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 This paper aims to develop an efficient, robust and reliable infrared detection method for 

small targets. Firstly, the data structure of infrared images with small targets was analyzed 

in details. Then, the infrared small target detection was converted into the decomposition of 

the robust principal component analysis (RPCA), and the objective function was constructed 

with the idea of variation. Next, a regularization term called four-direction overlapping 

group sparse total variation (OGSTV) was created, and a TV4OGS-RPCA model was 

designed for infrared small target detection. Experimental results prove that our model can 

effectively separate small targets from the background, and accurately pinpoint the small 

targets in infrared images.  
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1. INTRODUCTION 

 

Capable of enhancing human vision, infrared technology 

has been widely applied to imaging and detection tasks in both 

civil and military fields, such as infrared remote sensing, 

infrared monitoring, medical image detection, faults detection, 

to name but a few [1-3]. In computer vision, infrared target 

detection has long been a research hotspot. However, it is a 

challenging task to develop an efficient, robust, and reliable 

infrared target detection method. 

At present, infrared detection methods for small targets are 

based on either single-frame images (SFIs) or multi-frame 

images (MFIs) [4]. When the background is stationary, the 

MFIs-based methods boast better detection effect than the 

SFIs-based methods, because they fully utilize the space-time 

information in the image sequence. In actual scenes, however, 

the imaging background of the detection system often changes 

rapidly, due to the fast motions of the targets or the rapid 

relative motion between the targets and the imager. In this case, 

the MFIs-based methods, which assume that the background 

is static, cannot work properly.  

As a result, the SFIs-based methods are the mainstream of 

infrared small target detection, laying the basis for the 

sequence-based image method. Traditionally, the SFIs-based 

detection methods are grounded on spatial filters, namely, 

two-dimensional least mean square (TDLMS) filter [5], Top-

hat filter [6], and maximum mean (max-mean) and maximum 

medium (max-median) filters [7, 8], as well as their improved 

versions. This type of methods relies on background 

estimation to suppress background clutter and enhance small 

targets. But their performance is poor if the background in the 

scene in not uniform. 

Different from spatial filter-based methods, transform 

domain-based methods process high and low frequencies 

separately in the transform domain, separate high- and low-

frequency components that respectively correspond to the 

target and background, and detect the targets through inverse 

transform. The common transform domain-based methods are 

wavelet transform [9], Contourlet transform [10], and non-

subsampling Contourlet transform (NSCT) [11]. Compared 

with spatial filter-based methods, this type of methods faces a 

high complexity and a huge computing load, during the 

conversion of the spatial domain and the transform domain. 

Human visual saliency (HVS) detection is another type of 

methods to detect small targets. In HVS detection, each small 

target is highlighted in the saliency map, which is plotted 

based on the local contrast of an area and its neighborhood. 

The main bases of HVS detection methods are Laplacian of 

Gaussian (LoG) operator [12, 13], Difference of Gaussian 

(DoG) operator [14], and local contrast measurement (LCM) 

[15, 16]. The defect of HVS detection methods lies in the 

limitation of the saliency assumption. In the real world, some 

small targets are insignificant, and overshadowed by 

interfering sources of radiation, making them difficult to be 

identified by HVS detection methods.  

In an actual infrared detection system, each small target 

only has a limited imaging area, owing to the long imagining 

distance. The target exists as a light spot in the entire image, 

lacking structural features like edge, texture or corner. The 

only distinctive feature of such a small target is grayscale, 

whose intensity has little to do with background radiation. In 

typical infrared scenes, the image background is usually 

nonuniform and unsmooth, featuring a low signal-to-noise 

ratio (SNR), serious background clutter, and weak texture 

levels. This is attributable to the limitations of imaging 

techniques. In military scenes, the infrared backgrounds are 

about the sky, the ground or the sea. All these backgrounds are 

complicated by the dynamic changes: random clouds in the 

sky, terrain relief on the ground, and waves and illumination 

on the sea. Since these changes tend to be slow and regular, 

the pixels in the infrared backgrounds must have strong 

correlations. 
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In recent years, the data structure of the image has been 

considered in the infrared detection of small targets [17, 18]. 

Through sparse representation, Wan et al. [19] established a 

dictionary about the correspondence between background and 

target components, and reconstructed the component matrix to 

pinpoint the targets. Gao et al. [20] proposed an infrared patch 

image (IPI) model, which converts infrared small target 

detection into low-rank sparse decomposition, that is, robust 

principal component analysis (RPCA) [21]. Since then, the IPI 

model has been repeatedly improved by adding new 

constraints [22-24]. The improved IPI models could accurately 

depict the low-rank and sparse features of background images 

and target images. All the above methods differentiate 

between targets and background, and regard noise as part of 

the background. However, background noise is very similar to 

small targets. In complex and changeable scenes, it is easy to 

misinterpret sparse background components as small targets, 

causing false alarms that negatively affect subsequent 

processing. 

