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During greenhouse operations, robots need a specific working path to perform high-

precision cruises, and thus, we designed a navigation positioning system based on an 

odometer/lidar. The navigation positioning system consists of a supervision terminal and 

a mobile robot. The supervision terminal releases map composition and cruise tasks, and 

the mobile robot composes a two-dimensional environment map, plans the cruise path and 

engages in navigation positioning; together, the two perform remote data exchanges 

through a wireless network. The robot could collect encoder data and obtain mileage 

information through track deduction, and combined with lidar data and the Gmapping 

algorithm, a two-dimensional environmental map was established. This system employs 

an A* algorithm to plan the cruise path and uses AMCL to estimate the position and pose 

of the robot. Based on the application of an expandable A* algorithm in the navigation 

toolkit of ROS, a specific working path cruise could be performed by setting goal points. 

The test results show that the navigation positioning system could perform a specific 

working path cruise; the average deviation in its straight line walk is 3.34 cm. The average 

deviation in the specific working path cruise is 2.73 cm, and the system has relatively 

higher navigation positioning precision because it could finish the specific path cruise and 

could better satisfy the greenhouse navigation positioning requirements than previous 

options. 
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1. INTRODUCTION

The greenhouse robot is an important piece of technical 

equipment in the modern greenhouse [1, 2], and automatic 

navigation technology is a key greenhouse robot technology 

that could reduce the repetitive operation of robots, reduce 

costs, and lessen the labor intensity and workload of farmers 

[3]. Therefore, many experts and scholars have performed 

relevant studies on navigation positioning technology in 

greenhouse robots [4, 5]. The navigation positioning 

technology presently used by greenhouse robots primarily 

includes interior conventional navigation positioning 

technology [6-9] and simultaneous localization and mapping 

(SLAM) [10, 11]. The basic principles of the conventional 

navigation positioning technology of interior robots is that a 

robot that moves within a given environment employs Wi-Fi 

[6, 7], inertial navigation [8] and sensing systems such as 

visual navigation [9] to cover the room, obtain information on 

the operational environment and set the navigation parameters 

of the robot through calculation and motion planning, and then 

track the preset navigation path of the robot and perform real-

time corrections. For example, for the interior positioning 

system of a robot based on Wi-Fi, it is necessary for the robot 

to obtain more than 3 wireless sensing signals periodically, 

and according to the strength of the signal, to analyze its own 

position after the calculation, which involves a relatively large 

calculation and test workload [12]. For the interior positioning 

system of a robot based on inertial navigation, an 

accelerometer and spiral instrument are applied to calculate 

the voyage, which could predict the current position and the 

position of the next step of a mutual robot, and with the 

continued voyage, the positioning error would accumulate and 

the positioning precision would decline [13]; for an interior 

positioning system based on vision, images of the 

surroundings are collected through cameras, and the 

information would be fed back to the learning subsystem 

composed of a neural network and statistical method, the 

imaged information and the real position of the robot would be 

connected through the learning subsystem, and thus the 

autonomous navigation positioning would be completed. If the 

information is collected by a camera only, the power of the 

distance-measuring sensor of the active light source is 

relatively low, which would easily be disturbed by 

environmental light, and the distance measuring sensor of a 

non-active light source would barely work under weak light 

[14]. Simultaneous localization and mapping (SLAM) [10, 11] 

includes the construction of a two-dimensional environment 

map, path planning and positioning. While moving in an 

unknown environment, the robot would estimate its position 

and pose according to sensor data such as the depth camera, 

radar, ultrasonic component and encoder, would draw the 

environment map, and then further perform navigation and 

positioning, but this technology is rarely applied to greenhouse 

operations [15]. SLAM technology could effectively help the 

orchard and robot in greenhouse operation to stop relying on 

navigation signals and inertial navigation, thus engaging in 

autonomous operations [16]. Simultaneously, the environment 

map could be applied to conduct environmental perception and 
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for the precision navigation and positioning of the robot, thus 

supporting autonomous operation over the entire greenhouse 

environment. 

Greenhouse plants are commonly characterized by “row 

planting”, and the greenhouse robot needs to complete a 

traversal cruise of the whole greenhouse by moving through 

the aisles row by row. For example, during the cruise to pick 

greenhouse tomatoes shown in Figure 1, the operational goal 

points of the robot are evenly planned along each aisle, and the 

robot would reach the goal points one by one. The actuator 

would finish the operation within the working range and 

continue to seek and reach the next goal point, and ultimately 

the robot would complete its cruise of a specific working path. 

