
New Qualitative Method to Investigate the Vibration Behavior of Orthotropic Composite 
Plates: Thickness Effect 

Hamada Samy*, Benmansour Toufik 

Mechanical Engineering Department, Sciences of Technology Faculty, University Mentouri Constantine, Algeria 

Corresponding Author Email: samy11.hamada@gmail.com 

https://doi.org/10.18280/mmc_b.882-413 ABSTRACT 

Received: 9 April 2019 
Accepted: 5 December 2019 

In this paper, we propose a quick and easy method to investigate the vibration behavior 
of orthotropic composite plates under the effect of thickness. In previous works, many 
investigations were carried out to challenge the effectiveness of this new method. To 
get insight about the level of accuracy of this method, the effect of boundary 
conditions, rigidity ratio and the effect of dimension ratio were discussed. The 
prediction of frequency responses using the qualitative method match very well with 
those obtained from finite element method. The first six frequency modes are obtained 
from the results achieved by the finite element method using ANSYS. The 
comparative and qualitative analysis of frequency responses allowed the justification 
of the position and the threshold of the respective modal frequencies of the plates in 
accordance with the results obtained from the numerical and analytical methods in 
use.  
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1. INTRODUCTION

Nowadays the calculation of structures, irrespective of their
complexities, is facilitated by the availability of software using 
very efficient finite element codes (FEC) of calculation. 
Although this type of software is sometimes very expensive, it 
is nonetheless often essential for the domains of leading-edge 
technology. Usually before their widespread distribution, 
those pieces of software are standardized and tested using 
comparative analyses with regard to the known results 
obtained from laboratory testing or using other calculation 
sources (finite elements, analytics). 

During the investigation process of the mechanical behavior 
of structures, using a piece of software or a program for the 
calculation of structures, risks of calculation errors connected 
to the human factor can subsist at various levels of the analysis. 
These risks of errors can lead to costly and sometimes 
prejudicial expertise in relation to the good design of the 
structures.  

In order to overcome this disadvantage, this work aims to 
minimize the risk of errors by providing an overall 
investigation strategy based on a new simple and fast 
qualitative method of expertise used in conjunction with the 
known results obtained according to the means of calculation 
based on an efficient finite element method (FEM) calculation 
code or other alternative methods. This analysis strategy is 
proposed in the context of the specific study of vibrating 
rectangular plates. However, it can be broadened to other types 
of structures based on adequate qualitative methods of 
estimation. 

The use of orthotropic plates is becoming more and more 
common in several engineering fields such as aeronautical, 
aerospace, civil engineering and sports equipment. Hence the 
use of such structures requires an exact investigation to 
develop a precise and reliable design in the case where the 

physical properties of the material and the limit conditions are 
known. 

From a technical point of view, the FEM provides a 
complete solution to the problem of evaluation of vibration 
modes and dynamic responses. On the other hand, when the 
main goal in the preliminary phase of design is proportioning 
(selection of geometric as well as mechanical properties of the 
material), we use simplified analytical models and 
approximate analytical methods in order to define a first 
impression of the vibration behavior from a general point of 
view.  This is also valid within the context of verification or 
expertise of calculation results such as those obtained by 
means of an efficient code of calculation (FEM). 

Usually the numerical simulation using FEM software 
constitutes for some a supposedly exact reference to be used 
in comparative analyses. This standard procedure can 
sometimes cost precious time and require a highly qualified 
level of expertise.  In any case, the use of computer science 
through a piece of software always leaves the way open for a 
risk of error linked to human factor.  Consequently, it is useful 
in the first place to have an investigation strategy so as to 
achieve this double goal.  Firstly, one can calculate the 
intrinsic dynamic properties of the structure such as the modal 
frequencies of orthotropic plates, and define a first 
appreciation of the behavior of the plate as a whole.  Secondly, 
one can decrease the risk of errors of uneconomical calculation 
from the point of view of both cost and completion time. 