Considering the features of infrared imaging, it is difficult 

to detect small targets in infrared images based on a single 

feature (e.g. grayscale) alone. Therefore, multiple features are 

integrated in many emerging methods. Then, the detection 

effect depends on the types and extraction methods of features. 

This paper attempts to extract stable features from infrared 

images, and detect small targets based on image data structure. 

To utilize low-rank sparse model, the RPCA model was 

introduced to modify the constraints of the small target matrix. 

In addition, a regularization term called the four-direction 

overlapping group sparse total variation [25] (OGSTV) was 

added to highlight the sparse features of real targets in the 

noisy and sparse background. 

The remainder of this paper is organized as follows: Section 

2 introduces the data structure of infrared images and the basic 

framework of RPCA, and converts infrared small target 

detection into a RPCA-based model; Section 3 improves the 

low-rank and sparse features of the background and the small 

targets; Section 4 designs an infrared small target detection 

model based on four-direction OGSTV; Section 5 verifies the 

performance of the designed model through experiments; 

Section 6 puts forward the conclusions and looks forward to 

the future research. 

 

 

2. RPCA-BASED MODELLING OF INFRARED IMAGE 

 

2.1 RPCA 

 

The classic principal component analysis (PCA) assumes 

that the noise or singular value is weak and subject to Gaussian 

distribution. Once the assumption becomes invalid, the matrix 

correlations decomposed by the PCA will not hold. To solve 

the problem, the RPCA [21] was developed to identify the best 

features of high-dimensional data in low-dimensional space.  

Without considering the noise intensity, the RPCA only 

hypothesizes that the noise or singular value is sparse. That is 

why the RPCA is much more robust than the classic PCA. The 

RPCA algorithm can fully consider the relevant features in the 

original data as well as the noise or singular value. The basic 

idea of the RPCA is detailed as follows: 

The input of an mn order signal matrix M can be 

decomposed into three parts: 

 

= + +M L S N  (1) 

where, L is a low-rank data matrix with strong linear 

correlations, containing many repeated rows or columns; S is 

a sparse data matrix with most elements being zeros; N is a 

random noise matrix. The size of L and S can be arbitrary. 

If the spatial information of L and S is unknown, the RPCA 

can be employed to reconstruct L and detect S from M. In this 

case, the solution to the RPCA is to find the low-rank matrix 

and the sparse matrix. Then, the variation idea was introduced 

to transform the solving process into an optimization problem, 

that is, minimizing the objective function: 

 

0,
min ( )rank +

L S
L S

,

21
. . 

2 F
s t − − M L S

 
(2) 

 

where, rank(•) is the rank of the matrix; ‖•‖0 is the L0 norm 

reflecting the number of nonzero elements in the matrix; ‖•‖𝐹 

is the Frobenius norm ‖𝑿‖𝐹 = ∑ ∑ (|𝑎𝑖,𝑗|
2
)

1

2𝑛
𝑗=1

𝑚
𝑖=1 that 

constrains the noise; ε is a very small noise threshold; λ is the 

weight factor that adjusts the proportions of L and S in the 

objective function.  

By incorporating the constraints to the objective function, 

the optimization problem can be rewritten as: 

 

2

0,

1
min rank( )

2 F
 − − + +

L S
M L S L S

 
(3) 

 

where, α and β are weight coefficients reflecting the 

contributions of L and S to the objective function, respectively. 

By changing the values of α and β, it is possible to adjust the 

rank of L and sparsity of S. 

Since (3) is a non-convex function, the constraints can be 

relaxed and replaced. Here, the calculation of the matrix rank 

is replaced by the nuclear norm ‖•‖∗ , and the L0 norm is 

replaced by the L1 norm. In this way, the optimization problem 

is relaxed into an easy-to-solve convex programming problem: 
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* 1,

1
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2 F
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(4) 

 

The nuclear norm and L1 norm can be respectively defined 

as: 
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(5) 

 

where, r is the rank of matrix X; 𝜎𝑖 , 𝑖 = 1,2, … , 𝑟  are the 

nonzero singular values in X. According to its definition, the 

nuclear norm is equivalent to the L1 norm of the singular 

values in X: 

 

1 2* 1
( ) , ( ) [ , , , ]T

r    = =X X X  (6) 

 

Hence, the model in formula (4) can be regarded as a typical 

variation problem. The L and S can be obtained by finding the 

optimal solution.  

The robustness of the RPCA is also demonstrated by its 

ability to recover the L and S in the following scenarios: the 

rank of L increases with the dimension of M; the input matrix 

is polluted by a noise proportional to the size of the data, i.e. 

M is positively correlated with S [21]. 
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2.2 Infrared image model 

 

For an infrared image with small targets, each part has 

independent statistical features. Thus, the grayscale of pixel 

(x,y) in the original image can be expressed as: 

 

( , ) ( , ) ( , ) ( , )I T B Nf x y f x y f x y f x y= + +
 

(7) 

 

where, fT(x,y) and fB(x,y) are the grayscales of a target pixel 

and a background pixel, respectively; fN(x,y) is a random noise.  

