
A Novel Log-Based Tensor Completion Algorithm

Juan Geng*, Liang Yan, Yichao Liu

College of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050064, China

Corresponding Author Email: stgengjuan@heuet.edu.cn

https://doi.org/10.18280/isi.250202 ABSTRACT

Received: 17 December 2019

Accepted: 29 January 2020

In recent years, tensor completion problem, as a higher order generalization of matrix

completion, has received much attention from scholars engaged in computer vision, data

mining, and neuroscience. The problem is often solved by convex relaxation, which

minimizes the tensor nuclear norm instead of the n-rank of the tensor. However, tensor

nuclear minimizes all the singular value at the same level, which is unfair to large singular

values. To solve the problem, this paper defines a log function of tensor, and uses it as an

approximation of tensor rank function. Then, a simple yet efficient log-based algorithm for

tensor completion (Log-TC) was proposed to recover an underlying low n-rank tensor. The

Log-TC was verified through experiments on randomly generated tensors and color image

inpainting, in comparison with two tensor completion algorithms: fixed point iterative

method for low-rank tensor completion (FP-LRTC) and fast low rank tensor completion

algorithm (FaLRTC). The results show that our algorithm greatly outperformed the two

contrastive methods.

Keywords:

tensor completion, log function of tensor,

image inpainting, tensor decomposition

1. INTRODUCTION

In the era of data explosion, tensors gain more and more

attention thanks to their excellence in information preservation

and structural properties. Tensors can be viewed as natural

higher-order generalization of vectors and matrices. Therefore,

many questions of tensors can be generalized from vectors and

matrices.

Tensor completion, a natural generalization of matrix

completion, has long been a research hotspot. As an

imputation method for missing data, tensor completion aims

to estimate missing data from very limited information of

observed data. To date, this problem has been widely applied

in recommendation system [1-7], signal processing [5-8],

computer vision [9-13], and multi-relation link prediction [14-

16].

Tensor decomposition is an important step of tensor

completion. The main forms of tensor decomposition include

CANDECOMP/PARAFAC (CP) decomposition [17, 18],

Tucker decomposition [19-21], and Tensor-Train

decomposition [22-24]. Our results are mainly based on

Tucker decomposition.

In recent years, lots of algorithms have been developed to

complete high-order tensors. Most of them adopts the low-

rank structure assumption. It is known to all that tensor rank

minimization is a non-deterministic polynomial-time (NP)

hard problem. Therefore, many norms are defined as the

convex surrogates of tensor rank. For example, Liu et al. [10]

defined the trace norm for tensors, and proposed a completion

strategy for low-rank tensors, laying the theoretical basis for

low n-rank tensor completion.

Since all the singular values are simultaneously minimized,

the convex surrogates may be insufficient to approximate the

rank function. Therefore, many scholars have attempted to

prove the advantage of approximating the rank for matrices,

using nonconvex surrogate functions [25-28].

Recently, new results have been achieved in tensor

completion through the extension of matrix situation. For

instance, Huang et al. [29] put forward a tensor n-mode matrix

unfolding truncated nuclear norm minimization, and solved it

by the alternating direction method of multipliers. Han et al.

[30] also presented an algorithm based on tensor truncated

nuclear norm, and added a sparse regularization term into the

objective function. Xue et al. [31] also carried out similar

research.

In general, large singular values represent the significant

information of interest, which should not be penalized

excessively. By contrast, small singular values represent the

noisy information, which should be penalized as zeros. All the

singular values are minimized to the same level by tensor

nuclear norm. This is obviously unfair to large singular values,

which contain much more important information than small

singular values. To solve the problem, log function was

introduced to strike a balance between rank minimization and

nuclear norm.

Taking the n-rank of a tensor as a sparsity measure, this

paper solves the low-n-rank tensor completion problem in the

following manner. A log function of tensor was defined, and

used as an approximation of tensor rank function. In this way,

the objective function in our optimization model become a

nonconvex function, which is difficult to solve. Thus, the DC

programming was adopted to solve the model. Next, a simple

yet efficient log-based algorithm for tensor completion (Log-

TC) was designed to recover an underlying low n-rank tensor.

The performance of Log-TC algorithm was verified by

computational results on recovery of synthetic data and color

image.

The remainder of this paper is organized as follows: Section

2 briefly introduces tensor completion; Section 3 proposes an

iterative scheme to minimize log function, and presents the

Ingénierie des Systèmes d’Information
Vol. 25, No. 2, April, 2020, pp. 153-163

Journal homepage: http://iieta.org/journals/isi

153

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.250202&domain=pdf

Log-TC algorithm; Section 4 compares our algorithm on

randomly generated tensors and color image inpainting, with

two low-rank tensor completion algorithms; Section 5 puts

forward the conclusions.

2. PRELIMINARIES

2.1 Notations and definitions

Throughout this paper, each scalar is denoted by a normal

letter, e.g. a, b, c, ...; each vector is denoted by a boldfaced

lower-case letter, e.g. a, b, c, ...; each matrix is denoted by an

upper-case letter, e.g. A, B, C, ...; each tensor is written as an

italic letter, e.g. an N-order tensor is denoted as 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁,

where Ik is the dimensional size corresponding to mode-k,

k=1, ..., N; each element of tensor 𝒳 is denoted as 𝑥𝑖1⋯𝑖𝑁 ∈ 𝒳.

The Frobenius norm of 𝒳 is defined as the square root of

the inner product of twofold tensors:

‖𝒳‖𝐹 = √〈𝒳,𝒳〉 = √∑ ⋯∑ 𝑥𝑖1⋯𝑖𝑁
2𝐼𝑁

𝑖𝑁=1
𝐼1
𝑖1=1

 (1)

The CP decomposition factorizes the target tensor into a

sum of component one-rank tensors. For example, a third-

order tensor 𝒳 ∈ ℝ𝐼×𝐽×𝐾 can be written as:

𝒳 ≈ ∑ 𝑎𝑟 ∘ 𝑏𝑟 ∘ 𝑐𝑟
𝑅
𝑟=1 (2)

where, R is a positive integer; 𝑎𝑟 ∈ ℝ
𝐼, 𝑏𝑟 ∈ ℝ

𝐽 and 𝑐𝑟 ∈ ℝ
𝐾

for r=1, ..., R. Elementwise, formula (2) can be written as

𝑥𝑖𝑗𝑘 ≈ ∑ 𝑎𝑖𝑟𝑏𝑗𝑟𝑐𝑘𝑟
𝑅
𝑟=1

for i=1, ..., I, j=1, ..., J, k=1, ..., K
(3)

The Tucker decomposition, a higher-order principal

component analysis (PCA), decomposes the target tensor into

a core tensor multiplied (or transformed) by a matrix along

each mode. In the three-way case where 𝒳 ∈ ℝ𝐼×𝐽×𝐾 , the

Tucker decomposition can be expressed as:

𝒳 ≈ 𝒢 ×1 𝐴 ×2 𝐵 ×3 𝐶

= ∑ ∑ ∑ 𝑔𝑝𝑞𝑟𝑎𝑟 ∘ 𝑏𝑟 ∘ 𝑐𝑟
𝑅
𝑟=1

𝑄
𝑞=1

𝑃
𝑝=1

(4)

where, 𝐴 ∈ ℝ𝐼×𝑃 , 𝐵 ∈ ℝ𝐽×𝑄 , and 𝐶 ∈ ℝ𝐾×𝑅 are the factor

matrices (usually orthogonal), i.e. the principal components in

each mode. The tensor 𝒢 ∈ ℝ𝑃×𝑄×𝑅 is called the core tensor,

whose entries reflect the level of interaction between different

components. Elementwise, formula (4) can be written as:

𝑥𝑖𝑗𝑘 ≈ ∑ ∑ ∑ 𝑔𝑝𝑞𝑟
𝑅
𝑟=1

𝑄
𝑞=1 𝑎𝑖𝑝𝑏𝑗𝑞𝑐𝑘𝑟

𝑅
𝑟=1

for i=1, ..., I, j=1, ..., J, k=1, ..., K
(5)

where, P, Q, and R are the number of components (columns)

in factor matrices A, B and C, respectively.