In terms of quantitative investigation, numerous methods 
have been proposed in order to study the vibration of 
orthotropic plates; these methods are equally analytical and 
numerical. One can cite the articles gathered together by 
Leissa & Bert [1-9] discussing the dynamic behavior of 
composite and sandwich plates. Due to its high versatility and 
conceptual simplicity, the Rayleigh-Ritz method [10] is 
considered to be the reference for obtaining an approximate 
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solution for the frequencies of a rectangular plate. 
This method began with the article of Hearmon [11] who 

initiated the study of some particular cases. Among the works 
based on the Rayleigh-Ritz method, the contribution of 
Marongoni et al. [12] is used. This contribution is a 
combination of the Rayleigh-Ritz for upper bound and the 
decomposition method proposed by Bazely [13] for lower 
bound evaluation. In addition, for higher modes of modal 
frequencies, a special form of Rayleigh’s method is proposed 
by Biancolini [14]. Thus, evaluation of higher frequencies is 
reduced to the calculation of the fundamental frequency of 
plates under the original plate. 

However, in terms of qualitative vibration analysis, 
unfortunately no literary contributions were to be found. This 
is the reason why, to the best of our knowledge, this work is 
an original initiation that fills this inadequacy in order to 
provide engineers and researchers with a quick and simple 
method for the qualitative prediction and qualitative 
investigation of the vibration behavior of rectangular plates, 
taking into consideration all possible cases of modal sequences. 

In this work, a simplified method is proposed to evaluate, 
from a qualitative point of view, the natural frequencies of an 
orthotropic plate based on an observation of the number of 
links existing or inherent to the plates and sub-plates activated 
by higher vibration modes. The principle of the analysis 
consists in counting the number of supports according to the 
boundary conditions of the plate or sub-plate, triggered by 
modal sequences during the free vibration of the rectangular 
plate. 

As an example, for the obvious case of an isotropic 
rectangular plate undergoing two hypotheses cases 
respectively, simply supported plate (SSSS) and fully clumped 
plate (CCCC), it can be quickly verified that the latter case 
produces an upper threshold for the frequency of the 
fundamental mode compared to that of the simply supported 
plate. This obvious fact can be easily understood knowing that 
the proper value of the fundamental mode is directly 
proportional to the overall rigidity of the plate, which itself 
depends on the inherent boundary conditions. 

If we limit ourselves to the hypothesis of the transverse 
vibration, we can consider the definition of a clumped support 
to be equivalent to two links preventing two degrees of 
freedom (vertical displacement and rotation). One can then 
notice, if we bear in mind the hypothesis which considers the 
small direction dominates the total vibratory behavior of the 
plate, that the number of connections of the clumped plate is 
(Plate CCCC → beam CC = 2C = 4S), Whereas, the number 
of connections of the simply supported plate is (Plate SSSS → 
beam SS = 2S).  It can therefore be seen that for the clumped 
plate, the number of connections is twice that of the simply 
supported plate and that its threshold frequency is necessarily 
higher. 

This observation is less evident in the case of non-isotropic 
plates because, in addition to the effect of the boundary 
conditions, other factors influencing the overall stiffness of the 
plate are imposed. It is thus necessary to consider all possible 
cases of hypotheses that may limit the procedure of qualitative 
analysis. The main purpose of this work is to generalize the 
use of the qualitative method by overcoming all cases of 
hypotheses that may limit or obstruct the good judgment of the 
analysis. 

Finally, it should be mentioned that the proposed method 
finds its relevance as a means of checking the coherence of the 
analysis results often presented in the form of a set of 

frequency curves expressed with respect to the numbers of 
vibration modes. Whatever the situation and the degree of 
complexity of the graphs cluttered with the comparison curves 
of the results, the qualitative method presented here allows a 
better visibility and a fast judgment on the coherence and the 
quality of the answers to the analysis. 