During the autonomous working process, the operational 

precision of a greenhouse robot is closely connected to its 

positioning precision, and the positioning precision of walking 

along the aisle is key to a specific path cruise. 
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Figure 1. Navigation and positioning of a greenhouse tomato 

operation (1. Stops during robot operation; 2. cruise path of 

robot; 3. Tomato planting ridge; 4. aisle between ridges) 

 

To improve the walking precision of a greenhouse robot 

during its cruise on planned paths, in this article, the encoder 

has been adapted to collect chassis motion information from a 

collective wheeled robot, and the mileage information could 

be obtained through track derivation and then combined with 

lidar data and the Gmapping algorithm. A two-dimensional 

environment map would be established in which the odometer 

is composed of an encoder and the chassis controller of the 

robot. The AMCL algorithm is applied to position the robot in 

the map, the A* algorithm is applied to support the overall path 

plan of the robot, and the DWA algorithm is applied to 

perform dynamic obstacle avoidance during practical 

operation. The results show that the precision of that 

navigation positioning system could satisfy the requirements 

of a greenhouse operation. 

 

 

2. SYSTEM MODELING 

 

2.1 Greenhouse robot architecture 

 

To construct the greenhouse robot as shown in Figure 2, the 

chassis of the robot is based on a simple McPherson 

suspension structure, and an aluminum profile (SD-8-3030, 

SDAL Co., Ltd, Shanghai, China) is used. The in-wheel 

motors on the left and right (42BL80S09-230TR9, Time 

Chaoqun Technology Co., Ltd, Beijing, China) are fixed on 

the frame through a spring shock absorber (31 cm, Car Sales 

Shop Co., Ltd, Fuan, China) and the two supporting universal 

wheels on the front and back (2 inch, HUIYIJIAOLUN Co., 

Ltd, Dongguan, China) play a supporting role, and thus the 

system has better bearing and surface passing abilities. 

 

 
 

Figure 2. Global mechanical structure design of the 

greenhouse robot chassis (1. Chassis controller of the robot 2. 

Motor driver 3. Adjustable spring suspension 4. Industrial 

computer 5. Universal wheel 6. Lidar 7. Power 8. In-wheel 

motor) 

 

 
 

Figure 3. Chassis control system architecture of greenhouse 

robot 

 

The frame of the chassis control system of the greenhouse 

robot is shown in Figure 3, and it includes a PC supervision 

terminal (T3900D, Lenovo Co., Ltd, Beijing, China), a router 

(F9, Tenda Co., Ltd, Shenzhen, China), an industrial computer 

(HT780-i5, ZHANMEI Co., Ltd, Shenzhen, China), lidar 

(RPLIDAR A2, SLAMTEC Co., Ltd, Shanghai, China), a 

chassis controller of the robot (STM32F103 VET6, 

Guangzhou Xingyi Electronic Technology Co., Ltd, 

Guangzhou, China), a motor driver (LSDB4850-CAFR-ALL2, 

AMPS Co., Ltd, Shenzhen, China), an in-wheel motor and 

other parts. The industrial computer is the primary controller 

of the robot, and it has an Ubuntu 16.04 operating system and 

an ROS system (ROS Lunar Loggerhead). The PC supervision 

terminal can correspond with the industrial computer through 

the Wi-Fi provided by the router and obtain motion 

information about the robot. Then, the PC supervision terminal 

releases the order of composition, the chassis controller 

collects signals from the encoder, and the mileage information 
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and motion pose of the robot are obtained through track 

derivation, which would be sent to the industrial computer 

through the serial port. The industrial computer integrates the 

mileage information and laser observation data and then 

constructs the two-dimensional map of the working 

environment. After receiving the cruise order from the PC 

supervision terminal, the industrial computer engages in path 

planning and send the robot operation order to the chassis 

motion controller, which then sends the motion control 

information to the driver of the in-wheel motor. This 

information drives the rotation of the left and right in-wheel 

motors on the robot chassis, and thus, the navigational 

positioning and path cruise of the robot is performed. 

 

2.2 Kinematics analysis of greenhouse robot 

 

The kinematic model of the greenhouse robot is shown in 

Figure 4. The world coordinate system Ow-XwYwZw is 

established at the motion starting point, the robot coordinate 

system Or-XrYrZr is established at the geometric center of the 

chassis, and the radar coordinate system Op-XpYpZp is 

established at the geometric center of the lidar. 

