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In this paper, a well-known mathematical model of electric power transmission line under 
steady state conditions is considered. From this model, the mathematical expression that 
describes the resultant current along a power transmission line has been developed taking 
as starting point the end of the line. 
We use the fore-mentioned mathematical expression and the data of a typical electric 
transmission line to calculate how the current wave varies. The results are also graphed 
in order to have an optical view of how the current wave behaves. Finally, the results are 
analysed and the relative conclusions are drawn. 
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1. INTRODUCTION

In this paper, a power transmission line of an electric power
system [1-8] is under consideration. Its equivalent electric 
circuit under steady state conditions is drawn and the 
respective differential equations are extracted from it using as 
independent variable the distance x from either the rears of the 
line. The above mathematical model already exists in the 
literature and can easily be found [1-4, 8]. 

Solving the differential equations, the mathematical 
expression in polar form describing the resultant current wave 
is obtained (section 2). The proof that the above resultant 
current is a wave is the mathematical expression itself. It is the 
mathematical expression of a wave. 

As far as I know and search in the literature, I could not find 
calculation and graphical representation of the current wave 
along an electric power transmission line. Thus, in this paper, 
the above mathematical expression is tested on a typical 
electric power transmission line and the results are presented 
in section 3. Furthermore, in section 3, the above results are 
graphed in order to have an optical image of how the resultant 
current wave along the line behaves. In section 4, a low voltage 
laboratory electric power transmission line model is used to 
obtain experimental results to verify the equations of section 
2. Finally, in section 5, a discussion is developed, the results
are studied, analyzed and in section 6, the relative conclusions
are drawn.

2. DEVELOPMENT OF THE MATHEMATICAL
EXPRESSION OF RESULTANT CURRENT WAVE

In Figure 1, the electric equivalent representation of power 
transmission line under steady state conditions and using 
divided elements has been drawn. 
Where 

z dx = the infinitesimal long-wise complex impedance of dx 
y dx = the infinitesimal transversal complex conductance of 

dx 

From the infinitesimal element dx, the following equations 
are drawn: 

1st law of Kirchhoff: [I(x)+dI(x)] = I(x) + dI(x) 
2nd law of Kirchhoff: [V(x)+dV(x)] = V(x) + dV(x) 
Voltage drop on element zdx:  

dV(x)=[I(x)+dI(x)]zdx=≅I(x) zdx → dV(x)
dx

 =I(x) z (1) 

Voltage drop on element ydx: 

dI(x) = V(x) ydx  → dI(x)
dx

 = V(x) y (2) 

Figure 1. Electric equivalent representation of electric power 
transmission line 

Differentiating Eq. (1) and replacing it into Eq. (2), we get: 

d2V(x)
dx2

=yz V(x) (3) 

Differentiating Eq. (2) and replacing it into Eq. (1), we also 
get: 
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d2I(x)
dx2

=yz I(x) (4) 

From Eqns. (3) and (4), V(x) and I(x) are described by the 
same differential equations. The above implies that V(x) and 
I(x) are described by similar mathematical functions. 

We take as initial conditions: 

V(x=0)=VR (5) 

and 

I(x=0)=IR (6) 

i.e. we take as x=0 the end of electric power transmission line
Then, from Eqns. (3), (4), (5) and (6), we extract the

following mathematical expression of the resultant current 
wave: 

I(x)=
 VR zC

+IR

2
 eγx  −

VR
 zC

−IR

2
e-γx (7) 

The above Eq. (7) is the mathematical expressions of a wave. 
Eq. (7) can also be written in hyperbolic form: 

I(x) = IR cosh(γx) +VR/zC sinh(γx) (8) 

The term cosh(γx) can be written as : 

cosh(γx)=cosh[(α+jβ)x]=cosh(αx+jβx)=cosh(αx).cos(βx)+j
sinh(αx).sin(βx) 

The term sinh(γx) can also be written as : 

sinh(γx)=sinh[(α+jβ)x]=sinh(αx+jβx) 
=sinh(αx).cos(βx)+jcosh(αx).sin(βx)  

3. CALCULATION AND GRAPHICAL
PRESENTATION OF RESULTANT CURRENT WAVE 

We consider a typical electric power transmission line with 
the following parameters: 

R= 0.107 Ω/km           L = 1.362 mH/km 
G = 0  S/km     C = 0.0085 μF/km 

f = 50 Hz       l = 360 km
VR = 115470< 0° V          IR = 360.844< 0° A 

Then using the list of symbols and the analysis of section 2, 
we can calculate the other complex parameters of the above 
line in polar and/or cartesian form: 

