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The spindle is one of the principle components in machine tools which provide accurate 

rotational motion to meet appropriate demands. If spindle rotation is not proper, the work 

piece obtained from that machine will also be inaccurate. In industrial applications, the 

spindle error motion is analyzed for understanding the performance of machine tools. 

The evaluation of either of the direction information is utilized for finding the dynamic 

error motion of the machine tools. The one direction motion information was used for 

evaluating error motion. In present work, instead of using one direction information, both 

data are used for analyzing the error motion. This has been done by extracting the 

spindle edge detail information from the captured sequential image using suitable edge 

detector. The subpixel level edge is obtained for removal of form error in artifacts. Both 

direction location of spindle has been utilized by converting the information from 

cartesian plane to the polar plane. The polar Fourier series is used to find the spindle 

error and further used to separate the synchronous, asynchronous and centering error 

motion. Thus finally, for different spindle speed, synchronous error obtained was in 

range of 4.65um to 7.02 um and asynchronous error as 12.48um to 21.90um. 
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1. INTRODUCTION

In the manufacturing world, the spindle is considered as 

one of the principle components. The spindle provides 

rotation to the components by making stator as stationary and 

rotor as rotating. The rotation should be a perfect one to 

achieve high efficient and accurate work piece during 

machining. The ideal spindle will have one degree of 

freedom, whereas in practical case, the machinery spindle 

contains five degrees of freedom. The five degrees are two in 

radial direction, one in axial and two in tilt position. The 

precise rotation of the spindle helps to attain precise product 

from that particular spindle [1]. If the machine tool spindle 

rotation is not perfect, the product obtained from that spindle 

will not be precise enough. In the obtained work piece or 

product, spindle errors along with form error of the artifact 

will also accumulate in it. This affects the accuracy and 

production of products from the machine having such 

spindles. Many research works had been proposed to measure 

the spindle errors by using some standards such as ISO 230 

part 7, JIS B 6190-7 and ANSI/ASME B89.3.4 [2]. These 

standards specify the spindle error during motion, degrees of 

freedom, form error of the target used and also illustrate 

appropriate ways to segregate the spindle errors. 

The spindle runout was measured using dial indicator and 

in that the spindle errors are embedded with centering error 

and surface error of the artefact [3]. The dial indicator based 

spindle error measurement was a contact based measurement 

and the measurement was carried out on stationary spindle. 

The rotating spindle error motion and stationary might not 

produce the same error motion.  

Later, the displacement sensors such as inductive and 

capacitive sensors were used for measuring the spindle 

runout. In 2010, a regression based method was used to find 

the spindle radial errors. The input data was acquired from 

the capacitive sensors placed near the spindle. Since it is a 

displacement sensor, during rotation, the distance between 

the spindle and sensor head was acquired and analyzed [4]. In 

2015, Zhang et.al, developed a new cylindrical capacitive 

sensor based approach to find spindle errors in five degrees 

of freedom. It measures the radial error motion accurately 

with an eccentricity of 15um. This method also measures the 

axial and tilt error motion. Even though the sensors provide 

greater resolution, the usage of displacement sensors were 

limited by its working distance between the target and the 

sensor head [5]. 

In 1990s, the laser based measurement technique was 

proposed for spindle rotational error motion measurement by 

passing the laser beam over the surface of the spindle.  An 

appropriate method for measuring radial and angular error 

motion of different range of speed using laser diode and 

position sensitive detectors were developed [6]. In 2002, 

Jywe and Chen presented a simple method by using laser 

diode and four quadrant sensor. In this developed method, in 

addition to spindle errors, the spindle speed and indexing can 

also be noted. The simplicity of this approach is no usage of 

master target or marks for measuring spindle errors [7]. 

The method proposed by Liu et. al., proposed a method 

where the laser diode and batteries are integrated in the 

rotational fixture which regrets the usage of master target. 

The motion of laser point was detected using two PSDs on 

machine tools. The laser beam was split into two separable 

beams by beam splitter and falls on the PSDs. This 

information was used to find the spindle radial and tilt errors 
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with some mathematical formulations [8]. This laser based 

measurement techniques requires a longer period of time in 

calibration and alignment of path for laser beam and also it 

requires many components for spindle error measurement 

setup. 