Greenhouse roads are relatively flat, and on the three 

coordinate systems, the fluctuation values ∆Z of the robot in 

the direction of the z axis are all relatively small. Therefore, 

this study only accounts for the motion change in the direction 

of the X and Y axes, that is, the value ranges of the robot’s 

greenhouse positioning and navigation are all within the XOY 

surface of the three coordinate systems. Thus, 

Xr=[xr(k),yr(k),θr(k)] is applied to represent the pose of the 

robot, as shown in Figure 5, (xr(k),yr(k)) represents the 

coordinates of the robot in the world coordinate system Ow-

XwYwZw, θr(k) represents the angle between the Xr axis of robot 

and world coordinate system Xw, the clockwise direction is set 

as positive, and the anticlockwise direction is set as negative. 
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Figure 4. Coordinate systems of the robot 
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Figure 5. Pose model of the robot 

The robot has two-wheel drive, the track between the left 

and right wheel is a, the chassis controller of the robot would 

read the output pulse of the encoder on the in-wheel motor, 

and the linear speed of the left wheel Vl and Vr of the right 

wheel could be obtained after calculation. The two-wheel 

differential motion model of the robot is shown in Figure 6, 

and thus the linear and angular speeds of the chassis center of 

the robot are as follows: 

 

2

r l
m

V V
V

+
=

 

(1) 

 

a

r lV V
W

−
=

 

(2) 

 

Combined with the linear and angular speeds of the robot, 

the odometer model shown in Figure 7 would be established, 

in accordance with the pose of the two-wheel differential robot 

after ∆t could be obtained. When setting the linear speed as Vm 

and the angular speed as W, the distance the robot covers 

during this time interval is ∆Dk=Vm∆t, and then the angular 

change with respect to the original point is ∆θk=W∆t. At that 

very moment, the robot pose is Xr=[xr(k),yr(k),θr(k)], and after 

∆t, the robot pose is Xr=[xr(k+1),yr(k+1),θr(k+1)]. 
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Figure 6. Two-wheel differential motion model of the robot 
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Figure 7. Odometer model 
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Figure 8. Laser observation model of the robot 

 

Robot motion within a short time period could be regarded 

as an arc motion, the radius of arc is 𝑟𝑘 =
𝛥𝐷𝑘

𝛥𝜃𝑘
, 𝛥𝜃𝑘 ≠ 0, and 

then the robot pose could be obtained through the following 

odometer model: 
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When the robot moves in a straight line within a short time 

period, 𝛥𝜃𝑘 = 0, and the robot pose at this time is 
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Error accumulates while estimating the pose of the 

greenhouse robot with the odometer model only, which would 

not satisfy the precision requirements of robot navigation and 

positioning [17, 18]. Therefore, this article adopts lidar to 

correct the accumulated error of the odometer and perceive the 

robot environment. The laser observation model of the robot 

is shown in Figure 8. 

The coordinate of the feature point in the lidar detection 

environment is pi(xi, yi), we set the distance between the 

feature point of the lidar detection environment and the lidar 

as ρk,i and the positive angle between the feature point of the 

lidar detection environment and the lidar is φk,i. Combined 

with the odometer model, by calculation, the current pose 

Xr=[xr(k),yr(k),θr(k)] could be obtained, and thus, the robot 

pose in polar form is 
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2.3 Environment map composition and AMCL positioning 

 

To complete a specific robot path cruise in a greenhouse, it 

is first necessary to construct a high-precision map under that 

condition. The ability to perform autonomous positioning in 

the environment is necessary. Therefore, in this study, the 

high-precision, two-dimensional grid environment map of the 

robot in an unknown environment is established based on the 

Gmapping algorithm of the particle filtering principle [19, 20], 

and the AMCL algorithm is applied to support the high-

precision positioning of the robot. The principles underlying 

the Gmapping algorithm are as follows: 

(1) The initialization stage: the robot begins to move, and 

certain amounts of particles are set within the unknown map 

(each particle is a sample, including the map constructed on 

the basis of the lidar scanning data towards the path and 

information of the pose), which are scattered evenly over the 

whole map, and the robot calculates its current pose based on 

current lidar data and saves it in the particle. 

(2) Transfer stage: the robot estimates the state of each 

particle according to the state transition equation, and the 

chassis controller of the robot would collect encoder data; then, 

combined with the odometer model, the pose of the robot 

during the next moment is estimated, and the particle 

corresponding to each predicted pose is produced. 