γ = 1.085x10-3 <82.98°  km-1  
= (0.1326x10-3 + j 1.07687x10-3) km-1 

α=0.1326x10-3 neper/km 
β=1.07687x10-3 rad/km 

zC = 406.41 <-7.02° Ω 

  VR zC
+IR

2
   = 321.886<3.092°      A 

-
 VR zC

−IR

2
= 43.079<-23.767°   A 

λ=5834.674 km 
υ = 291733.696 km/sec 

τ= 1.234 msecs 
Δ= 22.212°

Δ/l=0.0617°/km 
VS=132807.0<25.12620° V 

Then, Eq. (7) using the above parameters becomes: 

I(x) =321.886 < 3.092°  e(0.1326x10-3 + j 1.07687x10-3)x 

+43.079<-23.767° e-(0.1326x10-3 + j 1.07687x10-3)x     A (9) 

Table 1. Calculation results of resultant current wave 

α/α x (km) I(x) (Amps) φI(x) (°) 
1 0 360.8439 0 
2 10 360.8365 0.490425 
3 20 360.8144 0.982528 
4 30 360.7778 1.476348 
5 40 360.7268 1.971925 
6 50 360.6617 2.469300 
7 60 360.5827 2.968510 
8 70 360.4899 3.469596 
9 80 360.3837 3.972596 

10 90 360.2641 4.477549 
11 100 360.1315 4.984494 
12 110 359.9860 5.493468 
13 120 359.8280 6.004509 
14 130 359.6575 6.517655 
15 140 359.4749 7.032943 
16 150 359.2805 7.550409 
17 160 359.0744 8.070091 
18 170 358.8570 8.592025 
19 180 358.6285 9.116245 
20 190 358.3891 9.642788 
21 200 358.1392 10.17169 
22 210 357.8791 10.70298 
23 220 357.6089 11.23670 
24 230 357.3291 11.77288 
25 240 357.0399 12.31155 
26 250 356.7416 12.85275 
27 260 356.4345 13.39651 
28 270 356.1190 13.94285 
29 280 355.7952 14.49182 
30 290 355.4637 15.04343 
31 300 355.1246 15.59773 
32 310 354.7784 16.15473 
33 320 354.4253 16.71448 
34 330 354.0658 17.27699 
35 340 353.7000 17.84229 
36 350 353.3285 18.41041 
37 360 352.9515 18.98137 

Using Eq. (8) and taking step Δx=10km, we calculate the 
values of resultant current wave and the results are presented 
in Table 1. Since the current is vector, the results are complex 
numbers and are given in polar form ie. in current magnitude 
(Amps) and current phase (°) representation. 

The graphical presentations of results obtained in Table 1 
are given in Figure 2. 
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Figure 2. Current magnitude and phase (angle) from the 
beginning towards the end of line 

 
 
4. EXPERIMENTAL RESULTS AND DISCUSSION 

 
A low voltage laboratory model of an electric power 

transmission line is used to obtain the experimental results. 
The electric power transmission line model in steady state 
condition gave the following experimental measurements: 

 
Zline=400<90° Ω 
VS=142.4<22° V 

VR=132<0° V 
Iline= 0.133<0° A 

 
Then, the equations that give the resultant current and 

voltage of the line, from the respective equations, become: 
 

I(x)=IR 
V(x)=VR+IR z x 

 
for x=l, we have: 

 
I(x=l)=IS=IR=0.133<0° A 

V(x=l)=VS=142.44<21.931° V 
 
The above results are the same with the results that the 

experiment gives. Any small differences are due to the 
rounding of numbers and the precision of the instruments. The 
values of VR and Iline imply the ohmic character of the load. 

 
 

5. DISCUSSION 
 
The curves of graph 1 may appear common but they are not. 

One may look straight line or almost straight line but it is not. 
The above quantities have an exponential behaviour as 

someone can verify from the respective equation (7) in section 
2. Their graphical representations depend on the values of their 
exponential constant factors (α and β). If their values are small 
and as variable x increases, the values αx and βx do not change 
enough in order their exponential behaviour to appear on the 
graphs. This is the reason they seem to be straight or almost 
straight lines.  

The above explanation is given regarding their form. 
Regarding now their variation, the following reasoning is 
developed. 

On one hand, the terms (VR/zC+IR) and (VR/zC-IR) are 
constant complex numbers since VR, IR and zC are constant 
complex numbers. That implies that they have a constant 
magnitude and a constant phase. 

On the other hand, the terms eγx and e-γx vary with distance 
x from the end of electric power transmission line. 
 
5.1 First term of resultant current 

 
The term eγx can be written as e(α+jβ)x = eαx ejβx = eαx[cos(βx) 

+ j sin(βx)] 
The values of α and β are real positive numbers for a typical 

real power transmission line. This will be understood from the 
following analysis. 

The eαx is the magnitude of the above term while the ejβx is 
the phase (angle) of the same term. 

The term eαx increases as x increases i.e. the magnitude of 
current increases as we approach the beginning of line. In other 
words, the magnitude (intensity) of current diminishes as the 
wave travels from the beginning of line (where the voltage is 
applied and the current wave starts) to the end of line as one 
expects in real world (the intensity of signal diminishes as it 
moves away from source). 