A new algorithm was developed for measuring the spindle 

error motions. In this, an indexing marker was placed on the 

spindle for error measurement, which helps to measure the 

spindle speed in accurate way. The spindle speed was set in 

the range of 600rpm to 6000 rpm. The developed program 

uses the sensor information for determining the motion. The 

developed algorithm followed the international standard for 

measuring the total error motion, asynchronous and 

asynchronous spindle errors and also the spindle speed. This 

method measures the spindle geometric errors and 

compensated rotation, orientation and straightness error. But 

here the form error was not taken into account during 

measuring [9]. 

Castro (2008) used heterodyne laser interferometer 

rotation error measurement such radial and axial error motion 

in a lathe machine. He developed two separate experimental 

arrangements for measuring radial and axial errors separately. 

A high precision master sphere has been fixed at the end of 

wobbling spindle for measuring the spindle error motions. 

Based on the laser beam reflection from the surface of the 

sphere, the error measurement is carried out. The dispersion 

of beam was minimized using a convergent lens in the 

arrangement which helps to spotlight the laser beam to a dot. 

The obtained data are plotted in the polar plots and this 

method provides resolution of 1 nm [10]. 

In recent years, the machine vision based approach for 

spindle error measurements are proposed by using some 

appropriate image processing techniques. The images were 

captured for a spindle speed of 180-360 rpm. Six such 

revolution images were used for finding the spindle error 

motion in machine tools. The acquired error motion depends 

on the image quality and also image processing algorithms 

[11].  

A new method of finding spindle redial error using 

machine vision based approach was proposed in 2017 [12]. A 

standard cylindrical target with 10mm diameter was mounted 

on the spindle and used as a master target. The sequential 

frames of the rotating spindle with cylindrical target had been 

analyzed for finding the spindle radial error in horizontal 

direction. The captured sequential images were edge detected 

and subpixel level edge information was obtained using 

Circular Hough Transform. Further, the data was analyzed 

using least square fitting for spindle error separation. Here, 

the error was separated using one co-ordinate axis.  

The machine tool spindle rotational accuracy is an 

important consideration for producing good quality products. 

The spindle rotational errors were measured by using 

capacitive, inductive sensors, laser based and vision based 

systems. In the existing vision based methods, the spindle 

radial error component was isolated from the centering error 

and form error of the artifact by using the cartesian plane data. 

In this work, the spindle runout in one direction that is either 

horizontal error motion or vertical error motion was 

considered for analyzing the spindle radial error motion. In 

the proposed method, both direction information is used for 

analyzing the error motion by converting the cartesian plane 

information to polar plane. The form error present in the 

artifact was removed by circle fitting algorithm. Also in the 

proposed method, the spindle error motion was analyzed and 

the centering error, synchronous and asynchronous error 

motion was separated for different spindle speed.  

 

 

2. EXPERIMENTAL ARRANGEMENT  

 

The proposed machine vision setup consists of a camera, 

lighting system, frame grabber, computer aided data 

acquisition system for measuring the spindle radial error 

motion in a machine tool. The proposed spindle radial error 

measurement has been carried out in the lathe machine by 

acquiring the images of the target at different operational 

speeds. A diameter of 13 mm cylindrical master is fixed on 

the lathe machine for finding the rotational error of lathe 

spindle. On the other side, the CMOS camera is fixed on 

lathe machine tool post for focusing the master cylinder. A 

positioning stage is used for focusing the camera to the 

cylindrical master. A standard scale of 100 cm is used for 

measuring the spacing between the camera and the master 

target and it was measured to be 40 cm. The machine vision 

applications require a proper lighting system for image 

acquisition. The target object has to be illuminated properly 

before capturing the image. So a ring lighting system with 

red LED is used to illuminate the cylindrical target.  

The spindle radial error motion is measured by using the 

sequential image frames taken at different spindle speed. The 

camera used is an AVT Marlin F-131b monochrome camera. 