The Tensor-Train decomposition represents a d-way tensor

𝒳 as d3-way tensors 𝒳(1), ⋯ ,𝒳(𝑑), which are called the TT-

cores. The k-th TT-core has dimensions rk-1, nk, rk. where rk-1,

rk are called the TT-ranks. Specifically, each entry of 𝒳 ∈
ℝ𝐼1×⋯×𝐼𝑑 can be determined by:

𝑎𝑖1⋯𝑖𝑑 = 𝒳𝑖1
(1)
⋯𝒳𝑖𝑑

(𝑑)
 (6)

Next, several important concepts were presented with the

following definitions:

Definition 2.1 ([32]) Let 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁 be an N-order

tensor. The k-th mode matrix unfolding is defined as the matrix

X(k) ∈ R
I𝑘×J, J = ∏ 𝐼𝑖

𝑁
𝑖=1,𝑖≠𝑘 . The tensor element (i1, ..., iN) is

mapped to the matrix element (ik, j), where

j = 1 + ∑ (𝑖𝑚 − 1)𝐽𝑖
𝑁
𝑚=1,𝑚≠𝑘 ,

with 𝐽𝑖 = ∏ 𝐼𝑚
𝑖−1
𝑚=1,𝑚≠𝑖 .

(7)

Definition 2.2 ([32]) Let X ∈ RI𝑘×J be a matrix with J =
∏ 𝐼𝑖
𝑁
𝑖=1,𝑖≠𝑘 . The k-mode (I1, ..., IN) tensor folding 𝒳 is defined

as the tensor 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁 . The matrix element (ik, j) is

mapped to the tensor element (i1, ..., iN), where j is defined as

in formula (7).

Definition 2.3 ([33]) The higher-order singular value

decomposition (SVD) of a tensor 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁 can be

defined as

𝒳 = 𝒮 ×1 𝑈1 ×2 𝑈2 ×3 ⋯×𝑁 𝑈𝑁 (8)

or elementwise as

𝒳(𝑖1, ⋯ , 𝑖𝑁) = ∑ ⋯∑ 𝒮
𝐼𝑁
𝑗𝑁=1

𝐼1
𝑗1=1

(𝑗1, ⋯ , 𝑗𝑁) ∙

𝑈1(𝑖1, 𝑗1)⋯𝑈𝑁(𝑖𝑁 , 𝑗𝑁)
(9)

where, for 1≤k≤n, the Uk are unitary nk×nk matrices, the core

tensor 𝒮 ∈ 𝑅𝐼1×⋯×𝐼𝑁 is such that the (N-1)-order subtensor

𝒮𝑖𝑘=𝑝 defined by

𝒮𝑖1⋯𝑖𝑘−1𝑖𝑘+1⋯𝑖𝑁
𝑖𝑘=𝑝 ≔ 𝑠𝑖1⋯𝑖𝑘−1𝑝𝑖𝑘+1⋯𝑖𝑁 (10)

satisfies:

(1) all-orthogonality:

〈𝒮𝑖𝑘=𝑝, 𝒮𝑖𝑘=𝑞〉 = 0, ∀𝑝 ≠ 𝑞, 1 ≤ 𝑘 ≤ 𝑁 (11)

(2) the subtensors of the core tensor 𝒮 are ordered by their

Frobenius norm, i.e., for any 1≤k≤n,

‖𝒮𝑖𝑘=1‖
𝐹
≥ ⋯ ≥ ‖𝒮𝑖𝑘=𝐼𝑁‖

𝐹
≥ 0 (12)

N-rank of a tensor is the straightforward generalization of

the column (row) rank for matrices. Let rk denote the k-th rank

of an N-order tensor 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁. Then, it is the rank of the

mode-k unfolding matrix X(k):

𝑟𝑘 = 𝑟𝑎𝑛𝑘𝑘(𝒳) = 𝑟𝑎𝑛𝑘(𝑋(𝑘)) (13)

A tensor of which the n-rank are equal to rn is called a rank-

(r1, ..., rN) tensor. For any tensor 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁 , vec(𝒳)

denotes the vectorization of 𝒳.

Next is to introduce the SVD of a matrix. Let there be an

n1×n2 matrix of rank r, and X = U(Diag𝜎(𝑋))𝑉𝑇 be the SVD

of X, where U and V are respectively n1×n and n2×n matrices

with orthonormal columns, and the function σ: 𝐶𝑛1×𝑛2 →
𝑅𝑛(n = min{𝑛1, 𝑛2}) has components 𝜎1(𝑋) ≥ 𝜎2(𝑋) ≥
⋯ ≥ 𝜎𝑛(𝑋) ≥ 0, i.e. the singular values of the matrix X.

The necessary results in Lewis’s research [34] will be

briefly described for subsequent formula derivation.

Definition 2.4 ([34]) For any vector γ in Rn, vector �̃� can be

written with components |γi| arranged in nonincreasing order.

154

A function f: Rn→[-∞,+∞] is absolutely symmetric, if

f(γ)=𝑓(�̃�) for any vector γ in Rn.

Theorem 2.1 ([34, Corollary 2.5]) Suppose function f:

Rn→(-∞,+∞] is absolutely symmetric, and n1×n2 matrix X has

σ(X) in domf. Then, the n1×n2 matrix Y lies in 𝜕(𝑓 ∘ 𝜎)(𝑋), if
and only if σ(Y) falls in ∂𝑓(σ(X)) and there exists a

simultaneous SVD of the form U(Diagσ(X))VT and

Y=U(Diagσ(Y))VT, where U and V are n1×n and n2×n matrices

with orthonormal columns, respectively. In fact,

𝜕(𝑓 ∘ 𝜎)(𝑋)
= {𝑈(Diag𝜇)𝑉𝑇|𝜇 ∈ 𝜕𝑓(𝜎(𝑥)), X = 𝑈(Diag𝜎(𝑋))𝑉𝑇}

(14)

2.2 Low n-rank tensor completion problem

This subsection briefly illustrates the low n-rank tensor

completion problem. Suppose there exists a partially observed

tensor 𝒯 under the low n-rank assumption. Then, the Low n-

rank tensor completion problem can be expressed as:

min
𝒳
∑ 𝑟𝑎𝑛𝑘(𝑋(𝑖))
𝑁
𝑖=1 s.t. 𝒳Ω = 𝒯Ω (15)

where, 𝒳 ∈ 𝑅𝐼1×⋯×𝐼𝑁 is the decision variable whose size is

identical with 𝒯; Ω is a subset of index, indicating that the

entries of 𝒯 in the set Ω are given while the remaining entries

are missing. This problem is the special case of the following

tensor n-rank minimization problem:

min
𝒳
∑ 𝑟𝑎𝑛𝑘(𝑋(𝑖))
𝑁
𝑖=1 s.t. 𝔸(𝒳) = 𝒃 (16)

where, the linear map 𝔸: 𝑅𝐼1×⋯×𝐼𝑁 ⟶ 𝑅𝑝 with p ≤ ∏ 𝑛𝑖
𝑁
𝑖=1 ,

and vector 𝐛 ∈ 𝑅𝑝 is given. The rank minimization problem is

NP-hard and computationally intractable ([10]). For low-rank

matrix minimization problem, the rank function is often

replaced with the nuclear norm of a matrix. As an elegant

extension of the matrix case, many scholars have attempted to

identify a possible convex relaxation as an alternative to the

rank minimization problem. For example, Liu et al. proposed

the sum of metricized nuclear norm of a tensor:

min
𝒳
∑ 𝛼𝑖‖𝑋(𝑖)‖∗
𝑁
𝑖=1 s.t. 𝔸(𝒳) = 𝒃 (17)

where, αi≥0 (i=1, ..., N) are constants satisfying ∑ 𝛼𝑖
𝑁
𝑖=1 = 1;

‖𝑌‖∗ = ∑ 𝜎𝑖(𝑌)
𝑛
𝑖=1 is the nuclear norm of matrix Y; σi(Y) is the

i-th largest singular value of matrix Y.