The qualitative method is essentially based on the theory of 
long plates which behave like equivalent beams. The behavior, 
in this case, is dominated by the small direction of the 
rectangular plate. In this work, a quick comparative study 
concerning the threshold of both upper and lower rigidities and 
therefore, that of the lower and upper frequencies, is achieved 
by simple observation whilst counting the number of 
supporting links provided by the boundary conditions.  

In previous works, in the case of isotropic plates, the effect 
of boundary conditions has been taken into account, the results 
obtained by the qualitative method were satisfying compared 
to those obtained through the finite element method. Beside 
the boundary conditions, we extended our work to investigate 
this new method in the case where several dimension ratios are 
introduced [15]. The results have shown a good agreement. 

By trying to further challenge the accuracy of the qualitative 
method, our work is extended to investigate and globalize this 
new method by introducing the study of orthotropic plates and 
the influence of different bending rigidity ratios [16]. The 
accuracy of the procedure was tested in both cases where we 
have a dimension ratio (a/b>1) and (a/b<1), and the results 
maintain a good concordance with the results of the finite 
element method. In the present article, we envisage the 
influence of the thickness in the case of the hypothesis of thick 
plates. 

2. BACKGROUND THEORY

The determination of frequencies, outside the simply
supported case [17], presents difficulties in the integration of 
differential equations of dynamics motion of 4th order. That is 
why we need to use approximate methods.  

An orthotropic material is characterized by the fact that its 
elastic mechanical properties have two symmetrical plans, 
thus only four independent elastic constants specifically E1, E2, 
G12, ν12 are considered. The coefficient ν12 can be determined 
using the equation: 

𝐸𝐸1
𝐸𝐸2

=
𝜈𝜈12
𝜈𝜈21

; (1) 

Using the hypotheses of Love-Kirchoff which neglect the 
effect of the shear forces and the rotational inertia, and 
introducing the parameters:  

𝐷𝐷1 =  
𝐸𝐸1ℎ3

12𝜇𝜇
,𝐷𝐷2 =

𝐸𝐸2ℎ3

12𝜇𝜇
,𝐷𝐷12 =

𝐺𝐺12ℎ3

12
𝜇𝜇 = 1 − 𝜈𝜈12𝜈𝜈21, 2𝐻𝐻 = 𝜈𝜈21𝐷𝐷1 + 𝜈𝜈12𝐷𝐷2 + 4𝐷𝐷12

(2) 

with reference to figure 1 [16], the equation of the motion 
follows: 

𝐷𝐷1
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

(𝑥𝑥,𝑦𝑦, 𝑡𝑡) + 𝐷𝐷1
𝜕𝜕4𝑤𝑤
𝜕𝜕𝑦𝑦4

(𝑥𝑥,𝑦𝑦, 𝑡𝑡)  + 2𝐻𝐻
𝜕𝜕4𝑤𝑤
𝜕𝜕2𝜕𝜕2

(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

+ 𝜌𝜌ℎ
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 0; 
(3) 
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Considering a solution with general form: 
 

𝑤𝑤 = 𝑊𝑊(𝑥𝑥, 𝑦𝑦)(𝐴𝐴. cos(𝜔𝜔𝑡𝑡) + 𝐵𝐵. sin(𝜔𝜔𝑡𝑡)); (4) 
 
And from former equations, it is possible to obtain an 

expression of two variables only: 
 

𝐷𝐷1
𝜕𝜕4𝑊𝑊
𝜕𝜕𝑥𝑥4

(𝑥𝑥,𝑦𝑦) + 𝐷𝐷1
𝜕𝜕4𝑊𝑊
𝜕𝜕𝑦𝑦4

(𝑥𝑥,𝑦𝑦) + 2𝐻𝐻
𝜕𝜕4𝑊𝑊
𝜕𝜕𝑥𝑥2𝜕𝜕𝑦𝑦2

(𝑥𝑥,𝑦𝑦)

+ Λ4𝑊𝑊 = 0; 
(5) 

 

 
 

Figure 1. Geometry of the model adopted in the paper 
 
with: Λ2 = 𝜔𝜔�𝜌𝜌ℎ ; (6) 