This is a monochrome camera with sensor cell size of 6.7 μm 

both horizontally and vertically. The camera has a maximum 

image resolution of 1280 horizontal and 1024 vertical pixels 

and is interfaced to the personal computer using IEEE 1394 

frame grabber. The proposed experimental set up is shown in 

Figure 1. 

 

 
 

Figure 1. Experimental setup for spindle radial error 

measurement using the vision based system 

 

 
 

Figure 2. Sequential frames of cylindrical target for spindle 

speed of 25 rpm 
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By using the experimental arrangement, the sequential 

image frames are captured for different spindle speed. Figure 

2 shows the sequential frames captured at the spindle speed 

of 25 rpm. 

The spindle radial error motion has to be analyzed by 

measuring the change in position of the cylindrical target 

from the sequential images and the error measurement in real 

world units is to be attained by camera calibration. 

 

2.1 Camera calibration 

 

The camera calibration is a fundamental step for machine 

vision based applications that maps 3-dimensional real world 

co-ordinates to 2-dimensional image coordinates. There are 

many methods available to calibrate the camera and for 

obtaining distortion less view [13]. The commonly used 

Zhang’s method of 2D calibration approach is used in the 

proposed method for calibrating the camera [14]. The error 

occurred due to lens distortion such as radial (pincushion and 

barrel) and tangential errors have been corrected by using 

Zhang’s method. The re-projected corners grid points by 

using the camera calibrations results are shown in Figure 3. 

In this Figure, the corners are detected automatically using 

harris corner detection method. 
 

 
 

Figure 3. Calibration of checkerboard pattern 

 

2.1.1 Estimation of camera parameters 

Once all of the calibration pattern corners are detected by 

selecting the 4 points on the checkerboard, the intrinsic 

camera parameters can be obtained and it is shown in the 

Table 1. 

The estimated camera intrinsic parameters give the total 

radial and tangential distortion of the camera and it is found 

to be minimum. These values are used for un-distorting the 

image. 
 

2.1.2 Lens distortion correction 

The camera calibration result gives the coefficient of radial 

(k1,k2,k3) and tangential (p1,p2) lens distortion. Those 

values are used for correcting radial and tangential distortions 

in the image. Figure 4 shows the input and the distortion free 

images. Using the distortion co-efficient, the images are 

corrected automatically. The distortion vectors show that the 

camera lens distortion is very low and it could be neglected 

while using in real time acquisition. 

 

Table 1. Estimated intrinsic parameters of the camera 

 
Intrinsic Parameters Values 

Focal Length [7720.796   8038.515] ± [773.234   809.914] 

Principal point [464.086   316.721] ± 13.913    19.513] 

Skew [0.00000] ± [0.00000] 

Distortion 

[12.24773-10705.72763   -0.02928-0.02428  

0.00000] ± [5.56477   7645.66663   0.01658   

0.01362  0.00000] 

Pixel error [0.21403   0.20671] 

 

 

 

Figure 4. Lens distortion correction in the captured image 

 

2.1.3 Scaling factor using estimated camera parameters 

Once the distortions of lens are removed, it can be ready 

for image acquisition. To get the real world units from pixel 

information, the scaling factor has to be calculated. In this 

work, the scaling dimensions are obtained using a proper 

checkerboard pattern with a proper lighting system for 

acquiring the edge points of square pattern and are shown in 

Figure 5. From the standard image of checker board pattern 

of known distance, the scaling values for changing the image 

pixel data to real world dimension is obtained. Further the 

number of pixels in horizontal (x) and vertical (y) has also 

been counted. 