The key of infrared small target detection is to find effective 

features and differentiate between target pixels, background 

pixels and random noise. In special scenes, infrared 

backgrounds bear high resemblances, such as sky background, 

desert background and sea background. The pixels in these 

backgrounds are strongly correlated. Thus, such a background 

can be regarded as a low-rank signal. Meanwhile, a small 

target, which occupies a few pixels, can be considered as a 

singular value (sparse signal) in the background signal. By 

regularizing the low-rank and sparse data, the RPCA can be 

employed to separate the background and the target based on 

data structure. Of course, the noise constraint must also be 

considered, because the background data and target data are 

stochastically disturbed by the random changes of clouds and 

illumination in the complex background. 

Based on the RPCA, an infrared image with uniform 

background and sparse small targets can be modelled as 

M=L+S+N, where M is fI(x,y); L is the background image 

fB(x,y); S is the target image fT(x,y); N is the random noise. 

Considering the low rank of the background and the sparsity 

of small targets, the above model can be rewritten as formula 

(4), according to the RPCA theory. Under the constraint of the 

regularization term, the infrared small target detection model 

is a variation model, which can be solved as a RPCA model 

with specific constraints. The basic solution is to build a 

variation model, and reversely derive the target components 

from the degraded input infrared image. 

 

 

3. IMPROVEMENT OF RPCA-BASED INFRARED 

IMAGE MODEL 

 

3.1 Background reconstruction 

 

The model (4) assumes that the row or column vectors in 

the background matrix have strong correlations, that is, the 

background is uniform and slowly changing. However, the 

assumption does not hold in many actual scenes. The 

background of infrared images often contains distinctive 

texture features, such as clouds in the sky, building contours 

against the ground, and waves on the sea. These features 

directly determine the type of background. With an invalid 

assumption, the model (4) solution will carry a large error. For 

example, the texture features in the background will be blurry, 

and local details like corners will be mistaken as sparse small 

targets, increasing the false alarm rate. 

Some scholars [20, 26, 27] have attempted to increase the 

low-rank of the infrared background matrix, and reconstruct 

the nonuniform and unsmooth backgrounds in SFIs and MFIs. 

By these methods, the image background is reconstructed 

based on the correlations between background image blocks. 

In this way, the edges or clutters in the background are viewed 

as part of the background, rather than singular values of targets. 

If the original image is an SFI, the low rank will disappear 

should the background contain some texture features. The 

blocks partitioned from the infrared background will have 

similar information. Then, a new low-rank matrix can be 

established by rearranging these blocks, and used to detect 

small targets through RPCA decomposition. The above 

process can be detailed as follows: Firstly, the original image 

matrix is divided into small overlapping or nonoverlapping 

blocks. The grayscales of pixels in each block constitute a 

column vector pi. Next, the column vectors of all blocks are 

cascaded into a new matrix of the image: 𝑴 =
{𝑝1, 𝑝2, … , 𝑝𝑛}ℝ𝑚×𝑛 , where pi is the column vector of a 

block; m is the number of pixels in a block; n is the number 

blocks. Then, the new matrix is decomposed by the RPCA, 

producing the optimal solution of model (4) [20]. 

If the original image is an MFI, the backgrounds of adjacent 

frames are almost identical and strongly correlated, due to the 

high frame frequency. The grayscales of pixels in each frame 

constitute a column vector. Then, the n frames become n 

column vectors, forming a new matrix 𝑴 = {𝐼1, … , 𝐼𝑛} ∈
ℝ𝑚×𝑛, where m is the number of pixels in a frame; n is the 

number of frames [27]. In this way, the infrared small target 

detection of the MFI is incorporated into the RPCA framework, 

and turned into a variation optimization problem. 

 

3.2 Constraint modification 

 

When a reconstructed SFI is subject to RPCA-based low-

rank and sparse decomposition, the L0 norm about matrix 

sparsity is replaced with the L1 norm, which the sum of 

nonzero elements of the matrix. The locally linear L1 norm 

makes the grayscale of each pixel converge to the mean 

grayscale in the local area. The convergence undermines the 

structure of target pixels in the neighborhood, failing to reflect 

the spatial aggregation of the target pixels.  

To solve the problem, the small target detection model (4) 

was improved by changing the L1 norm of the previously 

constrained sparse terms into L21 norm: 

 

2

* 21

1
min

2 F
 + +

L,S
M - L - S L S

 
(8) 

 

where, α and β are weight coefficients that balance low-rank 

item with sparse item; ‖𝑺‖21 = ∑ √∑ (𝑺𝑖,𝑗)
2𝑚

𝑖=1
𝑛
𝑗=1 =

∑ ‖𝑺𝑗‖2

𝑛
𝑗  is the L21 norm of the matrix, with S(i,j) being the 

grayscale of pixel (i,j), and Sj being the j-th column of S.  

The L21 norm is defined as the sum of the L2 norms of all 

column vectors of the matrix. In sparse regularization, using 

L21 norm is to make the L2 norm of most column vectors in S 

as small as possible, that is, to maximize the number of zero 

elements in S. This operation keeps the data sparse and ensures 

the sparsity of column vectors. The non-zero column vectors 

are image blocks with candidate small targets. The 

replacement makes the model more in line with the actual 

situation of image blocks, facilitating the detection of small 

targets [26]. 