(3) Decision stage: the robot continues to advance, the 

scanning lidar data are compared with the predicted particle, 

and the weight of the predicted particle close to real conditions 

is increased. The weight of the predicted particle with a large 

difference from the real value would be decreased. 

(4) Resampling stage: particles with large weights would 

remain, and those with small weights would be eliminated, 

leaving particles close to the real pose, and they would 

continue to complement new particles, to keep the total 

number the same. 

(5) Filtering stage: the system continues to perform a loop 

iteration of the resampled particles, and eventually, most 

particles gather in the area most close to the real value to obtain 

the accurate position of the robot and perform positioning in 

an unknown environment. 

(6) Map generation stage: each particle carries one path map, 

and thus the two-dimensional grid map under that environment 

is obtained by combining the particles that are going through 

the filtering stage. 

The robot uses the Gmapping algorithm to construct an 

environment map of the current position, and it is necessary to 

invoke real-time scanning lidar and odometer data and then 

combine them with the mathematic model to estimate its pose 

so the two-dimensional grid map information could be output. 

In the ROS system, the message flow is shown in Figure 9. 

There is an input of the coordinate conversion relation of the 

robot and radar scanning data into the Gmapping node, and the 

node would output a two-dimensional map, the dispersion 

degree of the pose estimation and the corrected error. The 

launch document of the starting node is then edited according 

to the following flow chart. 

To determine the position of the robot in the map precisely 

within a specific path cruise, the AMCL algorithm is used in 

this article for the autonomous positioning of the robot. 

 

 
 

Figure 9. Message flow diagram 
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The AMCL is a plane orientation algorithm based on a 

probability model, and it is obtained through an improvement 

in Monte Carlo Localization (MCL). The positioning principle 

of AMCL is that on the basis of a given map, and combined 

with laser data and odometer information, a limited particle 

number is used to represent the possible distribution of robot 

poses in the environment, and each particle represents one 

possible robot state. While receiving new sensor data, each 

particle would estimate its precision by checking its possibility 

of receiving a sensor number under the current pose. During 

the action that follows, that algorithm would resample 

particles to obtain more precise particles. A loop iteration of 

robot motion for obtaining sensor data and resampling 

procedures would be continued, and when the positioning 

succeeds, all the particle swarms would gather near the real 

pose of the robot. Compared with the MCL algorithm, the 

ACML integrates odometer information, solves the problem 

that the overall robot positioning would fail in an unknown 

environment, and improves the stability and accuracy of robot 

positioning on the map. The AMCL employs the KLD 

sampling algorithm to adjust the number of particles 

dynamically, which to some extent solves the serious increase 

in the calculations caused by the increased particle number. 

The essence of the KLD sampling algorithm is to distribute 

various KL distances by observing two possibilities. The 

approximation error between KL distance distribution 

possibility p and possibility distribution q is 

 

( )
( , ) ( ) log

( )x

p x
K p q p x

q x
=

 
(6) 

 

The KL distance is a nonnegative number, and when the 

possibility distribution of p and q are consistent, K(p,q) is zero. 

Suppose that k subspace possibilities are in discrete 

distribution, use vector X={X1,X2,…,Xk} to represent the 

number of sampled particles in each subspace and vector 

P={p1, p2,…, pk} to represent the real possibility of each 

subspace, and then the possibility density of its maximum 

likelihood estimation could be represented as �̂� = 𝑋/𝑛. When 

the n particle number meets certain conditions, the KL 

distance K(p,q) between the estimated possibility distribution 

and real possibility distribution could be set at smaller than the 

upper limit value ε, which also guarantees that the error 

between the estimated possibility distribution and real 

possibility distribution is the minimum; according to the 

Wilson-Hilferty transition, the equation for dynamic particle 

number n in the KLD that makes the approximation error the 

minimum is 
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The z1-δ in the equation is a standard normal distribution 

with an upper quantile of 1-δ, and it could be understood that 

particle number n is inversely proportional to upper limit vale 

ε and proportional to subspace number k. In the KLD 

algorithm, new particles would continue to be produced until 

they are larger than particle number n or the user-defined 

upper limit. This dynamic selection method reduces the 

particle number and the calculation of the algorithm, and at the 

same time, the possibility distribution could be relatively 

accurate. 