 

Px =
Dimension of blocks in x direction

Number of pixels in x direction
   (1) 

 

Py =
Dimension of blocks in y direction

Number of pixels in y direction
 (2) 

 

Figure 5 shows the checkerboard of dimension 30mm x 

30mm used and the number of pixel counts in horizontal and 

vertical directions of one black pattern is measured to be 

361x360 pixels respectively. Hence the scaling factor to 

obtain information is real world dimension is found to be 

0.083mm/pixel.  
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Figure 5. Scaling factor from calibrated camera 

 

2.2 Boundary extraction of the cylindrical target 

 

There are many edge detectors available for extracting the 

boundary of the objects in the digital images [15]. The soft 

computing based methods are also used for detecting the 

object boundaries in digital images provided with prior 

knowledge about the edge [16]. But due to the drawbacks of 

first and second order derivative based edge detection, the 

canny edge detector was proposed which uses both concepts 

for derivative function for smoothing and boundary detection. 

This detector detects and locates edge points in a proper way 

with uni-response to an edge point [17]. In canny edge 

detection, Gaussian filter is first applied for removing high 

frequency noise content in the image. The upper and lower 

threshold values are used for locating edge points accurately. 

Since first and second order edge detector uses one threshold 

value and sensitive to noise, canny edge detector was used 

here for detection of edges. The optimized result of edge 

information can be inferred by first smoothing the image for 

reducing noise and next by finding the gradient magnitude 

along horizontal and vertical directions. The magnitude and 

direction of the gradient G is given by, 

 

|∇I| = G = √Gx2 + Gy2 (3) 

 

𝜃 = atan (𝐺𝑥 , 𝐺𝑦) (4) 

 

where, Gx, Gy are the partial derivative of captured 

cylindrical target image I along horizontal and vertical 

respectively. The maximum gradient above the threshold are 

grouped into edge pixels. Figure 4 shows the input image and 

the result of canny edge detector for the acquired image.   

Figure 6(b) gives the edge details that is obtained using 

gaussian smoothing and derivative functions. The double 

thresholding in the canny method gives fine edge details 

compared to other edge detection methods [18]. But however 

it gives only edge details at pixel level. Hence, in the 

proposed method, the least square curve fitting algorithm is 

used for finding the circular target boundary trajectory and 

for estimating the spindle radial error motion. 

 

 
(a) Gray scale image of the master cylinder 

 
(b) Canny edge detected pixels 

 

Figure 6. Output of canny edge detector for target image 

 

 

3. SUPIXEL EDGE DATA USING LEAST SQUARE 

METHOD 

 
The boundary of the target in the digital image is obtained 

using canny edge detection operator. Further to view the 

precise details, subpixel edge information is needed. In the 

present method, the subpixel edge details are obtained from 

the image using least square curve fitting method [19]. The 

least square minimizes the error between the original and 

predicted data. Further, the residual obtained is also low in 

least square fitting. The main advantage of this method is 

simple computing approach. The equation of the circle in 

linear form can be given as, 
 

𝐴(𝑥2 + 𝑦2) + 𝐵𝑥 + 𝐶𝑦 = 1 (5) 
 

To find the circle parameters at subpixel level, it is 

necessary to find the values of A,B and C. It can be written in 

matrix form as, 

 

[
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where, i varies from 1 to total number of edge points. By 

solving the above equation, the (A,B,C) values are be 

calculated. Further, by using those values, the circle 

parameters at subpixel levels by linear methods [20] can be 

measured as, 

 

𝑥𝑐 = −
𝐵

2𝐴
 (7) 

 

𝑦𝑐 = −
𝐶

2𝐴
   (8) 

 

𝑟 =
√4𝐴 + 𝐵2 + 𝐶2

2𝐴
 (9) 

 

Once the circle center and radius are obtained using least 

square method, the subpixel edge points has to be calculated 

and a circle with center (xc,yc) and radius r is fitted over the 

pixel level data which is obtained from canny edge detector 

operator.  

 

 
 

Figure 7. Edge pixels along X-axis 

 

The target present in the image is circular boundary. The 

boundary contains, X (Horizontal) and Y (Vertical) pixel 

information. Thus the fitting along X and Y axis using canny 

edge detection and least square curve fitting was plotted 

respectively. Figure 7 and Figure 8 give the least square fitted 

circle and edge detected circle with center points along X and 

Y directions. 