 

 

4. INFRARED SMALL TARGET DETECTION MODEL 

BASED ON RPCA AND FOUR-DIRECTION OGSTV 

 

In the improved model (8), the minimum of random noise 

is constrained by the Frobenius norm, which has a limited 

suppression ability. Similar to small targets, the random noise 
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may be mistaken as a sparse component. To better constrain 

the noise, a regularization term called four-direction OGSTV 

was proposed to restrain the target matrix in the model. 

 

4.1 Four-direction TV 

 

In the traditional TV model, the gradient of the pixels only 

reflects the changes in the horizontal and vertical directions. 

Therefore, the gradient constraint only suppresses the noise in 

these two directions. Here, two more directions, namely, 45° 

and 135° relative to pixels, are added to form a four-direction 

gradient [28, 29]. The gradient operators in the two additional 

directions can be respectively expressed as: 𝑲45∘ = [
0 −1
1 0

] 

and 𝑲135∘ = [
−1 0
0 1

].  

Then, the L1 norm was adopted to regularize the pixel 

gradient in horizontal, vertical, 45° and 135° directions. In this 

way, the noise can be suppressed in all four directions, 

improving the quality of image restoration. The four-direction 

TV regularization term can be written as: 

 

𝑅𝑄𝑇𝑉(𝑼0) = ‖𝑲ℎ ∗ 𝑼0‖1 + ‖𝑲𝑣 ∗ 𝑼0‖1 

+‖𝜥45∘ ∗ 𝑼0‖1 + ‖𝑲135∘ ∗ 𝑼0‖1 
(9) 

 

4.2 OGSTV 

 

To control target sparsity, this paper designs a structured 

regular constraint called OGSTV [30, 31]. Apart from the 

gradient of image pixels, this regularization term also 

regularizes the neighborhood difference at each pixel, pushing 

up the local sparsity of the image [32]. By overlapping 

gradients, the block difference can be increased, and the 

probability of staircase effect can be reduced. 

The OGSTV regularization term 𝑅𝑂𝐺𝑆𝑇𝑉(𝑼0)  can be 

defined as [30]: 

 

𝑅𝑂𝐺𝑆𝑇𝑉(𝑼0) = 𝜑(𝑲ℎ ∗ 𝑼0) + 𝜑(𝑲𝑣 ∗ 𝑼0) (10) 

 

Then, 𝜑(𝑨) = ∑ ∑ ‖𝑨̃𝑖,𝑗,𝑘,𝑘‖2𝑗=1𝑖=1  was adopted to solve 

the L2 norm of the combined gradient, where the 𝑨̃𝑖,𝑗,𝑘,𝑘 can 

be defined as: 

 

𝑨̃𝑖,𝑗,𝑘,𝑘

=

[
 
 
 

𝑨𝑖−𝑘𝑙,𝑗−𝑘𝑙
𝑨𝑖−𝑘𝑙,𝑗−𝑘𝑙+1 ⋯ 𝑨𝑖−𝑘𝑙,𝑗+𝑘𝑟

𝑨𝑖−𝑘𝑙+1,𝑗−𝑘𝑙
𝑨𝑖−𝑘𝑙+1,𝑗−𝑘𝑙+1 ⋯ 𝑨𝑖−𝑘𝑙+1,𝑗+𝑘𝑟

⋮ ⋮ ⋱ ⋮
𝑨𝑖+𝑘𝑟,𝑗−𝑘𝑙

𝑨𝑖+𝑘𝑟,𝑗−𝑘𝑙+1 ⋯ 𝑨𝑖+𝑘𝑟 ,𝑗+𝑘𝑟 ]
 
 
 

∈ ℝ𝑘×𝑘 

(11) 

where, 𝑘𝑙 = ⌊
𝑘

2
− 1⌋ ; 𝑘𝑟 = ⌊

𝑘

2
⌋ ; ⌊ ⌋  is the largest integer 

smaller than or equal to the value in parentheses; 𝑨̃𝑖,𝑗,𝑘,𝑘 is the 

local gradient of an image gradient matrix; 𝜑(𝑨) =
∑ ∑ ‖𝑨̃𝑖,𝑗,𝑘,𝑘‖

2𝑗=1𝑖=1  is the regularization of combined local 

gradient matrix. 

The OGSTV considers the pixel gradient in different blocks, 

and constrains it with the L2 norm. Through OGSTV 

regularization, the image blocks become sparser and smoother, 

making it easier to distinguish the random noise from edges. 

This obviously promotes the robustness of the smoothing 

algorithm. 