 
 

Figure 10. Communication architecture of the AMCL 

positioning node 

 

The communication architecture of the AMCL positioning 

node is shown in Figure 10. The AMCL positioning node 

would be operated in the ROS, and it would autonomously 

subscribe/map the topic, /scan lidar would scan the data and 

/odom odometer information. The MCL based on the 

possibility model would initialize the particle swarm, estimate 

the robot motion of robot according to the motion model, and 

modify the importance weight through a measuring update, so 

as to strengthen the weight of the particles for the correct pose 

and restrain the weights of particles in the wrong pose, so as 

to estimate the pose of the robot within the overall situation. 

Calculating the number of necessary particles through KLD 

adaptive sampling could increase the utilization ratio of the 

particles, and reduce the particle redundancy, and finally, the 

AMCL positioning node would release the positioning 

information for the /amcl_pose robot. 

 

2.4 Global path planning and dynamic obstacle avoidance 

 

While performing a high-precision specific path cruise, the 

robot not only needs to complete the map composition and 

positioning but also has to be able to engage in autonomous 

navigation and path planning. This autonomous navigation 

and path planning primarily includes global path planning and 

dynamic obstacle avoidance. Therefore, this article adopts the 

global path planning algorithm based on the A* algorithm and 

dynamic obstacle avoidance based on DWA (Dynamic 

Window Approach, DWA). The optimal path the robot takes 

to reach the appointed goal point could be calculated through 

global path planning, and the dynamic obstacle avoidance 

algorithm could engage in the dynamic adjustment of the 

global path, and perform an obstacle avoidance function 

during the process of reaching the appointed goal point. 

The principle of the A* algorithm is seeking the goal point 

at the initial point, evaluating the value of all the points in the 

space through the evaluation function. The value of the robot 

while reaching each node is obtained, and the node with the 

lowest cost is chosen as the expanded node. The next expanded 

node is sought, with this node as the father node, and this 

process is repeated until the goal point is found to obtain the 

optimal path between the initial point and the goal point. The 

general form of the evaluation function in the A* algorithm is 
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( ) ( ) ( )f n g n h n= +
 

(8) 

 

The f(n) in the equation is the estimation function of the 

initial point passing the current position node n to the goal 

point; g(n) represents the mobile cost value of the current pose 

node and the initial point. h(n) represent the cost value from 

the current pose node to the goal point, and n represents the 

node coordinate at the present position. The cost value could 

be calculated through various distance expression methods. 

On the grid map, the Manhattan distance is generally applied 

to calculate the cost value, which represents the sum of the 

horizontal distance and vertical distance from the current 

position node to the goal point. 

 

( ) n o n oh n x x y y= − + −
 

(9) 

 

In this equation, xn and xo represent the abscissas of the 

current position node and the goal point, respectively; and yn 

and yo represent the ordinates of the current position node and 

the goal point, respectively. 

The robot that has finished its global path planning needs to 

more precisely recognize and autonomously avoid dynamic 

and static obstacles during its autonomous navigation. 

Therefore, this study invokes the DWA algorithm in the ROS 

system to perform dynamic obstacle avoidance. The DWA 

algorithm occupies fewer calculation resources and has better 

obstacle avoidance performance, and the algorithm procedure 

is shown in Figure 11. The robot engages in dynamic obstacle 

avoidance by seeking optimal resolution in the motion velocity 

space, and with the velocity model as the calculation model, 

several groups of data would be collected within the motion 

space (dx, dy, dθ) of the robot. The motion track of all the 

sampled data at the next moment could be reckoned according 

to the motion model, and each simulated track would be 

marked based on the specific evaluation standard, which could 

guarantee that the simulated track of the robot bypassing 

obstacles could obtain a higher score. Finally, the track with 

the highest score would be chosen as the safe path of the 

mobile robot to bypass obstacles, and thus autonomous 

navigation within a local scope would be performed. 

 

 
 

Figure 11. DWA algorithm flow chart 

2.5 Specific working path cruise 

 

Using the two-dimensional environment map established 

based on the Gmapping algorithm, the global path planning 

based on the A* algorithm could only find an optimal cruise 

path between the initial point and the goal point, and it cannot 

perform a traversal cruise over all plants in accordance with 

the characteristics of “row planting”. Therefore, according to 

the operational requirements, we set a series of goal points on 

the map as the track of the path cruise. After the PC 

supervision terminal releases the cruise order, the robot would 

reach the first goal point, and after the actuator completes its 

operation within the working range, that point would become 

the initial point. In relying on the A* algorithm, the robot 

would continue to seek the optimal path to the next goal point, 

and in this way, the initial point and the goal point would be 

updated continuously, and ultimately, the specific path cruise 

would be completed. The control procedure for the specific 

path cruise of the greenhouse robot is shown in Figure 12. 