Equation (5) must be solved to satisfy the following limit 
conditions: 

M = 0, R = 0 for free side (F) 
M = 0; W = 0 for simply supported side (S) 
W = 0; 𝜕𝜕𝑊𝑊 𝜕𝜕𝑥𝑥⁄  (𝑜𝑜𝑜𝑜 𝜕𝜕𝑊𝑊 𝜕𝜕𝑦𝑦⁄ ) = 0 for clamped side (C) 
 

Table 1. Mechanical properties [14] 
 

Mechanical 
properties 

E1 
(MPa) 

E2 
(MPa) 

G12 
(MPa) 𝝂𝝂𝟏𝟏𝟏𝟏 𝝆𝝆 

(Kg/m3) 
Isotropic 
material 1E+10 1E+10 4.17E+09 0.2 7800 

Orthotropic 
material 1E+10 5E+09 3.1E+09 0.2 7800 

 
Table 2. Geometrical properties 

 
 Model 

1 
Model 

2 
Model 

3 
Model 

4 
Model 

5 
Lx (m) 4 4 4 4 4 
Ly (m) 2.667 2.667 2.667 2.667 2.667 

Thickness (h) 
(m) 0.001 0.005 0.01 0.025 0.05 

 
 

3. DISCUSSION OF RESULTS 
 
3.1 Finites elements method 

 
The response according to finite element analysis is based 

on some models of rectangular meshing with (20X20), 
(40X40), (80X80) and (120X120). The case of (80X80) has 
been taken as a reference of comparison [18]. The precision of 
investigation method is based on the study of a plate constitute 
of one isotropic material and one orthotropic material. 

The calculation of the higher modal frequencies is executed 
considering the following main hypotheses: [14] 
• the nodal lines are rectilinear and divide the plate in 

different parts forming rectangular plates; 
• all the resultant parts vibrate at the same frequency; 

• the modal shape of each part is the same that part 
would have if separated from the original plate and restrained 
with the proper conditions. 
 
3.2 Dynamic investigation 

 
The dynamic investigation is based on some evaluation 

criteria including dimension ratio, boundary conditions, 
vibration modes and material effect. According to those 
factors, analysis has permitted to understand some aspects of 
plate vibratory behavior. 

The influence of the augmentation of the dimension ratio 
(LX/LY) indicates a parabolic augmentation. Long plates in 
one direction or another, and regardless of material reduces the 
contribution of rigidity in long sense which reduces vibration 
behavior to that of a beam supported on two elongated boards 
with boundary conditions of the same edges and the small 
sense. A qualitative and quantitative dynamic method have 
been proposed, based on the concept of long plates, which are 
dominated by the behavior of oriented beam according to the 
small sense of rectangular plate supposed infinite. 
 
3.3 Influence of thickness and the boundary conditions on 
the behavior of free vibration of orthotropic rectangular 
plates 

 
We have two orthotropic plates subjected to the limit 

conditions (SCSC) and (SSCC), we change the thickness 
(h[m]= 0.001, 0.005, 0.01, 0.025, 0.05), to verify the frequency 
curves and ensure their relatives proper positions 
progressively to their modal progressions. 

We noticed an alternation of frequency factors gradually as 
evolution growing of modal number N1, N2, N3, N4, N5, N6. 
In order to justify and validate this behavior, qualitative 
analysis exploiting approximate method of Hearmon, which is 
useful for upper modes, is also used. 

 

 
 

Figure 2. Evolution of frequencies according to modal 
number and fixities conditions 

 
Plate type SCSC: The vibration behavior still under the 

control of the small side along the (y) direction, we get a 
vibration contribution of a beam have both sides simply 
supports [SCSC⟶SS]. Figure 3 show how this beam is 
restrained. 