 

 
 

Figure 8. Edge pixels along Y-axis 

 

 

4. CONVERSION OF CARTESIAN DATA TO POLAR 

FORM 

 

The target circle information such as its radius and center 

location are obtained using least square curve fitting method 

at subpixel level. The next step is to convert the circle data to 

polar form. This has to been done to find the spindle radial 

error along the horizontal and vertical direction during 

rotation of machine tools. This conversion helps to estimate 

the two directional spindle error motions in a single attempt. 

The equation to convert the Cartesian data to polar form is 

given by, 

 

𝑚𝑖 = √𝑥𝑝
2 + 𝑦𝑝

2 (10) 

 

𝜃𝑖 = tan−1 (
𝑦𝑝

𝑥𝑝

) (11) 

 

where, (mi,θi) are the magnitude and phase variation between 

the continuous edge points and (xp,yp) is the subpixel edge 

information which is obtained from least square curve fitting 

information. The sequential edge points in polar form can be 

used further to find the spindle radial error motion data using 

fourier series. The canonical expression of the fourier series 

can be written as, 

 

[
 
 
 
 
 
𝑅𝜃1′
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𝑅𝜃3′
.
.
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.
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𝑏𝑘]
 
 
 
 
 
 

 (12) 

 

where, k is harmonic number which varies from 1 to m. r is 

obtained from mean of radius which is calculated from the 

Eq. (12). The component (a,b) is the amplitude of cosine and 

sine terms for Fourier harmonics which is obtained using the 

below equations, 

 

𝑎𝑘 =
2

𝑛
∑𝑟𝑖 cos(𝑖. 𝜃𝑖)

𝑛

𝑖=1

 (13) 

 

𝑏𝑘 =
2

𝑛
∑ 𝑟𝑖 sin(𝑖. 𝜃𝑖)

𝑛

𝑖=1

 (14) 
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where, n, is the entire number of points in polar curve. 

The Eq. R(θ) gives the total error motion of spindle with 

the inclusion of centering error, radial synchronous and 

asynchronous error motions.  

 

 

5. RESULTS AND DISCUSSION 

 

The total error motion of the machine tool lathe spindle is 

obtained for different spindle speed of 25 rpm, 50 rpm, 75 

rpm and 100 rpm. 

Figure 9 shows the total spindle error obtained for 

different spindle speed. The next step is to segregate the 

spindle radial error motion from the entire error motion. The 

total error motion is comprised of synchronous error, 

asynchronous error and centering error motion. The deviation 

of the target circle from the base circle is termed as centering 

error. The synchronous error which is repeatable affects the 

roundness of the product obtained from that machine tool 

spindle. The asynchronous error motion is aperiodic and non-

repeatable that affects the surface finish of the product. Thus 

to measure the spindle radial errors, these total error motion 

has to be separated [21].  

 

5.1 Separation of Spindle radial error components 

 
The polar Fourier series accumulates the total spindle error 

motion components. It has to be separated for getting spindle 

radial error motion components. The plot is plotted by 

finding the number of harmonic components. The number of 

harmonics relies on the spindle rotational speed and the total 

number of sequential frames captured for each and every 

rotation of different spindle speed. Among the total 

harmonics, the first harmonic component gives the centering 

error of the spindle which is nothing but the eccentricity [21]. 

The remaining harmonics give the spindle synchronous error 

and the residuals obtained from the obtained and the 

determined gives the non-repeatable error component that is 

asynchronous error motion. The Eq. (15) gives the centering 

error which is the first harmonic component. 

 
𝐶𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 = 𝑎1 ∗ cos(1 ∗ 𝜃) + 𝑏1 ∗ sin(1 ∗ 𝜃) (15) 

 

The remaining harmonics gives the synchronous error 

motion of the spindle and is measured using the below 

equation, 

 

𝑆𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 𝑒𝑟𝑟𝑜𝑟 = ∑𝑎𝑗 cos(𝑗. 𝜃) + 𝑏𝑗 sin(𝑗. 𝜃)

𝑘

𝑗=2

 (16) 

 

Further, the asynchronous spindle error motion which is 

non-repeatable is measured by subtracting the measured data 

from the original data. 