During the cruise process, the AMCL algorithm is used by the 

robot to determine its own position, and the DWA algorithm 

is applied for the dynamic avoidance of debris, plants and 

pedestrians on the cruise path. 

Using the ROS operating system in this article, the global 

path planning plug-in Global_planner is employed to 

configure the robot’s path planning document. Considering the 

working space of the actuator, appropriate stop spacing would 

be selected, the positions of goal points on the cruise path of 

the robot would be set on the constructed map, and the 

greenhouse robot would cruise row by row in an “S”-shaped 

path along the center aisle. 

 

 
 

Figure 12. Working procedures of specific path cruise 
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2.6 Main program design 

 

Ubuntu 16.04 would be installed in the industrial computer, 

the ROS system would be configured, and then the chassis 

controller would be connected through the USB interface. The 

odometer and lidar are connected carefully. In the ROS system, 

the four packages, namely, mybot_bringup, rplidar_ros, 

mybot_description and mybot_navigation, are applied to 

oversee the chassis driving of the greenhouse robot, the radar 

driving, description of the robot structure, and the 

implementation of SLAM and navigation tasks, respectively, 

and then the navigation positioning system of the greenhouse 

robot would be designed. Using the Wi-Fi provided by routers, 

the same static IP address would be allocated to the PC 

terminal and the industrial computer, and the industrial 

computer would be remotely supervised by PuTTY software 

at the PC terminal to obtain the real-time state of the 

greenhouse robot during the autonomous operation process. 
 

Initialization

Calculate the angular speed and linear speed of the wheel

Reckon the pose of robot

Start

Execute AMCL positioning node

Subscribe laser data

Release amcl-pase position information

Execute A* navigation node

Subscribe map and goal information

Release cruise path

Reach path end point？

End

Calculate pulse number within each second

N

Y

Go to the next 

goal point

( ) ( ), ( ),r r rx k y k k  

 
 

Figure 13. Odometer reckoning procedure chart 
 

The primary program procedure of the robot navigation 

positioning is shown in Figure 13. At first, the PC supervision 

terminal would release the map composition task, the 

industrial computer would receive the odometer information 

sent by the chassis controller and lidar scanning data, and the 

two-dimensional map would be established. Then, a new 

scritcps folder would be created in 

the/ROS/mybot0323/mybot_navigation of the ROS working 

space, and then the programing of the cruise node would be 

performed. Based on the constructed map and according to the 

working demand of the robot, all the goal points would be set. 

Furthermore, the PC supervision terminal would release the 

cruise task, and the chassis controller of the robot would read 

encoder pulse number N1 after every sampling period ∆t. The 

pulse number output obtained by the encoder every second is 

N2=N1/∆t, and then the angular speed and linear speed of the 

wheel could be calculated. According to the odometer model, 

the robot pose at the current moment is Xr=[xr(k), yr(k), θr(k)]. 

The chassis controller of the robot would then send the pose 

information to the industrial computer through the serial port 

and receive the motion control order from the industrial 

computer. Simultaneously, the industrial computer would 

execute the AMCL positioning node and release the position 

of the robot combined with the pose information and lidar 

scanning data. Then, relying on the A*navigation node, the 

robot would complete its specific path cruise according to the 

set path. 

 

 

3. EXPERIMENT AND ANALYSIS 

 

While working in the greenhouse, the positioning precision 

while walking in a straight line between planting rows would 

influence the single operation precision of the greenhouse 

robot. In addition, the cruise precision of the robot on a 

specific path would influence the autonomous working 

continuity of the greenhouse robot. At present, the average 

deviation of the navigation positioning precision of the 

greenhouse robot is less than 10.00 cm, and the mean-square 

deviation is within 2.67 cm2 [21-25]. To test the straight line 

walking positioning precision and the cruise precision along a 

specific operating path of the navigation positioning system, 

the following experiment was performed. 

 

3.1 Positioning precision of straight line walking 

 

The office area shown in Figure 14 was chosen from 

Northwest A&F University to test the positioning precision of 

the integrated odometer/lidar navigation positioning system 

during straight line walking in the aisle, the chairs and desks 

were used to simulate plants, and the corridor was used to 

simulate the aisle. To test whether the walking track of the 

robot in the aisle is a straight line, a 10.00 m-long line segment 

was chosen, and after every 1.00 m, a mark point was made. 