In previous work, the model (17) has successfully imputed

missing tensor data. Recent studies suggest that the results can

be significantly improved, using certain nonconvex functions

[35-37].

2.3 DC programming and DC algorithm (DCA)

This subsection briefly outlies DC programming and DCA,

facilitating subsequent model solving by DC programming.

Definition 2.4 [38] Let C be a convex subset of Rn. A real-

valued function f: C→R is called DC on C, if there exist two

convex functions g,h: C→R such that f can be expressed as:

𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥) (18)

Definition 2.5 [38] For an arbitrary function

g:Rn→R{+∞}, the function g*:Rn→R∪{+∞}, defined by

𝑔∗(𝑦) ≔ 𝑠𝑢𝑝{〈𝑥, 𝑦〉 − 𝑔(𝑥): 𝑥 ∈ 𝑅𝑛} (19)

is called the conjugate function of g.

Let domg={x∈Rn:g(x)<∞} denote the effective domain of g.

Suppose x0∈domg, the subdifferential of g at x0, denoted by

∂g(x0), can be expressed as: ∂g(x0):={y∈Rn: g(x)≥g(x0)+〈x-

x0,y〉,∀x∈Rn}.

As a closed convex set in Rn, the subdifferential ∂g(x0)

generalizes the derivative in the sense that g is diffrerntiable at

x0, if and only if ∂g(x0) is reduced to a singleton which is

exactly {g'(x0)}.

DC programming is a programming problem dealing with

DC functions. The DCA is a continuous approach based on

local optimality and the duality of DC programming. The

DCA aims to solve the DC program:

𝛽𝑝 = 𝑖𝑛𝑓{𝑓(𝑥) = 𝑔(𝑥) − ℎ(𝑥): 𝑥 ∈ 𝑅𝑛} (20)

where, g and h are lower semi-continuous proper convex

functions on Rn. The dual program of formula (20) can be

described as:

𝛽𝑑 = 𝑖𝑛𝑓{ℎ
∗(𝑦) − 𝑔∗(𝑦): 𝑦 ∈ 𝑅𝑛} (21)

Two sequences {xk} and {yk} are optimal solutions of

primal and dual programs, respectively. The DCA consists of

the two sequences such that the sequences {g(xk)-h(xk)} and

{h*(yk)-g*(yk)} are decreasing. The two sequences are

generated as follows: xk+1 (resp.yk) is a solution to the convex

program (22) (resp. (23)) defined by

inf{𝑔(𝑥) − ℎ(𝑥𝑘) − 〈𝑥 − 𝑥𝑘, 𝑦𝑘〉: 𝑥 ∈ 𝑅𝑛} (22)

inf{ℎ∗(𝑦) − 𝑔∗(𝑦𝑘−1) − 〈𝑦 − 𝑦𝑘−1, 𝑥𝑘〉: 𝑦 ∈ 𝑅𝑛} (23)

Problem (22) is obtained from primal DC program (20) by

replacing h with its affine minimization defined by

hk(x):=h(xk)+〈x-xk, yk〉 at a neighborhood of xk. The solution set

of problem (22) is ∂g*(yk). Similarly, problem (23) is obtained

from the dual DC program (21) through the affine

minimization of g* defined by (g*)k(y):=g*(yk)+〈y-yk,xk+1〉 at a

neighborhood of 𝑦𝑘, and the solution set of problem (23) is

∂h(xk+1). Then, the DCA yields the next scheme:

𝑦𝑘 ∈ 𝜕ℎ(𝑥𝑘); 𝑥𝑘+1 ∈ ∂𝑔∗(𝑦𝑘). (24)

The complete introduction of DC programming and DCA is

provided in [38-41].

3. OUR TENSOR COMPLETION ALGORITHM

This section introduces a new model based on the log

function, and details our Log-TC algorithm. Our main problem

is the following minimization problem:

min Φ(𝒳) s.t. 𝒜(𝒳) = 𝐛 (25)

where, Φ(𝒳) = ∑ 𝜑(𝑋(𝑖))
𝑁
𝑖=1 , φ(X) = ∑ log (𝜎𝑗(𝑋(𝑖)) +

𝑛
𝑗=1

𝜀). In essence, the log function acting on a tensor X is a convex

combination of the log functions acting on all matrices X(i)

unfolded along each mode. Specifically, the log function

acting on the matrix X(i) is actually a convex combination of

the log function acting on the singular value of this matrix, i.e.

155

∑ log (𝜎𝑗(𝑋(𝑖)) + 𝜀)
𝑛
𝑗=1 . Next, an unconstrained problem was

considered:

min Φ(𝒳) +
1

2𝜇
‖𝒜(𝒳) − b‖2

2 (26)

where, μ>0 is a penalty parameter.

The distributions of rank function, l1 function, and log

function were compared to further explain the different

approximation effects.

Figure 1. Comparison of rank function, l1 function, and log

function

As shown in Figure 1, log function fell between rank

function and l1 norm, which can simultaneously increase the

penalty on small values and decrease the penalty on large

values.

Next, the DCA mentioned in Subsection 2.3 was employed

to solve model (26).

Let 𝑓(𝒳) = Φ(𝒳) +
1

2𝜇
‖𝒜(𝒳) − b‖2

2 . Then model (26)

can be expressed as:

min{𝑓(𝒳):= 𝑔(𝒳) − ℎ(𝒳)} (27)

where, 𝒳 ∈ 𝑅𝑛1×𝑛2×⋯𝑛𝑁. The DC components g(X) and h(X)

can be respectively given by:

𝑔(𝒳) =
1

2𝜇
‖𝒜(𝒳) − b‖2

2 + ‖𝒳‖∗ (28)

where, λ≥0 is a parameter; and

ℎ(𝒳) = ‖𝒳‖∗ −Φ(𝒳) (29)

According to Subsection 2.3, the DCA scheme for model

(27) was determined by computing the two sequences {Xk}

and {Yk} which satisfy the following conditions:

𝒴𝑘 ∈ ∂ℎ(𝒳𝑘), 𝒳𝑘+1 ∈ ∂𝑔∗(𝒴𝑘) (30)

The calculation process of ∂h(Xk) and ∂g*(Yk) will be

repeated in the following subsections.

3.1 Calculation of ∂h(Xk)

From the previous discussion, we have:

 ℎ(𝒳𝑘) = ‖𝒳𝑘‖∗ −Φ(𝒳
𝑘) = ∑ (𝛼𝑖‖𝑋(𝑖)

𝑘 ‖
∗
−𝑁

𝑖=1

φ(𝑋(𝑖)
𝑘))

(31)

where, Φ(𝒳) = ∑ 𝜑(𝑋(𝑖))
𝑁
𝑖=1 ; φ(X) = ∑ log (𝜎𝑗(𝑋(𝑖)) +

𝑛
𝑗=1

𝜀). Then, the subdifferential of h(Xk) is:

𝜕ℎ(𝒳𝑘) = ∑ 𝜕(𝛼𝑖‖𝑋(𝑖)
𝑘 ‖

∗
− φ(𝑋(𝑖)

𝑘))𝑁
𝑖=1 =

∑ (𝛼𝑖𝜕𝑓1 ∘ 𝜎(𝑋(𝑖)
𝑘) − 𝜕𝑓2 ∘ 𝜎(𝑋(𝑖)

𝑘))𝑁
𝑖=1

(32)

where, σ(X) denotes is the vector consisting of the singular

values of matrix X, and ∀x∈Rn: 𝑓1(𝒙) = ∑ 𝒙𝑖
𝑛
𝑖=1 and 𝑓2(𝒙) =

∑ log(𝒙𝑖 + 𝜖)
𝑛
𝑖=1 .