Justification & Validating of ω11. If we focus on the plate 
(a/b), we can observe, basing on the theory of infinite plate, 
that the behavior should be dominated by the small side (Ly=b). 
Two types of contributions will be discussed: 
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Figure 3. Qualitative analysis (mode 1) 
 

Plate type SSCC: We get a vibration contribution of a beam 
having both clamped and roller supports [SSCC⟶CS]. Figure 
3 show how this beam is restrained. 

Now let us compare the two cases:  
Plate SCSC: Mode N1 (ω11) involve 2 Roller (2S) 
Plate SSCC: Mode N1 (ω11) involve 1 Clamps + 1 Roller 

(C+S) 

 
 

Figure 4. effect of thickness on evolution of frequencies 
(mode 1) 

 
Basing on qualitative analysis, we can say, since we have 

(2S) < (C+S) that we should have (ω11)SCSC < (ω11)SSCC because 
there is less restraint in plate SCSC than plate SSCC. This 
result is consistent with that given by the FEM analysis 
(figure2).  

Now, by changing the thickness to see its influence on the 
behavior of the plate with the same restraint conditions, we can 
observe from the graphs (figure 4) that the order of the curves 
is respected, by means that we have always 
(ω11)SCSC<(ω11)SSCC, which mean that the change of the 
thickness doesn’t affect the behavior of the plate in the first 
mode N1. 

Justification & Validating of ω12. Let us focus on the sub 
plate (a/b’) = [a/(b/2)], the behavior should be dominated by 
the small side (Ly = b). For the first plate (SCSC), we get 
vibration contribution of two types of the same beam SCSC 
[2(SS)]. Hence, for the second plate (SSCC), we also get 
vibration contribution of two beams, one having clamped and 
roller supports, and the other having pin support at one end and 
roller support at the other SSCC [(CS)+(SS)]. (Figure 5). 

 
 

Figure 5. Qualitative analysis (mode 2) 
 
Let's compare the two cases:  
Plate SCSC: Mode N2 (ω12) involve 4 Roller (4S) 
Plate SSCC: Mode N2 (ω12) involve 1 Clamps + 3 Roller 

(C+3S) 
Basing on qualitative analysis, and since we have 

(4S)<(C+3S), we can say that we should have 
(ω12)SCSC<(ω12)SSCC. This result is consistent with that given by 
the FEM analysis (figure 2).  

Now, by changing the thickness and by observing the 
graphs (figure 6), since the order of the curves is respected and 
the comparison (ω12)SCSC<(ω12)SSCC is available, we can 
deduce that the changes in thickness doesn't affect the behavior 
of the plate in the mode N2. 

 

 
 

Figure 6. effect of thickness on evolution of frequencies 
(mode 2) 

 
Justification & Validating of ω21. Qualitative analysis for 

mode (N3) for both plate cases (SCSC) and (SSCC) and 
focusing on the sub plate (a'/b)=[(a/2)/b], shows that the 
behavior should be dominated by the small side (Lx = a). 

By comparing the two cases, we have:  
Plate SCSC: Mode N3 (ω21) involve 2 Clamps + 2 Roller 

(2C+2S) 
Plate SSCC: Mode N3 (ω21) involve 1 Clamps + 3 Roller 

(C+3S) 
Since we have (C+3S) < (2C+2S), we should have 

(ω21)SSCC<(ω21)SCSC. This result is consistent with that given by 
the FEM analysis (figure 2). 

Now, by changing the thickness and by observing the 
graphs (Figure 8), since the order of the curves is respected 
and the comparison (ω21)SCSC<(ω21)SSCC is available, we can 
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deduce that the changes in thickness doesn’t affect the 
behavior of the plate in the mode N3. 