The coordinates of the 10 goal points were set as the 

coordinates of the 10 marked points. 

At first, the map composition order was released from the 

PC supervision terminal and the Gmapping program was 

executed in ROS. The two-dimensional environment map of 

the laboratory was autonomously established, and then 10 goal 

points were set on the map. Then, the PC supervision terminal 

would release the cruise order, and the robot would perform a 

straight-line cruise using the A* navigation algorithm and 

AMCL positioning algorithm. A total of 200 straight-line 

walking tests have been conducted, the coordinates where the 

robot passed each goal points were recorded, and the 200 

walking coordinates of each goal point were averaged. After 

each test, all the robots were placed at the same initial position 

to avoid the influence of other factors and guarantee the 

independence of the test. The two-dimensional grid map is 

shown in Figure 14, and the test results are shown in Table 1. 

The positioning precision of the robot during the cruise 

process could be represented by the average deviation 𝑋  as 

calculated by equation (10), and the stability of the robot along 

the track could be represented by the mean-square deviation S2 

obtained in equation (11). 
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Therefore, according to the data in Table 1, when the 

number of goal points is N=10, the average deviation from the 

track during straight-line walking along the aisle is 𝑋=3.34cm, 

among which the largest deviation distance is 4.93 cm, and the 

mean-square deviation during straight-line walking along the 

aisle is S2 =1.38cm2. At present, it the average deviation of the 

navigation positioning precision of greenhouse robot shall be 

less than 10.00 cm, and the mean-square deviation shall be less 

than 2.67 cm2. The test results show that the navigation 

positioning precision of that navigation positioning system 

could satisfy the navigation positioning requirements and the 

track deviation requirements of the greenhouse robot during 

its autonomous straight line walk. 
 

 
 

Figure 14. Test scene and two-dimensional grid map 

 

Table 1. Test data from straight line walk (Unit: cm) 

 
No. Goal points Real coordinates Deviation 

1 (0.000, 0.00) (0.00, 0.00) 0.00 

2 (100.00, 0.00) (101.39, -1.16) 1.81 

3 (200.00, 0.00) (200.55, -1.55) 1.64 

4 (300.00, 0.00) (300.91, -1.64) 1.87 

5 (400.00, 0.00) (401.62, -2.32) 2.82 

6 (500.00, 0.00) (501.93, -2.81) 3.40 

7 (600.00, 0.00) (602.17, -3.27) 3.92 

8 (700.00, 0.00) (702.55, -3.19) 4.08 

9 (800.00, 0.00) (802.91, -2.92) 4.12 

10 (900.00, 0.00) (902.43, -4.16) 4.81 

11 (1000.00, 0.00) (1001.71, 4.63) 4.93 

 

3.2 Positioning precision of specific working path cruise 

 

The 10.00 m×8.00 m office area in Northwest A&F 

University shown in Figure 15 was chosen to test the precision 

of the integrated odometer/lidar navigation system in a 

specific path cruise. To test the integrated odometer/lidar 

navigation system, the desks in the middle and two sides are 

simulated as ridges, and the corridor is simulated as the aisle, 

and the aisle width is 1.00 m. The length on the rectangular 

track is 13.70 m, the 13 points represented by the red points in 

the map are chosen as the goal points and marked in the site, 

the interval between each two points is 1.00 m, and the 

position the greenhouse robot may cover is simulated. The 

two-dimensional coordinate system with the vertex at the left 

bottom as the original point is established. The length of the 

experimental car is 500 mm, the width is 400 mm, and the 

wheel distance is 300 mm. The set goal points and expected 

route are shown in Figure 16. 

 

 

 
 

Figure 15. Experimental scene and two-dimensional map of 

the rectangular path cruise 

 

 
 

Figure 16. Goal points and expected route 

 

Table 2. Test data of rectangular path cruise (Unit: cm) 

 
No. Goal points Real coordinates Deviation 

1 (0.00, 0.00) (0.00, 0.00) 0.00 

 2 (100.00, 0.00) (100.61, 1.69) 1.79 

3 (200.00, 0.00) (201.46, 2.28) 2.71 

4 (300.00, 0.00) (302.08, 2.87) 3.54 

5 (400.00, 0.00) (399.52, 2.91) 2.95 

6 (400.00, 104.60) (398.07, 102.44) 2.89 

7 (400.00, 283.50) (399.54, 284.06) 0.72 

8 (300.00, 275.00) (300.11, 280.03) 5.03 

9 (200.00, 275.00) (199.51, 277.83) 2.87 

10 (100.00, 275.00) (99.59, 275.09) 0.41 

11 (0.00, 275.00) (1.34, 275.01) 1.34 

12 (0.00, 150.00) (-2.56, 152.07) 3.29 

13 (0.00, 80.00) (-2.62, 83.12) 4.07 

14 (0.00, 0.00) (-2.78, 2.77) 3.92 
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Figure 17. Scatter diagram of specific working path cruise test 