By Theorem 2.1, we have:

𝑌 ∈ 𝜕(𝑓 ∘ 𝜎)(𝑋) =

{𝑈(Diag𝜔)𝑉𝑇|𝜔 ∈ 𝜕𝑓(𝜎(𝑋)), X = 𝑈(Diag𝜎(𝑋))𝑉𝑇}
(33)

Thereby, following conclusion can be drawn:

𝑈(

𝛼𝑖 0 0 0
0 𝛼𝑖 0 0
0 0 ⋱ 0
0 0 0 𝛼𝑖

)

𝑟𝑖×𝑟𝑖

𝑉𝑇 ∈ 𝛼𝑖𝜕𝑓1 ∘ 𝜎(𝑋(𝑖)
𝑘) (34)

and

𝑈

(

1

𝜎1(𝑋(𝑖)
𝑘)+𝜀

0 0 0

0
1

𝜎2(𝑋(𝑖)
𝑘)+𝜀

0 0

0 0 ⋱ 0

0 0 0
1

𝜎𝑟𝑖(𝑋(𝑖)
𝑘)+𝜀)

𝑟𝑖×𝑟𝑖

𝑉𝑇 ∈ 𝜕𝑓2 ∘ 𝜎(𝑋(𝑖)
𝑘)

(35)

where, ri is the rank of matrix 𝑋(𝑖)
𝑘 . Therefore, an element Yk

could be found in ∂h(Xk) which has the following form:

𝒴𝑘 =
1

𝑁
∑ 𝑓𝑜𝑙𝑑𝑀𝑖
𝑁
𝑖=1 (36)

where,

𝑀𝑖 = 𝑈

(

𝛼𝑖 −
1

𝜎1(𝑋(𝑖)
𝑘)+𝜀

0 0 0

0 𝛼𝑖 −
1

𝜎2(𝑋(𝑖)
𝑘)+𝜀

0 0

0 0 ⋱ 0

0 0 0 𝛼𝑖 −
1

𝜎𝑟𝑖(𝑋(𝑖)
𝑘)+𝜀)

𝑉𝑇 (37)

3.2 Calculation of ∂g*(Yk)

According to the preliminary knowledge in Subsection 2.3,

∂g*(Yk) is a solution to the convex program (22). ∀𝒴𝑘 ∈
𝑅𝑛1×𝑛2×⋯𝑛𝑁,

∂𝑔∗(𝒴𝑘) = 𝑎𝑟𝑔 𝑚𝑖𝑛{𝑔(𝒳) − ℎ(𝒳𝑘)−< 𝒳 −𝒳𝑘, 𝒴𝑘 >

:𝒳 ∈ 𝑅𝑛1×𝑛2×⋯𝑛𝑁}
= 𝑎𝑟𝑔 𝑚𝑖𝑛{𝑔(𝒳)−< 𝒳 −𝒳𝑘, 𝒴𝑘 >:𝒳 ∈ 𝑅𝑛1×𝑛2×⋯𝑛𝑁}

(38)

Combining (28) and (38), the following optimization can be

obtained:

min
1

2𝜇
‖𝒜(𝒳) − b‖2

2 + ‖𝒳‖∗−< 𝒳 −𝒳𝑘, 𝒴𝑘 >

,𝒴𝑘 ∈ ∂ℎ(𝒳𝑘)
(39)

156

Since the optimal condition for minimization of a convex

function is 0∈∂φ(x), 𝒳∗ is optimal of formula (39) if and only

if

0 ∈
1

𝜇
P(𝒳∗) + ∂‖𝒳‖∗ −𝒴

𝑘 (40)

where, P(𝒳∗) = 𝒜∗ (𝒜(𝒳∗) − b) and 𝒜∗ represents the

adjoint of 𝒜.

For ∀τ>0, formula (40) is equivalent to:

0 ∈
1

𝜇
τP(𝒳∗) + τ ∂‖𝒳‖∗ − 𝜏𝒴

𝑘 +
1

𝜇
𝒳∗ −

1

𝜇
𝒳∗ (41)

Then, it holds that

0 ∈ τ ∂‖𝒳‖∗ +
1

𝜇
𝒳∗ −

1

𝜇
(𝒳∗ − τP(𝒳∗)) − 𝜏𝒴𝑘 (42)

Let 𝒵∗ = 𝒳∗ − τP(𝒳∗). Formula (42) can be reduced to:

0 ∈ τ ∂‖𝒳‖∗ +
1

𝜇
𝒳∗ −

1

𝜇
𝒵∗ − 𝜏𝒴𝑘 (43)

After combining, we have:

0 ∈ τ ∂‖𝒳‖∗ +
1

𝜇
(𝒳∗ − (𝒵∗ + 𝜇𝜏𝒴𝑘)) (44)

i.e. 𝒳∗ is the optimal solution to

min τ‖𝒳‖∗ +
1

2𝜇
‖𝒳 − (𝒵∗ + 𝜇𝜏𝒴𝑘)‖𝐹

2 (45)

Under the definition of mode-n unfolding, the problem of

minimizing (45) can be written as:

min τ ∑ 𝛼𝑖‖𝑋(𝑖)‖∗
+

1

2𝑁𝜇
∑ ‖𝑋(𝑖) − (Z(𝑖)

∗ +𝑁
𝑖=1

𝑁
𝑖=1

𝜇𝜏Y(𝑖)
𝑘)‖

𝐹

2

(46)

Problem (46) is difficult to solve due to the interdependent

nuclear norms. Therefore, a series of new matrix variables Mi

(i=1, 2, ..., N) were introduced such that they equal to X(1),

X(2), ..., X(N), respectively, which represent the different mode-

n unfoldings of the tensor X. With these new variables,

formula (46) can be rewritten as:

min τ∑ 𝛼𝑖‖𝑀𝑖‖∗ +
1

2𝑁𝜇
∑ ‖𝑀𝑖 − (Z(𝑖)

∗ +𝑁
𝑖=1

𝑁
𝑖=1

𝜇𝜏Y(𝑖)
𝑘)‖

𝐹

2
 s.t. 𝑀𝑖 = 𝑋(𝑖), ∀i ∈ {1,2,⋯ ,𝑁}

(47)

Relaxing the constraint Mi=X(i), the following problem can

be obtained:

min τ ∑ 𝛼𝑖‖𝑀𝑖‖∗ +
1

2𝑁𝜇
∑ ‖𝑀𝑖 − (Z(𝑖)

∗ +𝑁
𝑖=1

𝑁
𝑖=1

𝜇𝜏Y(𝑖)
𝑘)‖

𝐹

2
+

1

2𝛽
∑ ‖𝑀𝑖 − 𝑋(𝑖)‖𝐹

2𝑁
𝑖=1

(48)

where, β>0 is a penalty parameter. An optimal solution of

problem (48) approaches an optimal solution of formula (47)

as β>0 [42]. For convenience, suppose β=μ in problem (48)

and consider the following minimization:

min
𝒳,𝑀𝑖

τ∑ 𝛼𝑖‖𝑀𝑖‖∗ +
1

2𝑁𝜇
∑ ‖𝑀𝑖 − (Z(𝑖)

∗ +𝑁
𝑖=1

𝑁
𝑖=1

𝜇𝜏Y(𝑖)
𝑘)‖

𝐹

2
+

1

2𝜇
∑ ‖𝑀𝑖 − 𝑋(𝑖)‖𝐹

2𝑁
𝑖=1

(49)

Computing Mi Fixing all variables except Mi (i=1, 2, ..., N),

problem (49) can be transformed into the following matrix

problem:

min
𝑀𝑖

τ𝛼𝑖‖𝑀𝑖‖∗ +
1

2𝑁𝜇
‖𝑀𝑖 − (Z(𝑖)

∗ + 𝜇𝜏Y(𝑖)
𝑘)‖

𝐹

2
+

1

2𝜇
‖𝑀𝑖 − 𝑋(𝑖)‖𝐹

2

(50)

The optimal solution of problem (50) will be searched for

by the following theorem.

