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 This study relates the exact solution for free-vibration analysis of beams in material 

gradient (FGMs) subjected to the different conditions of support using the Euler Bernoulli 

theory (CBT). It is assumed that the material properties continuously change across the 

thickness of the beam according to the exponential function (E-FGM). The equations of 

motion are obtained by applying the principle of virtual works on beams and fundamental 

frequencies are found by solving the equations governing the eigenvalue problems. 

Numerical results are presented to describe the influence of the material on the 

fundamental frequencies of the beam for different state boundaries.  
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1. INTRODUCTION 

 

Improving the performance of the structural parts can lead 

to search, in the same material, different properties, often 

antagonistic, but locally optimized. The development of 

composite materials has made it possible to associate specific 

properties of different materials within the same room.  

Improving the performance of the structural parts can lead 

to search, in the same material, different properties, often 

antagonistic, but locally optimized. The development of 

composite materials has made it possible to associate specific 

properties of the different materials within the same room.  

Gradient property materials (FGMs) can be produced by 

continually changing the material components in a 

predetermined profile. The most distinct characteristics of the 

FGM micro-structure materials are their non-uniform with 

graded properties, macro in space. It is designed to improve 

and optimize the characteristic thermoelectric mechanical 

structures for sealing micro and nano [1]. 

Most of the FGM families are gradually made of metal-

refractory ceramics. Typically, FGMs are constructed from a 

mixture of ceramic and metal or a combination of different 

materials. Ceramic in an FGM provides a barrier of thermal 

effects and protects the metal against corrosion and oxidation, 

and the FGM is hard and reinforced by the metallic 

composition. Currently FGMs are developed for general use 

as structural elements in extremely high temperature 

environments and different applications. 

Due to the wide application of FGM several studies have 

been conducted on the mechanical and thermal behavior of 

FGMs [2-12]. Detailed theoretical and experimental studies 

have been carried out and published, on the mechanics of 

rupture [13-15], the distribution of thermal stresses [16-24], 

the treatment [25-27], etc. Among these FGM structures, 

beams have always remained the interests of researchers 

because of their applications. Approaches such as the use of 

shear deformation theory of beams, energy method, and the 

finite element method were performed.  

The aim of this work is to analyze the free vibrations of 

FGM beams subjected to the different support conditions 

using the Euler Bernoulli (CBT) theory. It is assumed that the 

material properties continuously change across the thickness 

of the beam according to the exponential function (E-FGM). 

Solutions are found by solving equilibrium equations for 

eigenvalue problems. 

 

 

2. MATERIAL PROPERTIES OF E-FGM BEAMS  
 

Many researchers use the exponential function to describe 

the material properties to describe the material properties of 

FGM materials. The exponential function is given by Delale 

and Erdogan [28]. 
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where, E2 and E1 are respectively the material properties 

(Young's modulus; density or Poisson's ratio) of the lower 

surface (z = -h / 2) and the upper surface (z = + h / 2) of the E-

FGM beam. 

The variation of the Young's modulus through the thickness 

of the E-FGM beam is presented in Figure 1. The Young 

modulus is varied using a single function that dominates the 

material distribution in the E-FGM beam. 
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Figure 1. The variation of the Young's modulus of the E-

FGM beam 

 

 

3. MATHEMATICAL FORMULATIONS 

 
Consider an FGM beam having the dimensions shown in 

Figure 2 subjected to free transverse vibration. It is assumed 

that the beam has a linear elastic behavior and the 

displacements following the axes "x" and "z" of an arbitrary 

point in the beam and denoted respectively by u(x, z, t) and 

w(x, z, t). This study is based on the classical theory of beam 

(CTB). The displacement field of any point of the beam takes 

the following form: 
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Figure 2. Coordinates and geometry of the E-FGM beam  

 

where, U (M) is the displacement field of a point "M"; u(x, t) 

and w(x, t) are the displacement components on the median 

plane. The relationship strain constraints can be written in 

matrix form as follows: 
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Such as: 