 

 
 

Figure 18. Scatter diagram of the mean derivations during the specific working path cruise test 

 

At first, the map composition order would be released from 

the PC supervision terminal, the Gmapping program would be 

executed in ROS, and the two-dimensional environment map 

of the laboratory would be autonomously established. 

Corresponding to the positions of the points at the site, 13 goal 

points would be set on the map. Then, the PC supervision 

terminal would release the cruise order, and the robot would 

perform a specific path cruise using the A* algorithm. The 

dynamic avoidance of obstacles on the path was performed 

through DWA, and the position of the robot at the AMCL time 

were calculated. A total of 200 specific working path cruise 

tests have been conducted, the coordinates where each time the 

robot passing the goal points were recorded, the 200 walking 

coordinates of each goal point were averaged. After each test, 

all the robots were placed at the same initial position to avoid 

the influence of other factors and guarantee the independence 

of the test. The experimental results are as shown in Table 2, 

and the scatter diagrams of the specific working path cruise 

tests for the robot and average deviation are shown in Figures 

17 and 18. Figure 17 directly shows that the navigation 

positioning system could perform a path cruise along the set 

operation goal points, and it has relatively high navigation 

positioning precision. Figure 18 calculates the deviation 

between the ideal positions and practical positions of the 13 

goal points, and it quantitatively analyzes the precision of that 

navigational positioning system. 

According to the data in Table 2, when the number of goal 

points is N=13, equation 10 could be used to show that during 

the cruise along the regulated working path, the average 

deviation from the track is 𝑋=2.73cm. The largest deviation 

distance is 5.03 cm; for the same reason, when the number of 

goal points is N=13, during the cruise along the regulated 

working path, the mean-square deviation of the robot is 

𝑆2 =1.67cm2. The navigation positioning precision of the 

greenhouse robot during operation is less than 10.00 cm, 

which indicates that the positioning precision of the navigation 

positioning system is relatively high and the robot could 

perform the precise operation of a regulated working path 

cruise and satisfy the greenhouse operational requirements. 

For the same reason, the requested mean-square deviation of 

the navigation positioning system is smaller than 2.67 cm2, 

which indicates that the stability of that navigation positioning 

system is relatively high and the robot could stably perform a 

cruise along a specific working path. 

In conclusion, under the direction of the integrated 

odometer/lidar navigation positioning system, the average 

deviation, maximum deviation and mean-square deviation 

during the operation of the greenhouse robot are all within the 

requested range of the greenhouse navigation positioning 

system and could meet the operational requirements of the 

greenhouse robot. 

 

 

4. CONCLUSIONS 

 

To solve the problems of the robot’s high-precision specific 

working path cruise in the greenhouse planting environment, 

this article presents a robot navigation positioning system 

based on an odometer/lidar. The Gmapping algorithm and 

AMCL algorithm are applied to provide map composition and 

positioning, global path planning is conducted based on the A* 

algorithm, and finally, according to the characteristic “row 
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planting” and combined with the navigation toolkit in ROS, a 

specific working path cruise is performed. Through the 

experiment, it was verified that the navigation positioning 

system could complete a high precision cruise of a specific 

working path and meet picking, spraying and fertilizing 

requirements. In addition, this system has advantages such as 

a low cost, easy operation and the flexible setting of the cruise 

path. 

During the test of the system, the influence of the ground 

flatness on the composition of the environment map has not 

been considered, and thus, this system only applies to 

autonomous operations on roads with hard surfaces in 

multispan greenhouse and has poor adaptability to greenhouse 

roads with gentle slopes on the two sides and irregular 

obstacles. Therefore, in future research, it will be necessary to 

establish a three-dimensional dense point cloud and a two-

dimensional grid map based on RTAB-MAP of SLAM and a 

Kinect V2 depth camera to provide a precise map composition 

of an environment with poor flatness, and to provide precise 

positioning under that environment, to meet additional 

requirements of practical greenhouse operations. 
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