Theorem 3.1 Suppose μ>0 and τ>0. For any given i∈{1,

2, ..., N}, 𝑀𝑖
∗ is an optimal solution to problem (50) if and only

if

𝑀𝑖
∗ = 𝐷τ𝛼𝑖𝜇𝑁

1+𝑁

(
Z(𝑖)
∗ +𝜇𝜏Y(𝑖)

𝑘 +𝑁𝑋(𝑖)

1+𝑁
) (51)

Proof: 𝑀𝑖
∗ is an optimal solution to problem (50) if and

only if

0 ∈ ∂τ𝛼𝑖‖𝑀𝑖
∗‖∗ +

1

𝑁𝜇
(𝑀𝑖

∗ − (Z(𝑖)
∗ + 𝜇𝜏Y(𝑖)

𝑘)) +
1

𝜇
(𝑀𝑖

∗ − 𝑋(𝑖))
(52)

where, ∂‖𝑀𝑖
∗‖∗ is the subgradients of ‖∙‖∗ at 𝑀𝑖

∗ . Through

proper combining and deforming, we have:

0 ∈ ∂
τ𝛼𝑖
1+𝑁

𝜇𝑁

‖𝑀𝑖
∗‖∗ +𝑀𝑖

∗ −

1

𝜇𝑁
1+𝑁

𝜇𝑁

(Z(𝑖)
∗ + 𝜇𝜏Y(𝑖)

𝑘) −

1

𝜇
1+𝑁

𝜇𝑁

𝑋(𝑖)

(53)

which is equivalent to

0 ∈ ∂
τ𝛼𝑖𝜇𝑁

1+𝑁
‖𝑀𝑖

∗‖∗ +𝑀𝑖
∗ −

1

1+𝑁
(Z(𝑖)

∗ +

𝜇𝜏Y(𝑖)
𝑘 +𝑁𝑋(𝑖))

(54)

i.e. 𝑀𝑖
∗ is an optimal solution to the following minimization

problem

min
τ𝛼𝑖𝜇𝑁

1+𝑁
‖𝑀𝑖‖∗ +

1

2
‖𝑀𝑖 −

1

1+𝑁
(Z(𝑖)

∗ +

𝜇𝜏Y(𝑖)
𝑘 +𝑁𝑋(𝑖))‖

𝐹

2

(55)

According to the Theorem 3 in Ma et al. [43], an optimal

solution to problem (55) must be the matrix shrinkage operator

applied to
1

1+𝑁
(Z(𝑖)

∗ + 𝜇𝜏Y(𝑖)
𝑘 +𝑁𝑋(𝑖)) . Hence, the optimal

solution of problem (55) is

𝑀𝑖
∗ = 𝐷τ𝛼𝑖𝜇𝑁

1+𝑁

(
Z(𝑖)
∗ +𝜇𝜏Y(𝑖)

𝑘 +𝑁𝑋(𝑖)

1+𝑁
) (56)

For ∀νR+, the matrix shrinkage operator Dv(X) can be

defined as:

157

𝐷𝑣(𝑋) = 𝑈𝐷𝑖𝑎𝑔(𝜎(𝑋))𝑉
𝑇 (57)

Let X = UDiag(𝜎(𝑋))𝑉𝑇 be the SVD for matrix X,

𝜎(𝑋) = {
𝜎𝑖(𝑋) − 𝜈, 𝑖𝑓 𝜎𝑖(𝑋) − 𝜈 > 0

0 , 𝑜. 𝑤.
 (58)

Then, solution (56) is also the optimal solution to problem

(50).

Q.E.D.

Computing X: Fixing all other variables except X(i), i=1,

2, ..., N, the following problem was considered to get the

exact solution:

min
1

2𝜇
‖𝑀𝑖 − 𝑋(𝑖)‖𝐹

2
 s. t. X(𝑖)

∗ = 𝑀𝑖 (59)

From the previous discussion, Mi can be regarded as known

in model (59). Hence, the solution to model (59) can be

obtained easily as:

𝒳∗ =
1

𝑁
∑ 𝑓𝑜𝑙𝑑(𝑀𝑖)
𝑁
𝑖=1 (60)

From formulas (56) and (60), the following iterative

formula can be derived:

{

𝑌(𝑖)
𝑘 = 𝑈

(

𝛼𝑖 −
1

𝜎1(𝑋(𝑖)
𝑘)+𝜀

0 0 0

0 𝛼𝑖 −
1

𝜎2(𝑋(𝑖)
𝑘)+𝜀

0 0

0 0 ⋱ 0

0 0 0 𝛼𝑖 −
1

𝜎𝑟𝑖(𝑋(𝑖)
𝑘)+𝜀)

𝑉𝑇

𝑍(𝑖)
𝑘 = 𝒳𝑘 − τP(𝒳𝑘)

𝒳𝑘+1 =
1

𝑁
∑ 𝑓𝑜𝑙𝑑 𝐷𝜏𝛼𝑖𝜇𝑁

1+𝑁

(
Z(𝑖)
𝑘 +𝜇𝜏Y(𝑖)

𝑘 +𝑁𝑋(𝑖)

1+𝑁
)𝑁

𝑖=1

 (61)

Through the above discussion, the Log-TC algorithm can be

established to solve tensor completion problem (Algorithm 1).

Algorithm 1: Log-TC algorithm

Input: 𝒜, b, μ, and τ
Initialization: Set k:=0, and 𝒳𝑘 ≔ 0

for μ→0, do

 while not converged, do

 P(𝒳𝑘)=𝒜∗(𝒜(𝒳∗) − 𝑏)
 𝒵𝑘 = 𝒳𝑘 − 𝜏𝑃(𝒳𝑘)
 for i = 1:N

 𝑀𝑖
𝑘 = 𝐷𝜏𝛼𝑖𝜇𝑁

1+𝑁

(
𝑍(𝑖)
𝑘 +𝜇𝜏𝑌(𝑖)

𝑘 +𝑁𝑋(𝑖)

1+𝑁
)

 end

 𝒳𝑘+1 =
1

𝑁
∑ 𝑓𝑜𝑙𝑑(𝑀𝑖

𝑘)𝑁
𝑖=1

 end while

end for

Output: 𝒳𝑢𝑙𝑡

4. NUMERICAL EXPERIMENTS

To verify its empirical performance, the proposed Log-TC

algorithm was compared with fixed point iterative method for

low-rank tensor completion (FP-LRTC) [44] and fast low rank

tensor completion algorithm (FaLRTC) [10] through

numerical experiments. The FP-LRTC, which combines a

fixed-point iterative method for solving the low n-rank tensor

pursuit problem, and a continuation technique, has been

applied to solve the relaxation model of the low-rank tensor

completion problem. The FaLRTC utilizes a smoothing

scheme to transform the original nonsmooth problem into a

smooth problem, and was found more efficient than simple

low rank tensor completion (SiLRTC), and high accuracy low

rank tensor completion (HaLRTC).

This section is separated into two subsections. In Subsection

4.1, our algorithm was tested on the randomly generated low

n-rank tensors. In Subsection 4.2, our algorithm was tested on

color image recovery problem. All experiments were carried

out in MATLAB R2016a on a computer running on Windows

10, with a 3.20GHz CPU and 4GB of memory. For fair

comparison, each number is the average over 10 separate runs.