 

4.3 Model construction 

 

To improve the accuracy of infrared small target detection, 

this paper designs a new regularization constraint called the 

four-direction OGSTV: 

 

4 0 0

0 0 045 1351 1

( ) ( )

( )

OGS h

v

TV 



= 

+  +  + 

U K U

K U K U K U
 (12) 

 

The four-direction OGSTV was combined with the RPCA-

based model into: 

 

2

421

1
min

2

TV ( )

F

OGS



 


+

+ +

L,S
M - L - S L

S S

 (13) 

 

where, α, β and γ are nonnegative weights (regularization 

factors) of background, target, and noise, respectively; the first 

term uses the Frobenius norm to control the noise on a 

sufficiently small level, i.e. suppress random noise; the second 

term minimizes the nuclear norm to output the background 

with the highest correlation; the third term minimizes the L21 

norm of the target matrix to differentiate between small targets 

and non-target singular values, and to obtain an accurate 

sparse small target matrix with aggregation features; the last 

term constrains the target matrix with four-direction OGSTV. 

The combined model enhances the sparsity of the target 

matrix, and distinguishes the random noise from local features 

accurately, in the light of the gradient directions of each pixel 

and the gradients in its neighborhood. In this way, the 

background will not be over-blurred, and the background noise 

will be suppressed. 

 
 

Figure 1. The workflow of TV4OGS-RPCA model 
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Based on the input image, the objective function (13) can 

output the low-rank matrix and sparse matrix of the 

reconstructed image. The two matrices represent the 

background image and the small target image, respectively. 

However, the combined model stops at the decomposition of 

the reconstructed image. To separate the background and the 

targets, the blocks should be further restored to the original 

position, realizing the accurate detection of small targets. After 

adding block restoration to the combined model, our infrared 

small target detection model was completed based on four-

direction OGSTV and RPCA, which was denoted as the 

TV4OGS-RPCA model. (Figure 1). 

 

4.4 Solving algorithm 

 

To solve our model, formula (13) was firstly converted into 

an augmented Lagrangian function:  

 

𝐿(𝑺, 𝑳, 𝒀) = 𝛼‖𝑳‖∗ + 𝛽‖𝑺‖21 + 𝛾 𝑇𝑉4𝑂𝐺𝑆( 𝑺)
+ ⟨𝒀,𝑴 − 𝑺 − 𝑳⟩

+
𝜇

2
‖𝑴 − 𝑺 − 𝑳‖𝐹

2  

(14) 

 

where, 𝒀 ∈ ℝ𝑚×𝑛  is the Lagrange multiplier; ⟨⋅⟩ is the inner 

product of the matrices. 

Then, the classic solving algorithm, alternating direction 

multiplier method (ADMM) was introduced to solve our 

model. The ADMM excels in solving convex optimization 

problems with separable structure. The basic idea is to update 

image blocks alternatively, rather than update the entire image 

all at once. In other words, matrices L and S plus multiplier Y 

should be minimized, and updated right after the solution [26]: 

 

1 arg min ( , , , )k k kL + =
S

S S L Y
 

(15a) 

 

1 1arg min ( , , , )k k k kL + +=
L

L S L Y
 

(15b) 

 

1 1 1( )k k k k+ + += + − −Y Y M S L
 

(15c) 

 

Formula (15a) is equivalent to: 

 

𝑚𝑖𝑛
𝑺

{𝜆‖𝑺‖21 + 𝛾 𝑇𝑉4𝑂𝐺𝑆( 𝑺)

+
𝜇

2
‖
1

𝜇
𝒀𝑘 + 𝑴 − 𝑳𝑘 − 𝑺‖

𝐹

2

} 

(16) 

 

Then, the error of sparse matrix S can be minimized based 

on Lemma 1. 

Lemma 1. Let 𝑸 ∈ ℝ𝑚×𝑛 and Qj be the j-th column of the 

matrix. If 𝑸 =
1

𝜇
𝒀𝑘 + 𝑴 − 𝑳𝑘 , then formula (16) can be 

rewritten as: 

 

𝑚𝑖𝑛
𝒔

{𝜆‖𝑺‖21 + 𝛾 𝑇𝑉4𝑂𝐺𝑆( 𝑺) + (
𝜇

2
) ‖𝑺 − 𝑸‖𝐹

2} (17) 

 

The optimal solution of the above formula is S*. Then, the 

j-th column of S* can be expressed as: 

 

[𝑺∗]𝑗 = 𝑸𝑗 𝑚𝑎𝑥(
1 − 𝜆𝜇−1

‖𝑸𝑗‖2
, 0

) (18) 

The subproblem (15b) can be rewritten as: 
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1
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F
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
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L
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(19) 

 

Formula (19) can be solved with a soft threshold operator, 

𝑳𝑘+1 = 𝑼𝑺𝜏[𝜮]𝑽𝑡 . Then, singular value decomposition is 

performed for the terms corresponding to the nuclear norm: 

(𝑼, 𝜮, 𝑽) = 𝑆𝑉𝐷 (
1

𝜇
𝒀𝑘 + 𝑴 − 𝑺𝑘+1) . The soft threshold 

operator can be defined as 𝑺𝜏(𝜮) = 𝑑𝑖𝑎𝑔{(𝜎𝑖 − 𝜏)+}, where 

σi is the i-th singular value; diag is the extraction of diagonal 

elements; 𝑡+ is the positive part of t, i.e. 𝑡+ = 𝑚𝑎𝑥( 𝑡, 0). 