 

𝐴𝑠𝑦𝑛𝑐ℎ𝑟𝑜𝑛𝑜𝑢𝑠 𝑒𝑟𝑟𝑜𝑟 = 𝑅𝜃−𝑅𝜃
′   (17) 

 

 
(a)            (b) 

 
(c)                                                        (d) 

 

Figure 9. Spindle error motion for the operational speed of (a) 25 rpm, (b) 50 rpm, (c) 75 rpm and (d) 100 rpm 
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                           (i)                                                (ii)                                                                  (iii) 

(a) 25 rpm 

 

                                                      
                           (i)                                                (ii)                                                                  (iii) 

(b) 50 rpm 

 

                                                
                           (i)                                                (ii)                                                                  (iii) 

 (c) 75 rpm 

 

                                         
                            (i)                                                (ii)                                                                  (iii) 

 (d) 100 rpm 

 

Figure 10. (i) Centering error, (ii) Asynchronous error and (iii) Synchronous error motion for spindle speed of (a) 25 rpm, (b) 50 

rpm, (c) 75 rpm and (d) 100 rpm 
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Table 2. Spindle error motion for different spindle speed 

 

Spindle 

Speed (rpm) 

Synchronous error(µm) Asynchronous error (µm) 

Data set 1 Data set 2 Data set 3 Data set 1 Data set 2 Data set 3 

25 6.509 4.580 7.826 13.21 10.76 13.47 

50 7.078 6.811 7.166 17.39 27.43 12.92 

75 5.732 6.016 5.223 25.96 16.68 22.24 

100 4.548 4.356 5.042 19.89 22.20 23.60 

 

The shift from the base circle in Figure 8.(i) denotes the 

presence of centering error and it was removed from the 

spindle radial error components. The harmonic components 

define the number of lobes in the circular shape. If the 

harmonic is one, the shape of an object is circular. The 

harmonic measured from the sequential image indicates the 

spindle error motion of the machine tool. The magnitude of 

the harmonics depends on the (a,b) co-efficient values which 

spots the non-repeatable components of the machine tool. 

Figure 10 shows the separated error motion for different 

spindle speeds. And the harmonic components for the spindle 

speed of 25 rpm are depicted in Figure 11. 

The separated spindle radial error components for four 

different spindle speed have been measured for continuous 

rotation of the cylindrical target. The Table 2 gives the 

synchronous and asynchronous spindle radial error motion 

for four different spindle speeds. For each speed, three sets 

were taken for analyzing the repeatability of the proposed 

method. 

From the table, it is clear that, with increase in the spindle 

speed, the periodic error motion is decreasing. This is due to 

the inner alignment of bearings to that of axis of rotation of 

the spindle. At the same time, the non-periodic error motion 

which is asynchronous is increasing with respect to the 

spindle speed. Thus, if the data is processed in cartesian 

plane directly, the radial error obtained might contain the 

combination of error along horizontal and vertical directions. 

But in this work, the cartesian information is converted to 

polar information and the spindle errors along horizontal and 

vertical directions has been measured separately. 

 

 
 

Figure 11. Harmonic components for the spindle speed of 25 

rpm 

 

 

6. CONCLUSIONS 

 

In this paper, the spindle radial error motion was measured 

by converting the data to polar form. This conversion helps to 

analyze the radial error motion either in horizontal and 

vertical directions. Further, the spindle errors are separated 

from the total error motion by using polar fourier series. The 

centering error was removed by using the first harmonic data. 

The remaining harmonic component gives the synchronous 

error and it is varying in the range of 4.3 to 7.8 microns. The 

residual which is obtained from the polar converted 

magnitude and the determined values from the polar fourier 

series gives the asynchronous spindle radial error motion. 

This error value varies randomly for different spindle speed 

due to non-periodic nature and it ranges from 10.7 to 27.4 

microns. Thus the proposed method helps to analyze the 

horizontal and vertical spindle radial error motion in single 

step using the sequential images captured for different 

spindle operational speed and the extracted data from the 

sequential images are analyzed using polar fourier series. 
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