4.1 Synthetic data

First, our Log-TC algorithm was tested on several synthetic

datasets for the tensor completion tasks. Following the method

proposed by Rauhut et al. [45], a n-order tensor 𝒯 ∈
𝑅𝑛1×𝑛2×⋯×𝑛𝑁 was created randomly with the n-rank (r1,

r2, ..., rN) of the form 𝒯 ≔ℳ ×1 𝑈1 ×2 ⋯×𝑁 𝑈𝑁 , where

ℳ ∈ 𝑅𝑟1×𝑟2×⋯×𝑟𝑁 is the core tensor and 𝑈𝑖 ∈ 𝑅
𝑛𝑖×𝑟𝑖(𝑖 =

1,2,⋯ ,𝑁) . Each entry of the core tensor ℳ was sampled

independently from a standard Gaussian distribution 𝒩(0,1).
Then, m entries were sampled randomly from tensor 𝒯 in a

uniform manner. The sample ratio, denoted by SR, was defined

as SR = 𝑚 𝐼1⋯𝐼𝑁⁄ . The relative error (RelErr) of the

recovered tensor defined as:

RelErr =
‖𝒳𝑢𝑙𝑡−𝒯‖𝐹

‖𝒯‖𝐹
 (62)

is used to estimate the closeness of 𝒳𝑢𝑙𝑡 to 𝒯, where 𝒳𝑢𝑙𝑡 is

the optimal solution to model (26) produced by the algorithms.

The ratio “fr” [44] between the degree of freedom (DOF) in

a rank r matrix to the number of samples in the matrix

completion was extended to tensor completion problem and

denoted by FR:

FR =
1

𝑁
∑ 𝑓𝑟𝑖
𝑁
𝑖=1 =

1

𝑁
∑

𝑟𝑖(𝐼𝑖+Π𝑖−𝑟𝑖)

𝐼1⋯𝐼𝑁×𝑆𝑅

𝑁
𝑖=1 (63)

where, 𝑟𝑖 = rank(𝑋(𝑖)) ; Π𝑖 = ∏ 𝐼𝑘
𝑁
𝑘=1,𝑘≠𝑖 . In the following

results, “FR” is used to represent the hardness of the tensor

completion. If FR is greater than 0.6, then the problems are

“hard problems”; otherwise, the problems are “easy problems”.

The parameters wee configured as: μ=1, θμ=1-sr, μ̅ =
1 × 10−8, τ=10, and λ=1.

The simulated performance of FP-LRTC, FaLRTC and

158

Log-TC for random tensor completion problem, as measured

by relative error and running time, are reported in Figure 2 and

Table 1.

As shown in Figure 2, the relative error for tensor of size

60×60×60 with the n-rank was fixed at (6,6,6), and the sample

rate changed from 10% to 80%. As it is known, when the n-

rank is fixed, the complexity of the problem increases with the

decrease of the SR. The plot illustrates that Log-TC is clearly

superior to FP-LRTC and FaLRTC. The superiority is

particularly evidence in the situation of SR=10%: Log-TC

recovered the tensor with the relative error about 10-4, while

FaLRTC and FP-LRTC with 100.

Figure 2. The relative error on tensors of size 60×60×60 with

sample rate (SR) between 10% to 80% and fixed n-rank

(6,6,6)

Table 1. Comparison of running time on tensors of size

60×60×60 with sample rate (SR) 70% and -rank (6,6,6)

Relative

Error

Log-TC

Time (s)

FP-LRTC

Time (s)

FaLRTC

Time (s)

10−9 67.23 79.04 132.41

10−8 26.62 32.75 40.42

10−6 11.07 16.36 36.21

10−4 2.82 4.51 41.17

Table 1 shows the performance of each algorithm with SR

70% in terms of the running time. Log-TC obviously

outperformed the contrastive algorithms, under the same

relative error. Even when the precision requirement is

ultrahigh (10-9), Log-TC can complete the trask in one minute.

Figure 3 shows the relative error for tensor of size

60×60×60, when the sample rate was fixed at SR=40% and n-

rank r changed from 2 to 40. Like the previous situation, when

sample rate is fixed, the complexity of the problem increases

with the increase of the rank. As shown in Figure 3, Log-TC

outperformed FP-LRTC and FaLRTC in all cases. Log-TC

performed especially well at r=20: Log-TC recovered the

tensors with the relative error about 10-8, while FP-LRTC and

FaLRTC with only about 10-1. It can also be seen that, when

r=24, our algorithm solved the problem with the relative error

10-3, but the other two methods failed to effectively recover

the tensors.

Figure 3. The relative error on tensors of size 60×60×60 n-

rank (r,r,r) between 2 and 40 and fixed sample rate

(SR=40%).

Next, the numerical results of the three algorithms on easy

problems and hard problems were reported. Tables 2 and 3 list

the numerical results of several cases in which the test tensors

have different sizes, n-ranks and sample rates.

According to the results on easy problems (Table 2), the

Log-TC outshined the other two algorithms in relative error

and running time. FaLRTC is inferior to FP-LRTC and Log-

TC in terms of relative error. FP-LRTC and Log-TC

performed similarly on relative error, but Log-TC consumed

the shorter time. Overall, Log-TC achieved the best

performance on easy problems.

According to the results on hard problems (Table 3), Log-

TC also realized better performance than the contrastive

algorithms. With the increase of tensor order, the robustness

of FaLRTC was getting worse. FP-LRTC and Log-TC were

always capable of recovering the tensors efficiently, but the

running time of FP-LRTC is about 2.5 times more than that of

the Log-TC.

Table 2. Comparison results for easy problems

Tensor Rank SR FR
Log-TC FP-LRTC FaLRTC

RelErr Time RelErr Time RelErr Time

20×30×40 (2,2,2) 0.5 0.15 1.72e-08 1.11 3.36e-08 1.82 1.23e-06 3.53

30×30×30 (5,5,5) 0.3 0.57 5.42e-08 3.24 8.27e-07 4.39 4.83e-06 2.72

60×60×60 (5,5,5) 0.7 0.12 4.57e-09 2.83 6.71e-09 4.65 1.11e-05 7.88

100×100×100 (10,10,10) 0.4 0.25 3.95e-09 50.40 5.90e-09 87.28 1.21e-05 36.63

20×20×30×30 (5,5,5,5) 0.6 0.35 4.40e-09 13.57 5.76e-09 22.87 5.94e-07 90.76

50×50×50×50 (6,6,6,6) 0.7 0.17 1.23e-09 90.77 1.64e-09 139.19 2.36e-08 189.6

30×30×30×30×30 (2,2,2,2,2) 0.5 0.13 1.83e-09 635.81 2.44e-09 1573.9 9.83e-08 2896

30×30×30×30×30 (6,6,6,6,6) 0.6 0.33 1.43e-09 905.60 1.47e-09 1649.1 8.63e-08 2765

159

Table 3. Comparison results for hard problems

Tensor Rank SR FR
Log-TC FP-LRTC FaLRTC

RelErr Time RelErr Time RelErr Time

20×30×40 (2,2,2) 0.1 0.75 3.90e-04 50.82 5.72e-01 67.61 2.11e-01 6.73

30×30×30 (5,5,5) 0.1 1.71 8.30e-10 57.83 8.45e-7 62.09 8.74e-01 1.31

70×70×70 (10,10,10) 0.2 0.72 2.28e-08 324.83 2.71e-08 422.34 2.35e-04 56.42

100×100×100 (10,10,10) 0.2 0.63 1.20e-08 119.29 1.67e-08 187.10 1.09e-04 191.5

20×20×30×30 (5,5,5,5) 0.3 0.7 1.34e-08 241.36 4.76e-07 373.09 3.42e-07 896.3

50×50×50×50 (5,5,5,5) 0.2 0.69 7.18e-09 754.08 5.43e-08 1271.51 2.72e-01 1732

20×20×20×20×20 (5,5,5,5,5) 0.3 0.83 3.04e-08 398.47 6.28e-06 1689.23 3.92e-01 2874

20×20×20×20×20 (8,8,8,8,8) 0.4 1.00 4.48e-09 746.92 8.52e-08 1939.63 4.53e-08 2145

4.2 Image simulation

This subsection compared the three algorithms on the

recovery of color images. Color images can be expressed as

third order tensors. If the images are of low rank, the image

recovery can be solved as a low n-rank tensor completion

problem. Assuming that the images are well structured, FP-

LRTC, FaLRTC and Log-TC were applied separately to solve

the recovery problem.