 

 
 

Figure 7. Qualitative analysis (mode 3) 
 

 
 

Figure 8. effect of thickness on evolution of frequencies 
(mode 3) 

 

 
 

Figure 9. Qualitative analysis (mode 4) 
 

Justification & Validating of ω22. Focusing on the sub plate 
(a'/b') = [(a/2)/(b/2)], shows that the behavior should be 
dominated by the small side (Ly = b). (Figure 9) 

let's compare the two cases: 
 

Plate SCSC: Mode N4 (ω22) involve 8 Roller (8S) 
Plate SSCC: Mode N4 (ω22) involve 2 Clamps + 6 Roller 

(2C+6S) 
Based on qualitative analysis and since we have 

(8S)<(2C+6S) we should have (ω22)SCSC < (ω22)SSCC because 
there is less restraint in plate (SCSC) than plate (SSCC). This 
result is confirmed by the FEM analysis (figure 2). 

By changing the thickness and by observing the graphs 
(figure 10), since the order of the curves is respected and the 
comparison (ω22)SCSC < (ω22)SSCC is available, we can deduce 
that the changes in thickness doesn’t affect the behaviour of 
the plate in the mode N4. 

 

 
 

Figure 10. Effect of thickness on evolution of frequencies 
(mode 4) 

 
Justification & Validating of ω31. By focusing on the sub 

plate (a''/b) = [(a/3)/b] (Figure 11) and using qualitative 
analysis, we notice that the behavior is dominated by the side 
(Ly = b), 

Thus, we have: 
Plate SCSC: Mode N4 (ω31) involve 2 Clamps + 4 Roller 
(2C+4S) 
Plate SSCC: Mode N4 (ω31) involve 3 Clamps + 3 Roller 
(3C+3S) 

we should have (ω31)SSCC<(ω31)SCSC since we have 
(C+5S)<(2C+4S). This result is confirmed by the FEM 
analysis (figure 2). 

 

 
 

Figure 11. Qualitative analysis (mode5) 
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Figure 12. effect of thickness on evolution of frequencies 
(mode 5) 

Now, by changing the thickness and by observing the 
graphs (figure 12), since the order of the curves is respected 
and the comparison (ω31)SCSC<(ω31)SSCC is available, we can 
deduce that the changes in thickness doesn’t affect the 
behavior of the plate in the mode N5. 

Justification & Validating of ω32. If we focus on the sub 
plate (a''/b’')=[(a/3)/(b/2)] (Figure 13) and using qualitative 
analysis, we notice that the behavior should be dominated by 
the small side (Lx=a), two types of contribution will be 
discussed:  
 

 
 

Figure 13. Qualitative analysis (mode 6) 
 

 
 

Figure 14. effect of thickness on evolution of frequencies 
(mode 6) 

Plate SCSC: Mode N6 (ω32) involve 4 Clamps (4C) + 8 
Roller (8S) (4C+8S) 

Plate SSCC: Mode N6 (ω32) involve 2 Clamps + 10 Roller 
(2C+10S)  

since we have (2C+10S) < (4C+10S) we should have 
(ω32)SSCC < (ω32)SCSC. This result is confirmed by the FEM 
analysis (figure 2). 

Now, by observing the graphs (figure 14) and by changing 
the thickness, we notice that the order of curves is respected 
which mean that (ω32)SSCC<(ω32)SCSC and we can deduce that 
the changes in thickness doesn’t affect the behavior of the 
plate in the mode N6. 

 
 

4. CONCLUSIONS & RECOMMENDATIONS 
 

The main object of this work is to develop a simple 
qualitative method, polyvalent, efficient and precise in order 
to locate the frequency thresholds of rectangular plates.   

A qualitative method is presented for the corroboration and 
assessment of vibration frequencies of rectangular plates. This 
rectangular plate is considered according to various 
parameters, in order to verify the credibility of the qualitative 
method, and at the same time, to determine the limits of its 
relative reliability, with regards to the results obtained by the 
usual calculations, which are often based on one of the 
qualitative numerical and or analytical methods documented 
in the literature. 

This investigation is a complement to the previous works 
which help in testing the accuracy of the qualitative method by 
verifying and confirming the coherence of the frequency 
curves by studying their appropriate relative positions. The 
qualitative method of investigation used for the case of the 
isotropic rectangular plates has proven to be in perfect 
correlation with the frequency thresholds calculated in 
comparison with those anticipated qualitatively. 