Algorithm 1 illustrates the specific steps of the ADMM-

based solving process. 

 

Algorithm 1. Infrared small target detection based on 

TV4OGS-RPCA model 

Inputs: Reconstruction matrix 𝑴 and weight parameters 𝛼, 

𝛽 and 𝛾 

Outputs: Low-rank background matrix 𝑳 and sparse small 

target matrix 𝑺 

Step 1. Initialization 

Initialize the low rank matrix 𝑳0 , sparse matrix 𝑺0 , and 

Lagrange multiplier 𝒀0: 

𝑘 = 0; 𝑳0 = 𝑴; 𝑺0 = 0 ; 𝒀0 =
𝑠𝑖𝑔𝑛(𝑴)

𝐽
(𝑴) , 𝜇0 > 0 , 𝜌 >

0 

where, 𝐽(𝑫) = 𝑚𝑎𝑥(‖𝑫‖2, ‖𝑫‖∞) is the matrix dual norm. 

Step 2. Find 𝑺𝑘+1 and fix matrix 𝑳𝑘, that is, solve formula 

(15a) for the sparse contraction operator by Lemma 1: 

𝑺𝑘+1 = 𝐶𝑆𝑉𝑇 𝜆

𝜇𝑘

(
1

𝜇𝑘
𝒀𝑘 + 𝑴 − 𝑳𝑘). 

Step 3. Fix matrix 𝑺𝑘+1  and solve matrix 𝑳𝑘+1 , that is, 

solving formula (15b): (𝑼, 𝜮, 𝑽) = 𝑆𝑉𝐷 (
1

𝜇𝑘
𝒀𝑘 + 𝑴 −

𝑺𝑘+1). 

Step 4. Perform soft threshold contraction: 𝑳𝑘+1 =
𝑼𝑺

(
1

𝜇𝑘
)
[𝜮]𝑽𝑇 . 

Step 5. Update multiplier 𝒀𝑘+1 = 𝒀𝑘 + 𝜇𝑘(𝑴 − 𝑳𝑘+1 −
𝑺𝑘+1), 𝜇𝑘+1 = 𝜌𝜇𝑘. 

Step 6. Repeat Steps 2-5 until the convergence condition 

𝑡𝑜𝑙 =
‖𝑴−𝑺𝑘−𝑳𝑘−𝑵𝑘‖

‖𝑴‖𝐹
≤ 10−7 , where 𝑘  is the number of 

iterations, is satisfied, or when the maximum number of 

iterations 𝑚𝑎𝑥 𝐼 𝑡𝑒𝑟 = 500 is reached. 

Step 7. Output the optimal solution: 𝑳𝑘 → 𝑳 ∗ , 𝑺𝑘 → 𝑺 ∗  

 

 

5. EXPERIMENTS AND RESULTS ANALYSIS 

 

5.1 Evaluation metrics 

 

The SNR, also known as signal-to-clutter ratio, is an 

important performance indicator of image processing 

algorithms [33]. In image target detection, the SNR is 

generally defined as:  

 

SNR
T B

B

 



−
=

 
(20) 

 

where, μT is the mean grayscale of the target area; μB and σB 

371



 

are the mean and standard deviation of the grayscales of the 

background neighborhood, i.e. the area containing 𝑑  pixels 

around the target area, respectively. Figure 2 illustrates the 

target area and background neighborhood. For our 

experiments, the SNR was selected as an evaluation metric 

with d=20. 

 

 
 

Figure 2. The target area and background neighborhood 

 

To reflect the performance gain, the SNR gain index was 

also introduced [33]: 

 

SNR

SNR
G

SNR

out

in

=

 
(21) 

 

where, SNRout and SNRin are the SNRs of the input and 

output images, respectively. The ratio between them manifests 

the degree of target enhancement and noise suppression. 

Another evaluation metric adopted in our experiments is the 

background suppression factor (BSF) [33]: 

 

BSF in

out




=

 
(22) 

 

where, σin and σout are the standard deviations of the global 

background of the input and output images, respectively. The 

ratio between them demonstrates the change of standard 

deviation through the processing. 

Moreover, the detection results on multiple targets were 

divided into four categories: the number of true positives (TP), 

the number of false negatives (FN), the number of false 

positives (FP), and the number of true negatives (TN). By this 

classification, the probability of detection (Pd) and false alarm 

rate (Fa) can be respectively defined as: 

 

TP
P TPR=

TP+FN
d =

 
(23) 

 

FP
F FPR

FP+TN
a = =

 
(24) 

With Pd as the vertical axis and Fa as the horizontal axis, the 

receiver operating characteristic (ROC) curve was plotted to 

test the model performance. The ROC curve shows the trend 

of Pd at different Fa values. Different thresholds were set for 

different algorithms. 