The recovery effects of the Log-TC are illustrated in Figure

4 and Table 4. In Figure 4, (a1), (b1), (c1), and (d1) are original

color images. Then, 80%, 60%, 40% and 20% entries were

randomly removed, creating corrupted images (a2), (b2), (c2),

and (d2), respectively. The images recovered by the Log-TC

are (a3), (b3), (c3), and (d4), respectively. Only the effects of

the Log-TC were provided, because the three algorithms

achieved similar recovery accuracy. The recovery accuracy

and running time of each algorithm are listed in Table 4.

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

Figure 4. Original images, corrupted images, and recovered

image by Log-TC in the recovery of natural images

Table 4. Numerical results on the color images

SR

Log-TC FP-LRTC FaLRTC

Relative

Error

Time

(s)

Relative

Error

Time

(s)

Relative

Error

Time

(s)

20% 9.14e-02 1300 9.62e-02 1681 8.31e-02 2137

40% 6.36e-02 598 8.45e-02 740 7.74e-02 1402

60% 4.89e-02 362 5.71e-02 298 2.57e-02 978

80% 3.40e-02 209 4.21e-02 302 3.91e-02 721

As shown in Figure 4, the Log-TC recovered the natural

images with missing information. Table 4 shows that our

algorithm achieved a recovery accuracy of about 10-2, and a

clear edge over the contrastive methods in running time.

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

(d1) (d2) (d3)

Figure 5. Original images, corrupted images, recovered

images by the Log-TC in the recovery of images with poor

texture

160

Table 5. Numerical results on the color image with poor texture

SR
Log-TC FP-LRTC FaLRTC

Relative Error Time(s) Relative Error Time(s) Relative Error Time(s)

20% 1.17e-01 1835 5.72e-01 1920 4.53e-01 2341

40% 6.71e-02 857 8.45e-02 1103 7.47e-02 1780

60% 5.02e-02 493 2.71e-02 631 3.87e-02 1285

80% 3.37e-02 291 4.42e-02 329 2.57e-02 943

The original images in Figure 4 have a nice mixture of

details, shading areas, flat regions, and textures. Next, the

three algorithms were separately adopted to recover color

images with poor texture. The recovery effect of our algorithm

is displayed in Figure 5, and the numerical results of the three

methods are compared in Table 5. The subgraphs in the middle

column of Figure 5 were prepared in the same method as those

in the middle column of Figure 4. It can be seen that, despite

the poor texture of images, our algorithm still recovered the

details of the images, and outperformed the other algorithms

in running time.

5. CONCLUSIONS

This paper firstly defines a log function of tensor, and uses

it as an approximation of tensor rank function. Furthermore, a

simple yet efficient algorithm named Log-TC algorithm was

proposed to recover an underlying low n-rank tensor. The log

function strikes a balance between rank minimization and

nuclear norm. It can simultaneously increase the penalty on

small values and reduce the penalty on large values. After that,

our algorithm was compared with FP-LRTC and FaLRTC

through numerical experiments on randomly generated tensors

and color image recovery. The numerical comparisons

demonstrate that the Log-TC outperformed the other two

algorithms. The future research will investigate the largescale

cases by other techniques, and test the performance of our

algorithm for image inpainting problems.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for the useful comments and suggestions. This work is

partially supported by National Natural Science Foundation of

China Grant (No. 11626080), Natural Science Foundation of

Hebei Province (No. A2017207011), National Statistical

Science Research Project of China (No. 2019LY27) and

Department of Education of Hebei Province under Grant (No.

QN2018018).

REFERENCES

[1] Symeonidis, P. (2016). Matrix and tensor decomposition

in recommender systems. In Proceedings of the 10th

ACM Conference on Recommender Systems, pp. 429-

430. https://doi.org/10.1145/2959100.2959195

[2] Peng, J., Zeng, D.D., Zhao, H., Wang, F.Y. (2010).

Collaborative filtering in social tagging systems based on

joint item-tag recommendations. In Proceedings of the

19th ACM International Conference on Information and

Knowledge Management, pp. 809-818.

https://doi.org/10.1145/1871437.1871541

[3] Xiong, L., Chen, X., Huang, T.K., Schneider, J.,

Carbonell, J.G. (2010). Temporal collaborative filtering

with Bayesian probabilistic tensor factorization. In

Proceedings of the 2010 SIAM International Conference

on Data Mining, pp. 211-222.

https://doi.org/10.1137/1.9781611972801.19

[4] Baltrunas, L., Kaminskas, M., Ludwig, B., Moling, O.,

Ricci, F., Aydin, A., Lüke, K.H., Schwaiger, R. (2011).

Incarmusic: Context-aware music recommendations in a

car. In International Conference on Electronic

Commerce and Web Technologies, pp. 89-100.

https://doi.org/10.1007/978-3-642-23014-1_8

[5] Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G.,

Zhao, Q., Caiafa, C., Phan, H.A. (2015). Tensor

decompositions for signal processing applications: From

two-way to multiway component analysis. IEEE Signal

Processing Magazine, 32(2): 145-163.

https://doi.org/10.1109/MSP.2013.2297439

[6] Cichocki, A., Lee, N., Oseledets, I., Phan, A.H., Zhao, Q.,

Mandic, D.P. (2016). Tensor networks for

dimensionality reduction and large-scale optimization:

Part 1 low-rank tensor decompositions. Foundations and

Trends® in Machine Learning, 9(4-5): 249-429.

https://doi.org/10.1561/2200000059

[7] Cichocki, A., Phan, A.H., Zhao, Q., Lee, N., Oseledets,

I.V., Sugiyama, M., Mandic, D. (2017). Tensor networks

for dimensionality reduction and large-scale

optimization: Part 2 applications and future perspectives.

Foundations and Trends R in Machine Learning, 9(6):

431-673. https://doi.org/10.1561/2200000067

[8] Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K.,

Papalexakis, E.E., Faloutsos, C. (2017). Tensor

decomposition for signal processing and machine

learning. IEEE Transactions on Signal Processing,

65(13): 3551-3582.

https://doi.org/10.1109/TSP.2017.2690524

[9] Signoretto, M., Van de Plas, R., De Moor, B., Suykens,

J. A. (2011). Tensor versus matrix completion: A

comparison with application to spectral data. IEEE

Signal Processing Letters, 18(7): 403-406.

https://doi.org/10.1109/LSP.2011.2151856

[10] Liu, J., Musialski, P., Wonka, P., Ye, J. (2012). Tensor

completion for estimating missing values in visual data.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 35(1): 208-220.

https://doi.org/10.1109/TPAMI.2012.39

[11] Wang, W., Sun, Y., Eriksson, B., Wang, W., Aggarwal,

V. (2018). Wide compression: Tensor ring nets. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 9329-9338.

[12] He, W., Yuan, L., Yokoya, N. (2019). Total-variation-

regularized tensor ring completion for remote sensing

image reconstruction. In ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP), Brighton, United Kingdom,

161

United Kingdom, pp. 8603-8607.

https://doi.org/10.1109/ICASSP.2019.8682696

[13] Huang, H., Liu, Y., Liu, J., Zhu, C. (2020). Provable

tensor ring completion. Signal Processing, 171: 107486.

https://doi.org/10.1016/j.sigpro.2020.107486

[14] Liu, Y., Shang, F., Jiao, L., Cheng, J., Cheng, H. (2014).