The strain tensor is defined as follows: 
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Using the virtual work principle on the E-FGM beam, the 

resulting equations of motion are: 
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4. MATHEMATICAL SOLUTIONS 
 

Analytical solutions are obtained from Eq. (6), keeping the 

same E-FGM beam geometry for different boundary 

conditions (S-S, C-C, C-S, C-F). For harmonic vibrations, the 

vertical displacement can be expressed: 
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The general amplitude equation is described as follows: 
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Such as: 

 

x

L
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A1, A2, A3 and A4 are arbitrary parameters determine and 

βn is the associated wave number to the nth own mode.  In this 

study we consider the beams with four different modes of 

support that is to say ,one beam clamped in the two extremities 

(C-C), a second beam articulated in extremity and clamped in 

other (C-S), third beam  articulated  to extremities (S-S) , and 

a fourth  beam  clamped in extremity and free in other (C-F). 

The four boundary conditions can be obtained as follows: 

 

a. C-C: Clamped-clamped beam 
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b. C-S: Clamped-supported beam 
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c. S-S: Supported-supported beam   
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d. C-F: Clamped-free beam  

 
'

'''

( ) ( ) 0 0

( ) ( ) 0 0

n n

n n

w w

w w

 = = =


= = =

  

  
 (8.d) 

 

Using Eq. (7) for the four types of boundary conditions we 

obtain equations with eigenvalues, for the problem of free 

vibration:  
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Such as: 

 
4

n
n L

 =  
 


   

 

For the solutions of the Eq. (6), the following determinant 

could be equal to zero: 

 

det([K] [ ]) 0n M− =   

 

For each mode, the natural frequencies are given by: 
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5. NUMERICAL APPLICATION  

 

In this study, we assume that the E-FGM beam is made of a 

mixture of ceramic and metal whose composition varies across 

the thickness. As the upper facet i.e., at (z = h / 2) is made of 

100% ceramic Al2O3 (alumina), while the lower facet (Z = -h 

/ 2) is made in 100% Al metal (Aluminum). The mechanical 

properties of these two materials are: 

Ceramic (Alumina, 2 3Al O ): EC = 380 x 109 N/m²; υ=0.33; 

ρC = 3800 kg/m3. 

Metal (Aluminium, Al ): EM = 70 x 109 N/m²; υ=0.33; 

ρM = 2780 kg/m3. 

The numerical results are presented in terms of 

dimensionless frequencies. The non-dimensional natural 

frequencies parameter is defined as: 
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Knowing that: I is the inertia moment and A is the section 

of FGM beam. 

Table 1. Comparison of the fundamental frequencies 
n for isotropic beams  

 

BCs 𝐒𝐨𝐮𝐫𝐜𝐞 𝟏 𝟐 𝟑 𝟒 𝟓 

C-C Present (exact solution) 

(Eltaher et al.) [29] 

22.3733 

22.4926 

61.6728 

63.2455 

120.903 

107.762 

199.859 

128.924 

298.556 

208.792 

C-S Present (exact solution) 

(Eltaher et al.) [29] 

15.4182 

15.4937 

49.9649 

51.0507 

104.248 

107.961 

178.270 

110.069 

272.031 

204.300 

S-S Present (exact solution) 

(Eltaher et al.) [29] 

9.8696 

9.8698 

39.4784 

39.5500 

88.8264 

89.6055 

157.914 

107.868 

246.740 

162.459 

C-F Present (exact solution) 

(Eltaher et al.) [29] 

3.5160 

3.5228 

22.0345 

22.3641 

61.6972 

53.9884 

120.902 

108.971 

199.860 

130.773 

 

Table 2. The first three frequencies n of E-FGM beam for 10L
h
=   

 