This method is now broadened and tested in the case of 
orthotropic plates. The investigation parameters are on top of 
the effect of the variation of the ratio of dimensions, of the 
ratio of flexional rigidity, and of the limit conditions. In this 
article, the effect of the variation of the orthotropic rectangular 
plate thickness is also considered. According to some of the 
general observations regarding the results discussed above, 
one can conclude that the qualitative method keeps its 
pertinence in estimating consistently the coherence of the 
quantitative results describing the behavior of this type of 
plates. 

The accuracy of the procedure has been tested by comparing 
the natural frequencies obtained with the results of the FEM 
analysis of the same plate. 

This study would be useful for concept engineers and 
research engineers by allowing them to reduce risks of errors 
linked to human factors and thus optimize the calculation time 
whilst reducing the realization costs. 

The proposed approach is suitable for the calculation of 
preliminary designs as well as for the final qualitative control 
relating to the precision of the calculation results. 

This method is not yet confirmed in the case of the square 
plates whose modal sequences evolve with complex forms by 
giving birth to non-linear modal lines of the rounded type. On 
the other hand, for future recommendations, the proposed 
qualitative method ought to undertake other investigations by 
taking into account other cases of rigidity ratio and of limit 
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conditions and by considering the case of free boundaries as 
well as of elastic supports.  
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NOMENCLATURE 
 

Lx length of the plate  
Ly width of the plate 
h thickness of the plate 
E1 young module in X axis 
E2 young module in Y axis 
G12 shear module 
𝜈𝜈12 Poisson coefficient 
𝜌𝜌 mass density 
𝑤𝑤 frequency 
FEC finite element codes 
FEM finite element method 
C Clumped edge 
S Simply supported edge 
CCCC totally clumped plate on all edges 
SSSS simplly supported plate on all edges 

 
 
APPENDIX 
 
Appendix 1. Results obtained from the FEM using ANSYS 

for plate SCSC 
 

 
 

Appendix 2. Results obtained from the FEM using ANSYS 
for plate SSCC 

 

  

Plate SCSC 
Thickness 0,001 0,005 0,01 0,025 0,05 

Modal number 
1X1 0,1103[Hz] 0,5513[Hz] 1,1025[Hz] 2,7564[Hz] 5,5127[Hz] 
1X2 0,2526[Hz] 1,263[Hz] 2,526[Hz] 6,3149[Hz] 12,6297[Hz] 
2X1 0,2433[Hz] 1,2163[Hz] 2,4326[Hz] 6,0816[Hz] 12,1631[Hz] 
2X2 0,3803[Hz] 1,9015[Hz] 3,803[Hz] 9,5076[Hz] 19,0151[Hz] 
3X1 0,4401[Hz] 2,2008[Hz] 4,4015[Hz] 11,0038[Hz] 22,0076[Hz] 
3X2 0,5772[Hz] 2,8861[Hz] 5,7722[Hz] 14,4306[Hz] 28,8611[Hz] 

 

Plate SSCC 
Thickness 0,001 0,005 0,01 0,025 0,05 

Modal number 
1X1 0.1160[Hz] 0.5798[Hz] 1.1596[Hz] 2.8989[Hz] 5.7978[Hz] 
1X2 0.2945[Hz] 1.4726[Hz] 2.9452[Hz] 7.3629[Hz] 14.7258[Hz] 
2X1 0.2231[Hz] 1.1157[Hz] 2.2314[Hz] 5.5784[Hz] 11.1569[Hz] 
2X2 0.3963[Hz] 1.9817[Hz] 3.9634[Hz] 9.9085[Hz] 19.8169[Hz] 
3X1 0.3989[Hz] 1.9944[Hz] 3.9888[Hz] 9.9717[Hz] 19.9437[Hz] 
3X2 0.5672[Hz] 2.8362[Hz] 5.6724[Hz] 14.1810[Hz] 28.3619[Hz] 
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