Trace norm regularized CANDECOMP/PARAFAC

decomposition with missing data. IEEE transactions on

cybernetics, 45(11): 2437-2448.

https://doi.org/10.1109/TCYB.2014.2374695

[15] Jenatton, R., Roux, N.L., Bordes, A., Obozinski, G.R.

(2012). A latent factor model for highly multi-relational

data. In Advances in neural information processing

systems, pp. 3167-3175.

[16] Guo, X., Yao, Q., Kwok, J.T.Y. (2017). Efficient sparse

low-rank tensor completion using the Frank-Wolfe

algorithm. In Thirty-First AAAI Conference on Artificial

Intelligence.

[17] Sorber, L., Van Barel, M., De Lathauwer, L. (2013).

Optimization-based algorithms for tensor

decompositions: Canonical polyadic decomposition,

decomposition in rank-(Lr, Lr, 1) terms, and a new

generalization. SIAM Journal on Optimization, 23(2):

695-720. https://doi.org/10.1137/120868323

[18] Goulart, J.H.D.M., Boizard, M., Boyer, R., Favier, G.,

Comon, P. (2015). Tensor CP decomposition with

structured factor matrices: Algorithms and performance.

IEEE Journal of Selected Topics in Signal Processing,

10(4): 757-769.

https://doi.org/10.1109/JSTSP.2015.2509907

[19] Tucker, L.R. (1966). Some mathematical notes on three-

mode factor analysis. Psychometrika, 31(3): 279-311.

https://doi.org/10.1007/BF02289464

[20] De Lathauwer, L., De Moor, B., Vandewalle, J. (2000).

On the best rank-1 and rank-(r1, r2, ..., rN)

approximation of higher-order tensors. SIAM Journal on

Matrix Analysis and Applications, 21(4): 1324-1342.

https://doi.org/10.1137/S0895479898346995

[21] Tsai, C.Y., Saxe, A.M., Cox, D. (2016). Tensor

switching networks. In Advances in Neural Information

Processing Systems, pp. 2038-2046.

[22] Oseledets, I.V. (2011). Tensor-train decomposition.

SIAM Journal on Scientific Computing, 33(5): 2295-

2317. https://doi.org/10.1137/090752286

[23] Phien, H.N., Tuan, H.D., Bengua, J.A., Do, M.N. (2016).

Efficient tensor completion: Low-rank tensor train. arXiv

preprint arXiv:1601.01083.

[24] Yang, Y., Krompass, D., Tresp, V. (2017). Tensor-train

recurrent neural networks for video classification. In

Proceedings of the 34th International Conference on

Machine Learning, 70: 3891-3900.

https://doi.org/10.5555/3305890.3306083

[25] Hu, Y., Zhang, D., Ye, J., Li, X., He, X. (2012). Fast and

accurate matrix completion via truncated nuclear norm

regularization. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 35(9): 2117-2130.

https://doi.org/10.1109/TPAMI.2012.271

[26] Lu, C., Tang, J., Yan, S., Lin, Z. (2014). Generalized

nonconvex nonsmooth low-rank minimization. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 4130-4137.

[27] Yao, Q., Kwok, J.T., Wang, T., Liu, T.Y. (2018). Large-

scale low-rank matrix learning with nonconvex

regularizers. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 41(11): 2628-2643.

https://doi.org/10.1109/TPAMI.2018.2858249

[28] Fan, J., Ding, L., Chen, Y., Udell, M. (2019). Factor

group-sparse regularization for efficient low-rank matrix

recovery. In Advances in Neural Information Processing

Systems, pp. 5105-5115.

[29] Huang, L.T., So, H.C., Chen, Y., Wang, W.Q. (2014).

Truncated nuclear norm minimization for tensor

completion. In 2014 IEEE 8th Sensor Array and

Multichannel Signal Processing Workshop (SAM), pp.

417-420. https://doi.org/10.1109/SAM.2014.6882431

[30] Han, Z.F., Leung, C.S., Huang, L.T., So, H.C. (2017).

Sparse and truncated nuclear norm based tensor

completion. Neural Processing Letters, 45(3): 729-743.

https://doi.org/10.1007/s11063-016-9503-4

[31] Xue, S., Qiu, W., Liu, F., Jin, X. (2018). Low-rank tensor

completion by truncated nuclear norm regularization. In

2018 24th International Conference on Pattern

Recognition (ICPR), Beijing, China, pp. 2600-2605.

https://doi.org/10.1109/ICPR.2018.8546008

[32] Kiers, H.A. (2000). Towards a standardized notation and

terminology in multiway analysis. Journal of

Chemometrics: A Journal of the Chemometrics Society,

14(3): 105-122. https://doi.org/10.1002/1099-

128X(200005/06)14:3%3C105::AID-

CEM582%3E3.0.CO;2-I

[33] De Lathauwer, L., De Moor, B., Vandewalle, J. (2000).

A multilinear singular value decomposition. SIAM

Journal on Matrix Analysis and Applications, 21(4):

1253-1278.

https://doi.org/10.1137/S0895479896305696

[34] Lewis, A.S. (1994). The convex analysis of unitarily

invariant matrix norms. Faculty of Mathematics,

University of Waterloo, 2: 173-183.

[35] Geng, J., Wang, L., Xu, Y., Wang, X. (2014). A weighted

nuclear norm method for tensor completion.

International Journal of Signal Processing, Image

Processing and Pattern Recognition, 7(1): 1-12.

http://dx.doi.org/10.14257/ijsip.2014.7.1.01

[36] Han, Z.F., Leung, C.S., Huang, L.T., So, H.C. (2017).

Sparse and truncated nuclear norm based tensor

completion. Neural Processing Letters, 45(3): 729-743.

https://doi.org/10.1007/s11063-016-9503-4

[37] Xue, S., Qiu, W., Liu, F., Jin, X. (2018). Low-rank tensor

completion by truncated nuclear norm regularization. In

2018 24th International Conference on Pattern

Recognition (ICPR), Beijing, China, pp. 2600-2605.

https://doi.org/10.1109/ICPR.2018.8546008

[38] Horst, R., Thoai, N.V. (1999). DC programming:

overview. Journal of Optimization Theory and

Applications, 103(1): 1-43.

https://doi.org/10.1023/A:1021765131316

[39] Le Thi Hoai, A., Tao, P.D. (1997). Solving a class of

linearly constrained indefinite quadratic problems by DC

algorithms. Journal of Global Optimization, 11(3): 253-

285. https://doi.org/10.1023/A:1008288411710

[40] Tao, P.D. (2005). The DC (difference of convex

functions) programming and DCA revisited with DC

models of real world nonconvex optimization problems.

Annals of Operations Research, 133(1-4): 23-46.

https://doi.org/10.1007/s10479-004-5022-1

[41] Tao, P.D., An, L.T.H. (1997). Convex analysis approach

to DC programming: Theory, algorithms and

applications. Acta Mathematica Vietnamica, 22(1): 289-

162

355.

[42] Bertsekas, D.P. (1997). Nonlinear programming. Journal

of the Operational Research Society, 48(3): 334-334.

https://doi.org/10.1057/palgrave.jors.2600425

[43] Ma, S., Goldfarb, D., Chen, L. (2011). Fixed point and

Bregman iterative methods for matrix rank minimization.

Mathematical Programming, 128(1-2): 321-353.

https://doi.org/10.1007/s10107-009-0306-5

[44] Yang, L., Huang, Z.H., Shi, X. (2013). A fixed point

iterative method for low n-rank tensor pursuit. IEEE

Transactions on Signal Processing, 61(11): 2952-2962.

https://doi.org/10.1109/TSP.2013.2254477

[45] Rauhut, H., Schneider, R., Stojanac, Ž. (2017). Low rank

tensor recovery via iterative hard thresholding. Linear

Algebra and Its Applications, 523: 220-262.

https://doi.org/10.1016/j.laa.2017.02.028

163