𝑬𝑼 𝑬𝑳⁄
 

𝒏̅̅ ̅̅  C-C C-S S-S C-F 

1 

 1̅̅ ̅̅  

 2̅̅ ̅̅  

 3̅̅ ̅̅  

22.373 

61.673 

120.90 

15.418 

49.964 

104.24 

9.8696 

39.478 

88.826 

3.5160 

22.034 

61.697 

2 

 1̅̅ ̅̅  

 2̅̅ ̅̅  

 3̅̅ ̅̅  

22.108 

60.942 

119.47 

15.235 

49.373 

103.01 

9.7525 

39.010 

87.773 

3.4743 

21.773 

60.966 

3 

 1̅̅ ̅̅  

 2̅̅ ̅̅  

 3̅̅ ̅̅  

21.720 

59.871 

117.37 

14.968 

48.505 

101.20 

9.5813 

38.325 

86.231 

3.4133 

21.391 

59.895 

4 

 1̅̅ ̅̅  

 2̅̅ ̅̅  

 3̅̅ ̅̅  

21.352 

58.857 

115.38 

14.714 

47.684 

99.488 

9.4190 

37.676 

84.771 

3.3555 

21.028 

58.880 

5 

 1̅̅ ̅̅  

 2̅̅ ̅̅  

 3̅̅ ̅̅  

21.020 

57.941 

113.59 

14.486 

46.942 

97.942 

9.2726 

37.090 

83.454 

3.3033 

20.702 

57.965 
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(C-C)                                                            (C-S) 

 
(S-S)                                                                                  (C-F) 

 

Figure 3. The fundamental frequencies of an E-FGM beam for different conditions of support with a ceramic-metal mixture 

 

To verify the accuracy of this method, the non-dimensional 

frequencies of the FGM beam with different boundary 

conditions were compared by Eltaher et al. [29]. The results 

are shown in the Table 1. We can notice that the results were 

in a good agreement that demonstrated the precision of our 

model.  

Table 2 shows the first three fundamental frequencies (n̅̅̅̅ ) 

Of an E-FGM beam, for different boundary conditions with 

stiffness ratios EU/EL = 1, 2, 3, 4 and 5.  

It may be noted that the most important fundamental 

frequencies are those of the isotropic and homogeneous beams. 

(EU/EL =1) Where the mixture is made of pure ceramic (100% 

Alumina). It is also observed that the fundamental frequencies 

of an E-FGM beam decrease with the increase in stiffness ratio 

which is due to the decrease in the amount of ceramic in the 

mixture. 

Figure 3 shows the proportionality of the fundamental 

frequencies with the vibratory modes (n) of the E-FGM beams 

and compared with those of isotropic and homogeneous beams 

which describes the two basic materials (Ceramics, Metal). 

From these figures, it can be deduced that the change in the 

fundamental frequencies depends on the combination of the 

volume fraction (E-FGM) of the extreme materials. This 

frequency change is influenced by the stiffness of the beams 

and becomes very significant for higher vibratory modes. 

 

 

6. CONCLUSION 

 
In this paper, we have analyzed the exact solution for free 

vibrations of the beams by using the classical Euler-Bernoulli 

theory (CBT) and assuming that the material properties of the 

beam are evaluated continuously in the direction of thickness 

according to the exponential law (E-FGM). The aim of this 

paper is to see the influence of the material distribution of the 

two extreme materials on the fundamental frequencies of the 

system. Numerical results have been presented for the E-FGM 

beam with various boundary states. These results can be used 

as a reference to other numerical methods. 
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NOMENCLATURE 

L Total Length of beam, m 

h Thickness of the beam, m 

b Width of beam, m 

E Young's module, Gpa 

A11, B11, D11 Terms of rigidities 

 M Mass matrix 

 K Stiffness matrix  

1I Function of the volume fraction 

A unit vector 

n
B Wave number 

Greek symbols 

 Ratio of stiffness coefficients 

 Mass density, Kg.m-3 

u Displacement along the X axis 
w Displacement along the Z axis  

ij Strain Tensor 

ν Poisson coefficient 
 Eigenfrequency of the FGM beam 
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