

detection amplitude and detection frequency, the collected 

signal that contains chaotic noise and the determined detection 

signal were inputted at the same time. Then, we have:  
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(17) 

 

where, acos(ωt+θ) is the weak harmonic signal of the wireless 

network; a is the amplitude of the weak harmonic signal. If the 

weak sine signal and the chaotic noise signal are of the same 

period, frequency, and phase, the chaotic signal will be 

sensitive to the weak sine signal, while immune to the noise. 

Hence, the phase trajectory of the resulting chaotic signal will 

quickly change from chaotic state to periodic state. Once the 

change takes place, the weak harmonic signal can be detected 

successfully [21, 22]. 

If the chaotic noise in the background is uniform, the 

detection amplitude and frequency for nonuniform chaotic 

noise background can be adjusted before detecting the weak 

harmonic signal in the wireless network. In addition, the 

transient signal of the weak harmonic signal can be described 

by: 
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where, H0 and H1 are two states of wireless network. The two 

states have different transient signals. Therefore, the harmonic 

signals detected at the two states must be different. Similarly, 

the periodic signal of weak harmonic signal can be detected, 

according to the chaotic moving features of the harmonic 

signal in the wireless network. 

 

 

3. EXPERIMENTAL VERIFICATION 

 

3.1 Experimental purpose 

 

Our experiments attempt to verify the effects of the 

proposed method in detecting actual weak harmonic signal of 

the wireless network, demonstrate the superiority of our 

method over existing methods in detection accuracy, and 

indirectly prove the application value of our method in actual 

wireless networks. 

 

3.2 Experimental environment 

 

There are roughly two parts of the experimental 

environment: the implementation environment of our method, 

and the operation environment of our method. The former 

must have wireless network signals with harmonic 

components. The topology of the wireless network constructed 

for experiments is displayed in Figure 4. 

 

External 

network

WLAN access network

Access network

WiMAX access 

network

Server

SGSN

GGSN

External 

network

Terminal 

device

Server

 
 

Figure 4. Topology of wireless network 

 

According to the topology in Figure 4, the servers and 

terminal devices were installed in the experimental 

environment, and wirelessly interconnected via a router. To 

collect different wireless network signals, the terminal devices 

in the environment are of different models and forms. 

The implementation environment is responsible for 

converting our method into a code that can be directly read and 

run by computer, using a lossless compression and encoding 

method, and import the code into any terminal device in the 

wireless network. The device inputted with the code was 

defined as the main testing computer.  

In addition to the encoding program, the designed core 

cannot function normally without a suitable hardware 

environment. Therefore, the internal wiring of the main testing 

computer was modified into the weak harmonic signal 

detection circuit (Figure 5). 
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Figure 5. Weak harmonic signal detection circuit 

 

Our method aims to improve the detection accuracy of weak 

harmonic signal in wireless network under different noise 

disturbances. Hence, Gaussian white noises of varied 

intensities were introduced to the basic experimental 

environment. All experimental data were processed on 

MATLAB. 

 

3.2 Performance metric 

 

The signal detection performance was measured by the 

BERs under different SNRs. The BER is the ratio of the output 

signal to the preset signal. During the experiments, the 

detection results were recorded, and divided by the present 

data to obtain the BERs of our method. 

 

3.3 Input signal 

 

Under the experimental environment, the signal output of 

the wireless network was controlled, and the parameters of the 

input signal were configured as in Table 1, where A is the 

signal amplitude; B is a random parameter; φ is the phase value. 

 

Table 1. Parameters of input signal 

 

 A B φ 

S1 3×10-4 1×10-3 0 

S2 3×10-1 1 0 

S3 3×10-1 0 0 

S4 3×10-4 6×10-2 0 

S5 3×10-4 8×10-2 0 

 

The actual input signal was changed depending on the noise 

factor. The initial waveform and phase diagram of signal S1 are 

displayed in Figure 6 below. 

 

3.4 Experimental procedure 

 

The prepared initial signals were imported to the main 

testing computer, and processed by our method to obtain the 

detection results. The SD-based method and WE-based 

method were selected as the contrastive methods. The SD-

based method searches for the signals with the same 

eigenvalues as the target harmonic signal, extracts all these 

signals, and output them as the detection result. Drawing on 

the result of the SD-based method, the WE-based method 

detects weak harmonic signal in the light of its coupling 

features. The two contrastive methods were introduced to the 

experimental environment in the same manner as our method. 

 

3.5 Comparison of detection results 

 

The BERs of our method, SD-based method and WE-based 

method were computed based on their detection results, and 

compared in Figure 7 below. 
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(b) Phase diagram 

 

Figure 6. Initial waveform and phase diagram of signal S1 

 

SD-based 

method

Our method

WE-based 

method

B
E

R
/%

 
 

Figure 7. The BERs of the three methods 
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As shown in Figure 7, with the growing number of 

detections and SNR, the BERs of all three methods were 

declining. When the SNR was the same, our method achieved 

the lowest BER, reflecting its superiority than the two 

contrastive methods in weak harmonic signal detection. The 

superiority comes from the extraction and suppression of noise 

signal as per the chaotic features of signal. The noise 

suppression mitigates the effects of noise signal on the 

detection accuracy of weak harmonic signal, making our 

method more accurate and reliable. 

To sum up, our method can effectively detect the weak 

harmonic signals in the wireless network under different 

conditions. Compared with the existing methods, our approach 

has significant advantages in terms of BER. The proposed 

method enjoys great application value, and provides a 

guarantee for the security of wireless network.  

 

 

4. CONCLUSIONS 
 

The high BER is a common problem among the existing 

detection methods for weak harmonic signal. To overcome the 

problem, this paper proposes a novel method to detect weak 

harmonic signal in wireless network under chaotic noise. The 

theoretical basis of our method lies in the discrimination 

between chaos and noise. Drawing on the features of harmonic 

signal and chaos under noise, the harmonic signal was detected 

in the wireless network, and used to adjust the operation 

parameters of the network in time, making the network 

operation safe and stable. Experimental results show that our 

method outputted reliable results at different SNRs, and 

achieved a much lower BER than the existing methods. Of 

course, the experimental results have certain limitations, 

because the input signal was only disturbed by Gaussian white 

noise. The future research will improve and verify the effect 

of our method in the presence of colored noise and other noises. 
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