 

5.2 Experimental environment 

 

In our model, α, β and γ are the weight factors that balance 

low-rank item, sparse item, and TV item. For our experiments, 

the weight factors were configured as 𝛼 = 0.1√𝑚𝑎𝑥( 𝑚, 𝑛), 

β=0.05, and γ=0.5. In addition, block size m×n was defined as 

50×50 pixels, and the step size as 10 pixels. 

Our experiments were conducted on MATLAB R2016b and 

a computer with an Intel® Core™ i5 Processor (CPU: 2.6Hz; 

memory: 4GB). 

 

5.3 Results analysis 

 

Our experiments compare the proposed model with popular 

image target detection methods, including TH filter, max-

mean filter, max-median filter, and RPCA algorithm. Through 

repeated tests, the size of max-mean filter and max-median 

filter was set to 9×9 pixels. 

 

5.3.1 Single target detection experiment 

Six groups of MFIs were selected to test multiple methods 

in our experiments. As shown in Table 1, Group 1 is a complex 

indoor scene with one person (target) and a bright light (noise). 

Group 2 is an outdoor scene with a horse (target) and a 

building in the background (noise). Group 3 is a jungle scene 

with a small animal (target) and trees in the background 

(noise). Groups 4 and 5 are both sky scenes with a small target 

against a few clouds (noise). Group 6 is a sky scene with a 

small target against heavy clouds (noise). 

One frame was selected from each group to display the 

effect of the five contrastive methods. The six selected frames 

are presented in Figure 3 (a). Columns (b)-(f) of Figure 3 are 

the detection results of TH filter, max-mean filter, max-

median filter, RPCA algorithm, and TV4OGS-RPCA model, 

respectively. 

As shown in Figure 3, the Top-hat filter was ineffective in 

detecting small targets, for it is a binarization method based on 

mathematical morphology. The max-mean filter outputted 

blurry backgrounds and produced vague and scattered edges 

of targets. The max-median filter achieved relatively good 

detection results, but did not fully filter the noise in complex 

backgrounds. By contrast, RPCA and our model (TV4OGS-

RPCA model) effectively suppressed the background noise 

and separated small targets, through low-rank sparse matrix 

decomposition. 

 

Table 1. Image sets for single target detection experiment 

 
Group 

number 

Number of 

frames 

Image size 

(unit: pixel) 

Background 

type 

Background 

description 

Number of 

targets 

Target size 

(unit: pixel) 

1 30 263×210 Indoor Light 1 89×27 

2 50 324×256 Outdoor Houses 1 51×53 

3 100 320×256 Jungle Trees 1 22×38 

4 30 256×200 Sky Partly cloudy 1 23×30 

5 40 256×200 Sky Partly cloudy 1 5×13 

6 30 256×200 Sky Overcast 1 5×6 
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(a) Original image (b) TH filter (c) Max-mean filter (d) Max-median filter (e) RPCA algorithm (f) TV4OGS-RPCA model 

 

Figure 3. The detection results of the five methods on six different images 

 

To quantify the effects of different methods, the SNRs 

before and after processing were computed. Then, the mean 

SNR gain of each method on each image group was obtained 

(Table 2). The mean SNR gains are dimensionless, and the 

best mean SNR gain on each image group is in bold font. It 

can be seen that max-mean filter and max-median filter 

realized good results on Groups 1-3. This is because the SNR 

mainly reflects the mean grayscale of the target and the 

complexity of the background, which are affected by the size 

of the target area and the stationarity of the background. 

Meanwhile, RPCA and our model outperformed the other 

methods on the last three groups, which contain small targets 

in a relatively stable and uniform background. 

The RPCA and TV4OGS-RPCA model both perform low-

rank sparse decomposition on images, making the background 

image and small target image decomposable. Then, the two 

methods were further compared in terms of background 

restoration and noise suppression. As shown in Figure 4, the 

two methods performed relatively poor in Groups 1-3, in 

which the images have complex nonuniform backgrounds and 

large targets. The scenes in these images are not low-rank or 

sparse. On the contrary, the two methods accurately separated 

background from target in the latter three groups of stable 

scenes with small targets. 

Table 3 compares the mean BSF of each of the five methods 

on every image group. The mean BSFs are dimensionless, and 

the best mean BSF on each image group is in bold font. 

Obviously, our model had fewer cutters and residual noise 

than the contrastive methods in each image group. Under the 

same detection probability, our model boasted the lowest false 

alarm rate. Hence, our model is good at background restoration. 

This strength is very useful in many applications. For instance, 

the restored background can be used to classify the scene or 

estimate the reliability of detection results. 