The term βx similarly increases as x increases. With similar 
as above reasoning, the term βx i.e. the phase of current wave 
diminishes as the wave travels from the beginning of line and 
moves to the end of line. 
 
5.2 Second term of resultant current 
 

Similarly, the term e-γx can be written as e-(α+jβ)x = e-αx e-jβx = 
e-αx[cos(-βx) + j sin(-βx)] 

With similar as above reasoning, the term e-αx decreases as 
x increases. In other words, the magnitude (intensity) of 
current wave decreases as the wave moves from the end 
towards the beginning of line as one expects. It is really the 
part of current wave that arrives at the end of line and refracts 
travelling to the opposite direction of line. The opposite flow 
of current is indicated by the symbol minus (-) of the term. 

Additionally, the term -βx decreases as x increases i.e. the 
phase (angle) of current wave decreases as the wave moves 
from the end towards the beginning of line. 
 
5.3 Resultant current 

 
Since from Eq. (7), the line current at point x is the algebraic 

summation of the above two terms and also taking into 
consideration the results of the above reasoning and depending 
on line parameters and the type of load at the end of line, we 
can state that in general the current magnitude and phase 
decrease from the beginning to the end of line. This implies 
having in mind the above that either or both the current 
magnitude and phase can also increase from the beginning to 
the end of line. 
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6. CONCLUSIONS 
 
Studying the results presented in table 1 and the graph 1 of 

section 3, we can observe and conclude the following: 
(1) the current magnitude (intensity) increases as we 

move from the beginning towards the end of line  
(2) the current phase (angle) decreases as we move from 

the beginning towards the end of line Regarding now the 
information that is drawn from the graph 1 is discussed in the 
following paragraphs. 

The above observations, the value of VS in section 3 and that 
the current phase is behind the voltage phase imply that both 
line and load present an ohmic-inductive behaviour. In other 
words, we have an active and reactive power flow from the 
source to line and load.  

Regarding the load is pure ohmic since load voltage and 
load current have the same angle as one can see in section 3. 

The line from the data given in section 3 has an ohmic (R) 
as well as an inductive (L) long-wise elements plus a 
capacitive (C) transversal element. The above statement that 
the line presents an ohmic-inductive behaviour means that the 
capacitive element of the line does not produce enough 
reactive power to cover the needs of the inductive long-wise 
element of the line and thus the source comes to cover the rest 
reactive power needed. It also means that there is an active 
power flow from the source to cover the needs of the ohmic 
elements of line and load. 

Then, we can conclude that the above observations verify 
the analysis and discussion developed in section 4 of the paper. 
Furthermore, the experimental results as developed and 
discussed in section 4 come to substantiate the equations 
drawn in section 2. 
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LIST OF SYMBOLS 
 

R=long-wise omhic resistance of power transmission line 
(under sinusoidal voltage) per unit length of line (Ω/km) 
L=long-wise inductance of power transmission line (under 
sinusoidal voltage) per unit length of line (H/km) 
C=transversal capacitance of power transmission line (under 
sinusoidal voltage)  per unit length of line (F/km) 
G=transversal conductance of power transmission line (under 
sinusoidal voltage) per unit length of line (S/km) 
l=length of power transmission line (km) 
z=R+jωL=long-wise complex impedance of power 
transmission line per unit length of line (Ω/km) 
y=G+jωC=transversal complex conductance of power 
transmission line per unit length of line (S/km) 
Z=z.l=total long-wise complex impedance of power 
transmission line (Ω) 
Y=y.l= total transversal complex conductance of power 
transmission line (S) 
VS=complex line to earth voltage at the beginning of power 
transmission line, Sending voltage (V) 
VR=complex line to earth voltage at the end of power 
transmission line, Receiving voltage (V) 
IS=complex phase current at the beginning of power 
transmission line, Sending current (A) 
IR= complex phase current at the end of power transmission 
line, Receiving current (A) 
γ=�zy=α+jβ= transmission co-efficient of power transmission 
line (km-1) 
α=reduction co-efficient of power transmission line (neper/km) 
β=phase co-efficient of power transmission line (rad/km) 

zC=�
z
y
=characteristic impedance of power transmission line 

(Ω) 
ejφ=cosφ +jsinφ = Euler’s equation 
λ=2π

β
= wave length of power transmission line (km) 

υ=wave transmission velocity of power transmission line 
(km/sec) 
τ=wave travelling time in order to cover the length of power 
transmission line (sec) 
Δ=electric phase (angle) of power transmission line (rad) 
Δ
l
=electric phase (angle) of power transmission line per unit 

length of line (rad/km) 
I(x)=resultant line current wave as a function of distance x (A) 
φ(x)=electric phase(angle) of respective complex quantity as 
function of distance x (°) 
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