 

Table 2. Mean SNR gains of the five methods on six image groups 

 
Group number Top-hat Max-mean filter Max-median filter RPCA algorithm  TV4OGS-RPCA model 

1 0.393 1.0806 0.972 0.2386 0.0503 

2 0.6921 1.0349 0.9558 0.6789 0.2048 

3 0.1306 0.8485 0.8577 0.7687 0.3261 

4 0.3120 0.8402 0.856 1.0224 1.2561 

5 0.1317 0.3331 0.6129 1.4703 1.9429 

6 1.0774 1.2426 3.0407 7.2687 9.7686 
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(a) Original image (b) RPCA algorithm (c) TV4OGS-RPCA model 

 

Figure 4. Background restoration of RPCA and TV4OGS-RPCA model on six different images 

 

Table 3. Mean BSFs of the five methods on six image groups 

 
Group number Top-hat Max-mean filter Max-median filter RPCA algorithm TV4OGS-RPCA model 

1 0.4463 0.9390 0.9586 1.1191 1.0338 

2 0.3786 0.9851 1.0030 1.0254 1.1513 

3 0.8532 0.9648 1.0138 1.0053 1.4302 

4 1.3102 0.9801 0.9970 1.0161 1.5553 

5 0.5217 0.9615 0.9682 1.0329 1.3848 

6 0.3307 0.9406 0.9958 1.0517 1.6592 

 

5.3.2 Multi-target detection experiment 

The next experiment was performed to verify the detection 

effect of our model on multiple small targets in infrared 

images. Considering the unavailability of multi-target infrared 

image set, multi-target images for our experiment were 

generated by embedding small targets into real infrared images 

[20]. 

Firstly, 100 images from Groups 4-6 were selected as the 

real background images, while the small targets in these 

images, whose size is 2330 pixels, 513 pixels, and 56 

pixels, were taken as the targets to be embedded. The target 

sizes were adjusted through bicubic interpolation into 

simulation target sizes: am×an pixels, where a is a random 

small positive number; 𝑎𝑚𝑎𝑛[4,90] ; mn is the actual 

target size. For convenience, the grayscale of each target was 

normalized to (0, 1). In total, 744 simulation targets were 

generated. 

Secondly, p[2,8] small simulation targets were randomly 

embedded to each frame of each image. The embedding 

position was determined by [20]: 
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𝑓(𝑥, 𝑦) = {
𝑚𝑎𝑥(𝑟𝑓𝑇(𝑥 − 𝑥0, 𝑦 − 𝑦0), 𝑓𝐵(𝑥, 𝑦)) 𝑥 ∈ (1 + 𝑥0, 𝑛 + 𝑥0), 𝑦 ∈ (1 + 𝑦0, 𝑚 + 𝑦0)

𝑓𝐵(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (24) 

 

where, (x0, y0) are randomly generated coordinates of the upper 

left corner of the embedded target; 𝑟[ℎ, 255] is a random 

number (h is the maximum grayscale in the background 

image). 

Finally, each embedded image was subject to Gaussian 

filtering to blur the edges of the simulation targets, making the 

image more realistic. The information of the multi-target 

images is specified in Table 4. 

 

Table 4. Information of multi-target images 

 
 Group 4 Group 5 Group 6 

Number of frames 30 40 30 

Number of targets 204 312 228 

Mean target size (unit: pixel) 110.4  64.8  36.4  

 

The Top-hat filter, max-mean filter, max-median filter, 

RPCA algorithm, and our model were separately applied to 

process the multi-target images. The detection probabilities of 

the five methods at the false alarm rate of 2/frame are listed in 

Table 5, where the bold values are the best result in each group. 

 

Table 5. Detection probabilities of the five algorithms on 

three image groups (false alarm rate: 2/frame) 

 
  Group 4 Group 5 Group 6 

Pd 

Top-hat 0.66 0.67 0.55 

Max-mean filter 0.74 0.73 0.63 

Max-median filter 0.77 0.74 0.72 

RPCA algorithm 0.88 0.88 0.91 

TV4OGS-RPCA model 0.89 0.93 0.95 

 

 
(a) Group 4 

 
(b) Group 5 

 
(c) Group 6 

 

Figure 5. ROC curves of the five methods on the three image 

groups 

 

Figure 5 are the ROC curves of the five methods on the three 

image groups. It can be seen that the RPCA algorithm had a 

slightly higher detection probability than our model at Fa<0.75 

in Group 4 and at Fa<0.5 in Group 5. At a very small false 

alarm rate, there was little difference between the five methods. 

With the growth in that rate, our model gradually achieved the 

highest detection ability and the largest area under the curve 

(AUC). This means our model outshines the other methods in 

multi-target detection in infrared images. 

 

 

6. CONCLUSIONS  

 

This paper presents a new infrared small target detection 

model called TV4OGS-RPCA. Based on the low-rank and 

sparse features of infrared images, our model transforms small 

target detection task into a variation optimization problem 

under the RPCA framework and improved TV regularization. 

Experimental results show that our model outperformed the 

traditional methods in detecting small targets in stable 

background, as evidenced by the suppression of background 

noise and enhancement of targets. In addition, the 

effectiveness of our model depends on the weight coefficients 

α, β and γ. 

The future research will explore the effects of various 

parameters on model performance, namely, the weight factor 

of constraint, the size of background blocks, the step size, and 

the segmentation threshold. In actual practice, the parameter 

values should be determined according to the specific image. 

Therefore, more attention will be paid to select suitable 

parameters in an adaptive manner. 
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